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Abstract— This paper considers the problem of active object
recognition using touch only. The focus is on adaptively selecting
a sequence of wrist poses that achieves accurate recognition
by enclosure grasps. It seeks to minimize the number of
touches and maximize recognition confidence. The actions are
formulated as wrist poses relative to each other, making the
algorithm independent of absolute workspace coordinates. The
optimal sequence is approximated by Monte Carlo tree search.
We demonstrate results in a physics engine and on a real robot.
In the physics engine, most object instances were recognized in
at most 16 grasps. On a real robot, our method recognized
objects in 2–9 grasps and outperformed a greedy baseline.

I. INTRODUCTION

Tactile sensing for object recognition has been an area of
research since the 1980s [1], [2], [3]. Major advances have
been slow, partly due to the sparse nature of touch, which
requires more sensing time for a large area coverage, plus
motion planning and physical movement time. Additionally,
manipulator hardware is expensive. In comparison, vision-
based recognition has seen major improvement because of
the rich data, rapid information gathering, and low cost.

However, scenarios exist where vision is unreliable, such
as dark, dusty, smoky, or blurry underwater environments,
transparent and reflective objects, occluded back sides, and
objects in a bag. In these cases, tactile sensing is a better
main modality. Furthermore, the ultimate goal of manipu-
lation is to contact the object. Starting with contacts early
on provides direct physical exteroception that vision cannot
achieve. In fact, physical action is naturally integrated with
perception in animals, who use various active tactile sensing
organs [4]. Humans can recover shapes by touch alone.

While some disadvantages of tactile sensing can be com-
pensated by better hardware, others can be compensated by
efficient planning and exploitation of the limited input. In
fact, Flanagan et al. [5] found that the key to sophisticated
manipulation in the human hand lies more in the accurate
prediction of motor commands and outcomes than in rapid
sensing. This learning and prediction are the bases of active
sensing. Active tactile sensing had early work in tandem with
passive vision [6], [7], [8] and alone [9]. Active perception,
as noted by Bajcsy [10], involves a selection strategy that
trades off between task success and the energy to achieve it.

In this paper, we tackle touch-only object recognition by
an autonomous active selection algorithm, which aims to
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Fig. 1: Left: Experiment setup. Right: An adaptively selected pose.

select a minimum number of wrist poses for maximum recog-
nition likelihood. We formulate the problem as a Markov
Decision Process (MDP) and optimize for such a policy.

Our core idea is that consecutive tactile features observed
on an object are related to the robot movements in between.
Local features are not unique, repeating at symmetric parts
and similar curvatures. Discretizing them across objects
creates common features that can be modeled as a probability
distribution, which we condition on observations and actions,
independent of large state space dimensionality.

We focus on the active prediction problem and not the
recognition. For recognition, we use an existing tactile object
descriptor [11], the weakness in which is that recognition re-
quired hundreds of systematic touches, unrealistic in practice.
Our goal is to eliminate that weakness by strategically select-
ing a small number of touches to observe the key features.
We were able to decrease the number by a magnitude.

The novelty of our active approach has three parts. First,
unlike typical active models, ours is independent of the state
space, by conditioning on observations and actions. State
space-dependent methods have search times proportional
to state dimensionality, posing a limit on state definition.
Second, unlike most active perception approaches, ours is
not greedy. Third, we solve a high-level perception problem
as opposed to a low-level sensor-focused haptics one. We
target autonomous object-level recognition with cheap sparse
pressure sensors, in contrast to most tactile recognition work,
which are material-level recognition with expensive dense
multi-modal sensors and predefined strokes. Our algorithmic
abstraction is not limited to special sensors. We show suc-
cessful prediction in a physics engine and on a real robot.

II. RELATED WORK

Tactile work has been done for reconstruction, localization,
pose estimation, and recognition. Our work differs from
haptics work on material recognition in three major ways.



First, we are solving a perception problem at the object level
based on high-level geometry abstracted from sensor inputs,
not at the material level that directly uses tactile vibrations.
Second, we focus on active prediction of the most useful
actions, whereas haptic recognition typically uses predefined
motions. Third, we execute the actions autonomously.

Similar to our active end-effector pose selection, active
viewpoints have been used to select camera poses to gather
information, such as in [12]. Sensing with vision only is con-
sidered active perception. Our work is closer to interactive
perception, which physically contacts the environment [13].

Early work have explored touch-only object recognition
not involving active planning. Bajcsy [14] compared human
haptic exploratory procedures (EPs) observed by Lederman
and Klatzky [15] to robots, and Allen [3] extended them to a
tactile robotic hand. Gaston [1], Grimson [2], and Siegel [16]
used Interpretation Trees for recognition and pose estimation.

Active touch has been coupled with vision to various
extents. Allen et al. [6], [8] used vision to guide active touch
to invisible regions and explicitly fused the two for shape
reconstruction. Stansfield [7] used an initial visual phase for
rough object properties and a final haptic phase for detailed
surface properties. Others explored solely using active touch.
Schneiter [9] scheduled sensor motions based on [2] for
recognition. Maekawa et al. [17] advanced through grid
points for reconstruction as contacts were detected. Hsiao
et al. [18] partitioned the workspace and represented each
region as a state in a POMDP for optimal control policy.

Many recent active learning algorithms greedily maximize
information gain (IG) [19], [20], [21], [22], [12] for property
estimation or task success. Another recent development is
adaptive submodularity, a diminishing return property [23],
[24]. It was shown that entropy can be submodular and was
used to greedily maximize IG for near-optimal touches [25].

Work most related to ours in active recognition are
Pezzementi et al. [26] and Hausman et al. [27]. Both use
tree search to select actions. However, Pezzementi’s tree
was for motion planning, with nodes being collision-free
configurations. Hausman’s tree nodes were entropy, which
were minimized to find optimal poses to move the object
into camera view. Our tree nodes are tactile observations,
and we select end-effector poses to maximize recognition.

Different from greedy policies, a lookahead policy (e.g.
tree search) explicitly optimizes cost and gain several steps
ahead [28]. Its advantage is that it can avoid jumping on
immediate high gains that are also extremely costly, and
instead favor less costly actions that yield long-term gain.

Solving for lookahead policy directly is impractically
costly, as every possible state in each step ahead needs
to be considered. We tackle this in two ways. First, we
use a Monte Carlo optimization method from reinforcement
learning literature [29]. Second, instead of modeling the state
space, we formulate a probability dependent only on the ob-
servations and actions. It is considerably lower dimensional
and generalizes to any object descriptor and robot platform.

Monte Carlo tree search (MCTS) [30] has become popular
for real-time decisions in AI. It is an online alternative to

dynamic programming and uses repeated simulations to con-
struct a tree in a best-first order. Kocsic and Szepesvàri [31]
showed that tree policy using the UCT (Upper Confidence
bounds applied to Trees) guarantees asymptotic optimality.
Feldman and Domshlak [32] introduced BRUE, a purely
exploring MCTS that guarantees exponential cost reduc-
tion. Silver and Veness [33] extended MCTS to partially-
observable models. MCTS has been used for game solv-
ing [34] and belief-space planning in robotics [35], [36], [37],
but has not been applied to manipulation.

III. PROBLEM FORMULATION

Our goal is to adaptively select a minimum sequence of
end-effector poses to correctly recognize an object. The input
is contact XYZ only, given by enclosure grasps, useful for
sensing the volume and the global shape of an object [15].

1) Recognition Descriptor: We focus on optimizing the
sequence of poses and use an existing tactile object descriptor
[11] for recognition. We cap the sequence at t = 1 : T poses.
At time t, a grasp provides n contact points, resulting in

(
n
3

)
triangles zt [11]. Observed triangles z1:t are binned into a
3D histogram ht. The three dimensions represent triangle
parameters, e.g. two sides and an angle. The histogram is
the object descriptor input to a classifier.

2) Active Probability: In between two consecutive obser-
vations zt and zt+1, the end-effector moves by some action
at+1, which we model as a ∈ SE(3), the translation and
quaternion from the current wrist pose to a new one. As
the hand moves, the previous ending pose becomes the next
starting pose, hence removing the need for world frame
coordinates for both the hand and the object pose. Let
cm(a) ∈ [0, 1] denote the movement cost incurred by a.

To model the recursive chain of zt → at+1 → zt+1 → . . .,
we write the probability distribution p(zt+1|zt, at+1, y). It is
in terms of the next observation zt+1, conditioned on the
current observation zt, the next action at+1 that leads to
zt+1, and the unknown object class y.

3) Training and Test: During training (Alg. 1), two things
are learned for each object: its histogram descriptor h and
its p(zt+1|·) distribution above. Training is done by moving
the robot hand in a grid [11] around the object. Actions
and observations are recorded to compute the two items. An
action is defined between two wrist poses; n poses yield
n2 actions. Additionally, we train a support vector machine
(SVM) classifier (Sec. V-A) on the descriptors. The SVM
gives p(y|h), the probability of class y given a histogram.

At test time, the robot chooses its next grasp at+1 (Sec. IV-
B) based on state xt = ht. Given the current histogram ht,
we can obtain the recognition probability p(y|ht).

Algorithm 1: Training stage

1 for each object do
2 define a grid of wrist poses P wrt object; execute P;
3 store triangle observations {z} from contacts;
4 store tallies of observations {z} per pose;
5 compute histogram descriptor h;



Problem (Active Tactile Recognition). Given an object with
unknown class y, an initial information state x0, and a
planning horizon of T steps, choose a control policy π to
optimize the cost, which trades off between movement cost
and misclassification probability:

min
π
CT (π) ,

λ

T
E

[
T−1∑
t=0

cm(π(xt))

]
+(1−λ)P(ŷT 6= y) (1)

where π maps current state xt to next action at+1, and
ŷT =argmaxy p(y|hT ) is the maximum likelihood estimate
of the object class. P(ŷT 6= y) = 1−maxy p(y|hT ) is the
misclassification probability. λ∈ [0, 1] determines the rela-
tive importance of incurring movement cost (first term) to
gather more information vs. making an incorrect recognition
(second term).

IV. PROPOSED APPROACH

A. Markov Decision Process (MDP)

The problem can be represented by a finite-horizon MDP
defined by (X ,A, T ,Gt). X is the state space. A is a finite
set of possible actions. The transition function

T (xt, a, xt+1) ,
∑
y

p(zt+1 | zt, a, y)p(y | ht)

advances from state xt to xt+1 given action a. Histogram
ht ∈ xt; zt is determined by (xt, a); and ht+1 = (ht, zt+1)
initializes xt+1.

Gt(xt, a, xt+1) ,

{
λ
T cm(a), 0 ≤ t < T

(1− λ)(1−maxy p(y | xt)), t = T

is the stage cost. This corresponds to the two terms in Eqn. 1.
An MDP can be represented by a graph. Each state is a

node, each action is an edge, and T describes how to move
from one node to another. G is the cost associated with an
edge. The graph is generated only at test time.

At the start of the process, a random action a0 is selected.
This generates observation z0, which initializes histogram
h0 at state x0. Then, we advance through the states by
simulating possible actions and following the transitions T
to create nodes and edges (Sec. IV-B). Each node’s zt adds to
the histogram. Over time, the histogram ht is incrementally
filled and resembles the true histogram from training, at
which p(y|ht) would indicate a high probability.

1) Relating Observations and Actions: When we create
a new node with zt at test time, we do not make robot
movements to observe an actual zt, because moving after
every edge would require hundreds of movements for the
entire tree, making the search impractically slow. Instead,
we rely on observations from training.

At the core of our approach is the relationship between
observations and actions, modeled by p(zt+1|zt, at+1, y),
computed from training data (Sec. III-.2). We trust this
relationship to be reliable during training and carries over
to test time, at which we directly sample this probability
from training. Note that p(zt+1|·) is independent of the
state space X , which is a probability of histograms p(ht),

high-dimensional (1000D) and exponential in search time.
This independence and direct sampling from training allows
p(zt+1|·) to be computed quickly at test time (Sec. VI-A).

B. Monte Carlo Tree Search (MCTS)
This section describes how we generate a graph for the

MDP at test time and select an optimal policy π from it.
We represent the graph by a tree and use a Monte Carlo
method. The reader should refer to [30] for an overview of
MCTS and [29] for policy search. The accompanying video
animates the concept. A simple example is shown in Fig. 2
and walked through in Sec. IV-B.3.

An optimal policy π outputs an optimal action sequence,
which is defined as a path with maximum reward (or equiv-
alently, minimum cost) from the root to a leaf. We seek a
path that minimizes the objective cost in Eqn. 1.

After the root is created, Monte Carlo simulations select
actions and follow T to create new edges and nodes. Each
simulation creates one new node. After a number of simu-
lations, the tree is well populated, and the optimal path is
selected. Each tree depth is a time step, with root at t = 0
and leaves at t ≤ T , a defined horizon, or max tree depth.

1) Choosing the Next Action at+1: At time t, node xt,
the next action at+1 is selected as follows. In an MDP
that allows multiple actions per node (known as a multi-
arm bandit problem [30]), the choice of an action faces
an exploration-exploitation dilemma. Exploring new or less-
seen actions generates unseen parts of the tree, making use of
more training data. Re-visiting high-reward actions exploits
branches that at the moment seem more likely to be optimal.

Balancing this dilemma ensures narrowing down the an-
swer while keeping an open mind to see all of the tree. For
contrast, greedy policies always exploit the highest-reward
action and ignore the exploration half. We use the UCT
[31] upper confidence bound to select actions to balance this
dilemma. At a node xt at depth t, the next action at+1 is:

at+1 = argmax
a

(
(1− Cta) + c

√
2 lnN

Na

)
(2)

where the Cta ∈ [0, 1] is CT (π) in Eqn. 1, computed in
previous simulations and stored in node xt. It is the cost of
an available action edge a at the xt (see backpropagation
in Sec. IV-B.3). 1− Cta is the reward. N is the number of
times the node has been visited, and Na is the number of
times action a has been followed from the node.

The first term is exploitation; it favors actions with a high
existing reward. The second term is exploration; it penalizes
actions that have been followed many times. The two terms
are balanced by weight c, picked by hand. The result is a
well-explored bushy tree. In entirety, the bound selects an
action at+1 that minimizes cost Cta . Together with other
actions on a path chosen this way from root to leaf, this
minimizes the objective cost CT in Eqn. 1.

2) Inferring the Next Observation: Given an action at+1,
the next observation zt+1 is sampled from training data:

zt+1∼p(zt+1|zt, at+1)=
∑
y

p(zt+1|zt, at+1, y)p(y|ht) (3)



This reflects the mapping of the MDP transition function
T (xt, at+1) → xt+1. It describes how to move to the next
node xt+1, given the current node xt and next action at+1.
The class y is marginalized out, since the true y is unknown.

3) Tree Search Procedure: Now we put the pieces to-
gether and describe the procedure of each tree search simu-
lation in Algs. 2, 3, 4. Alg. 2 outlines the top-level test stage
procedure. Algs. 3 and 4 outline the tree search and tree
policy. We will walk through a 5-node tree in Fig. 2, with
horizon T = 3, the 5 nodes generated from 5 simulations.

Starting with an empty tree, some action is randomly
selected and produces obs443 in Fig. 2 from training data.
This initializes the root at t = 0, with 1 observation in
histogram h0, which happens to be 0.89 distance from the
closest object in training.

We will describe one full simulation. Each simulation
starts at the root at depth t = 0 and must traverse a single
path downward until the leaves at horizon depth t = T . Each
depth contains actions at and nodes xt. The intuition of a
path from root to leaf in the real world is a sequence of T
actions for the robot to execute.

In each simulation, one new node is created via the choice
of at+1 and zt+1 (Eqns. 2, 3), outlined in Alg. 4 treePolicy.
This means early simulations cannot reach depth T via
existing nodes, since the tree is still shallow. In Alg. 3, a
recursive function treeSearch traverses the tree, incrementing
in depth t (line 4). As long as a node exists (line 2), the tree
policy is called (line 3) to continue down. When a desired
node does not exist, it is created (line 8), which concludes the
one node created in the current simulation, and this ends the
tree policy. The rollout policy follows (line 9) and continues
to depth T by randomly selecting at+1 at each layer.

In Fig. 2, simulation 1, at t = 0, action a1 = p15 is
selected and produces z1 = obs3. Since a node with obs3 at
depth t = 1 does not yet exist, it is created, and this ends the
tree policy. The rollout policy selects random a2 and a3 that
produce temporary nodes x2 and x3, not shown. The rollout
policy operates on a temporary subtree that will be discarded
at the end of the simulation. When the rollout policy reaches
horizon T , the histogram hT accumulated from observations
z0:T on the path we took is fed to the classifier, which outputs
the misclassification cost P(ŷT 6= y) in Eqn. 1.

We then trace the path back up to root and backpropagate
this cost to store in each node on the path, as follows. At
each depth t, reward 1−Cta is updated for action a at node
xt. This is a standard discounted reward, Qa = Qa + (ra −
Qa)/Na, where Qa is the node’s existing discounted reward,
and ra is the raw subtree reward (Alg. 3 lines 4–6).

In addition to backpropagation, the objective continues to
be computed. At each depth t, edge at is accumulated to
movement cost cm(at) in Eqn. 1. Intuitively, the reward at
node xt is the sum reward of actions on its current child
path. When we arrive back at the root, the entire objective
CT has now been computed and stored to root under action
p15 (Fig. 2). This concludes simulation 1. In the next 4
simulations, 4 more nodes are created and rewards computed
similarly. The more simulations, the bushier the tree, and the

deeper the branches reach.
After many simulations, the tree search ends by extracting

the optimal path (Alg. 2 line 10). Starting at the root, simply
follow the highest-reward edges downward. This path defines
an action sequence that minimizes CT . The length of the
sequence is ≤ T , as some branches may not reach T , e.g. two
right branches in Fig. 2. The optimal sequence is executed
on a robot to obtain actual observations for recognition.

Algorithm 2: Test stage

1 object location given;
2 load training probabilities Ptrain;
3 superimpose training poses {po} onto test object;
4 move robot to a pose p0 that contacts object;
5 close grippers; record observation z0; compute

histogram h0;
6 for each tree do
7 node0 = initNewTreeRoot (h0);
8 for each simulation do
9 treeSearch (node0, z0);

10 actions = select max-reward root-to-leaf path;
11 for each action at = a1 : aT in actions do
12 move robot to at; close grippers;
13 record observation zt; update histogram ht;
14 z0 = zT ; h0 = hT ;

Algorithm 3: Tree search

1 function treeSearch (nodet, zt);
2 if nodet exists in tree then
3 at+1, zt+1 = treePolicy(nodet, zt);
4 subtreeReward = treeSearch(nodet+1, zt+1);
5 r = (1− cm(at+1))+ subtreeReward // Eqn. 1

6 nodet.updateReward (at+1, r);
7 else
8 create nodet;
9 r = rolloutPolicy (nodet, t) // Eqn. 1 P(ŷT 6= y)

10 return r;

Algorithm 4: Tree policy

1 function treePolicy (nodet, zt);
2 at+1 = argmaxa UCT(nodet.Ca, nodet.Na) // Eqn. 2

3 ht = nodet.h;
4 for each class y do
5 py = p(zt+1|zt, at+1, y) =

sampleFromPtrain(zt, at+1, y);
6 zt+1 = marginalizeY({py}) // Eqn. 3

7 return at+1, zt+1;

C. Implementation
The recognition of test objects is performed by alternating

between MCTS and robot action execution. Note that we use
the term iteration to refer to one tree search and action exe-
cution, e.g. two iterations means a tree search, an execution,
a second tree search, and a second execution.

The object pose is assumed known and fixed. A first wrist
pose is randomly selected from the training data, which store



Fig. 2: A small example tree. Max-reward path highlighted. Node
label is observation name, nearest neighbor distance, tree depth
t, and number of items in histogram ht. NN distance is inversely
proportional to p(y|ht). Edge label is action name at+1 and reward.

poses with respect to the object center. The observation z0
is computed and initializes the root node of the first tree.
The tree is generated and produces a sequence of relative
wrist poses. This sequence is executed on the robot, with
enclosure grasps onto the object at each wrist pose. Actual
observations are taken, and a histogram is built and fed to the
classifier. This completes one iteration. Then, the old tree is
discarded, and the latest histogram initializes the root node
of a new tree. MCTS is performed again on the new tree.

In order to generalize across objects, triangle observations
zt are discretized to their histogram bin centers. This is
required to compute T , which needs probabilities for the
conditioned zt for every object y. Otherwise, a triangle
from one object might not exist in another to provide this
probability. Histogram bin sizes are chosen as in [11].

For the movement cost cm(at), we computed the L2

distance for translation and the angle for rotation, then
normalized each to [0, 1] and weighed both equally. We used
c = 1 to weigh exploration and exploitation equally and
λ = 0.5 to weigh movement and misprediction costs equally.

V. ANALYSIS USING A PHYSICS ENGINE

We validated the active recognition in a physics engine.
The purpose is to analyze the method itself, without external
constraints of a specific robot platform, such as joint and
workspace limits. This lets us evaluate the core algorithm
using an end-effector with no unreachable poses.

The tactile hardware is a RightHand Robotics ReFlex Beta
Hand, which has 9 barometric pressure sensors on each of 3
fingers, 27 total. Each enclosure grasp typically gives non-
zero values on 3–6 sensors. Fig. 3(a) shows objects used.

The XYZ positions of the non-zero sensors are used
to compute the descriptor for recognition. We used the
3D histogram of triangles [11] as descriptor, as mentioned
in Sec. III. A triangle requires three parameters to be
uniquely described. The three side lengths of a triangle are
denoted l0, l1, l2 from large to small; similarly for the angles
a0, a1, a2. The following results use the l0, l1, a0 parame-
terization. Because the triangles are a relative measure, the
descriptor is independent of object pose and movement.

For physics engine results, we built a stack in Gazebo
for the hand’s tactile capabilities, including its guarded

enclosure, which closes all fingers and stops each finger
when a sensor on the finger is in contact. Sensor values were
simulated as Boolean contacts. To simulate wrist movement,
we teleported the wrist to specified poses. This dramatically
reduced the time required, which would otherwise involve
motion planning and moving the joint of an arm.

We repeated the MCTS and action execution iterations
until rewards in all simulations are depleted to 0, which
typically takes 7–9 iterations. When all rewards are depleted,
there is only one node in the tree; this happens because we
do not allow repeated visits to nominal absolute poses, as
they do not provide new observations.

A. Baseline Comparison

To illustrate the need for an active selection, we created
a baseline. It uses the same training data as the tree search,
except it selects poses to move to at uniform random. Fig
3(b) shows example poses chosen by the baseline and the tree
policy for the cup; poses from the latter are more intuitive
and capture the global shape better.

Fig. 3(a) and Table I show the 3D histograms and distances
obtained by each method. Fig. 4(a) shows the progression of
recognition through the iterations, in the form of distance to
true class. We tried linear SVM, nearest neighbor (NN) with
inner product distance, and NN with histogram intersection
distance, of which the inner product performed the best. Tree
policy performed better for all objects except teapot, which
was correct in iterations 1–3 but diverged to mug in 4–9.
This is reasonable as teapot, mug, and cup have similarities
in the handle. Sphere was recognized by neither; the cause
is evident in Fig. 3(a), as both were unable to capture the
lowest bins in l0.

Fig. 5 shows wrist poses selected around the objects, and
Fig. 6 shows contact points obtained in the physics engine by
the two methods. Comparing Figs. 4(a), 5, and 6, even though
the baseline sometimes recover a better object appearance, its
recognition can still be wrong, e.g. bottle, mug. Tree policy
recovered better contact cloud and recognition for cup, bowl,
toilet paper. The only object that the baseline did better in all
three was the teapot, most likely because tree policy tends
to select poses at the bottom of the object, but the teapot’s
top half provide identifying information.

Even though the baseline’s poses are more evenly dis-
tributed, they do not result in better recognition, other than
teapot. Fig. 3(a) shows that baseline histograms are more
distributed, whereas tree policy’s histogram bins are concen-
trated in the area lit up in the true histograms. Note that
even though some baseline distances in Table I are closer,
e.g. cup, toilet paper, its recognition in Fig. 4(b) is incorrect,
meaning it is closer to some other class. This means that
the tree policy correctly imposes a bias on the wrist poses
selected - poses that result in high recognition certainty, as
enforced by P(yT 6= y) in the objective.

B. Recognition Performance

Fig. 4(b) shows recognition in the form of inner product
distance to true class, for different iterations and simulations



(a) (b)

Fig. 3: (a). Synthetic meshes and their 3D histograms for visual comparison. From training (row 2), random baseline (row 3), tree policy
(row 4). Note shape similarities between cup, teapot, and mug; bottle and mug; mug and toilet paper. Tree policy results resemble true
histograms. Best viewed in color. (b). Wrist poses selected by random baseline (top 2 rows) and tree policy (bottom 2 rows) for the cup.
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Fig. 4: (a). Physics engine results. Distance to true class vs. iteration, for baseline (dashed) and tree policy (solid). Dots and crosses show
hits and misses. Each curve is an object. Tree policy has more hits and the closest distances. (b). Similar format, for different simulations
for mug. Each curve is a simulation setting. Error bars are mean and variance in distances to all objects. (c). Rewards vs. simulations for
mug; similar for all objects. Each curve is an iteration. Rewards diminish over iterations as unvisited high-probability poses are exhausted.

Fig. 5: Poses selected by random baseline (top) and tree (bottom),
for teapot, mug, cup, bowl, and toilet paper.

Fig. 6: Actual contacts obtained in physics engine from baseline
(top) and tree (bottom), for bottle, teapot, mug, cup, and bowl.

cup teapot bowl bottle mug tlt ppr sphere
Baseline 0.227 0.160 0.375 0.237 0.121 0.224 0.317

Tree 0.137 0.266 0.354 0.097 0.078 0.299 0.326

TABLE I: Test-time histogram distances ∈ [0, 1] to ground truth
histogram from training. Distances are from the last common
iteration in Fig. 4(a). Columns correspond to Fig. 3(a).

for one object. Distances decrease as iterations increase,
since the action executions provide increasingly descriptive
histograms at the root of new trees.

The error bars show means and variances in distances to all
objects. The difference between the error bars and distances
to true class indicate that recognition converges early on,
in as few as 2 iterations. That is 10–31 poses, average 25
poses across all simulation settings shown. The number of
available actions at each node is 1063, pooled across all 7
objects’ trained poses. This shows that the tree successfully
finds the few essential poses to fill the most discriminative
features in the descriptor.

As simulations per tree increase, distances do not nec-
essarily decrease, nor does recognition accuracy increase.
30–90 simulations perform better than 150–250 simulations.
This can be due to our restriction of visiting a pose only



once. As the available poses are exhausted, the tree policy
cannot find an edge at some nodes and has to switch to
rollout policy, by design. This is further reflected in the
rewards plot in Fig 4(c). Before 90 simulations, rewards
steadily increase as the tree is more explored; after 90
simulations, deep troughs appear. The troughs are probably
due to exhaustion of unvisited poses with high probability on
a tree path. Similarly, rewards diminish as iterations increase,
when fewer poses are available, eventually collapsing to a
one-node tree in the last iteration where reward is 0.

Table II shows per-iteration predictions and distances for
the cup. The cup starts as the third NN and moves up to
first NN in iteration 5. It is often reasonably confused with
a mug. The baseline always recognized the cup as a mug in
all 9 iterations, for all 3 distance metrics.

Iter 1 2 3 4 5 6 7
Moves 14 14 17 18 7 5 2

Contacts 52 61 52 68 25 22 6
1st NN teapot mug mug mug cup cup cup
1st dist 0.230 0.142 0.127 0.141 0.145 0.135 0.138
2nd NN mug cup cup cup mug mug mug
2nd dist 0.284 0.237 0.174 0.145 0.156 0.158 0.158
3rd NN cup teapot teapot bottle bottle bottle bottle
3rd dist 0.321 0.248 0.229 0.232 0.231 0.225 0.227

TABLE II: Tree result on cup

C. Number of Moves for Recognition

Table III shows the number of moves per iteration for all
objects. Boldface shows the iteration in which recognition
starts being correct, corresponding to Fig. 4(a). Teapot was
correct in iterations 1–3 and diverged to mug. All other
objects stayed correct. These are the upper bound moves for
recognition, as we only ran recognition after each iteration,
not after every move. Most objects were recognized within
16 moves, a large improvement over hundreds in [11].

Iteration 1 2 3 4 5 6 7 8 9
cup 14 14 17 18 7 5 2

teapot 16∗ 13 16 15 8 5 4 1 1
bottle 16 12 18 17 8 5 4 2 1
bowl 15 14 16 16 7 4 3 1
mug 14 14 15 14 11 6 4 1

toilet paper 13 18 15 15 8 5 1
sphere 16 13 17 14 10 6 5 3 1

TABLE III: Upper bound number of poses to recognize correctly

VI. REAL ROBOT EXPERIMENTS

On the real robot, we compare with a greedy baseline
instead of random. Fig. 7(b) shows the experiment setup. We
mounted the ReFlex Beta hand on a Baxter. An object is held
fixed on a table. We trained 5 objects (Fig. 7(a)) on the real
robot for active instance-based recognition. Note transparent
objects pose significant challenge for vision systems.

The mug, bottle, jar, bowl, and glass were each trained
with 34, 60, 39, 30, and 50 end-effector poses. With dis-
cretization (0.06 meters in translation, 0.05 in quaternion),
this resulted in 138 possible actions at each MCTS node
at test time. The goal is to recognize in considerably fewer
poses. This would mean the active selection is able to select
poses with discriminating features.

At test time, we ran MCTS (Sec. IV-B) to actively predict
a sequence of end-effector poses. Then, the Baxter arm

autonomously moves to those poses, using motion planning
in ROS Moveit for collision avoidance.

For a baseline, we compared with greedily selecting
the immediate minimizer of the objective, i.e. zero step
lookahead, equivalent to horizon=1. For tree policy, we used
horizon=5. This means tree policy had up to 5 poses per
iteration; greedy had 1. We used 20 simulations per iteration
for both. Both were run until the recognition was correct
for 3 consecutive iterations, some further until the distances
leveled off. Results are in Table IV and Fig. 7(c). Example
grasps selected by tree policy are in Fig. 8. A footage with
per-move distances is in the accompanying video.

Some poses selected by either method were not suc-
cessfully planned, due to joint limits and collisions in the
workspace. Fig. 7(c) x-axis is the raw number of poses
selected. Table IV shows the number of successful moves.

Tree policy recognized in significantly fewer iterations and
shorter time in most cases. All objects were first recognized
correctly in under 10 moves, significantly fewer than training.
Greedy never recognized the glass correctly, always as mug.
Tree policy recognized it twice in a row and then flip-flopped
between glass and mug.

Object # Iters until Correct # Moves until Correct
T1 T3 G1 G3 T1 T3 T33 G1 G3 G33

jar 1 3 11 20 2 10 10 6 8 14
bottle 1 3 5 26 2 8 8 2 4 12
mug 4 6 3 9 9 12 12 1 3 3
bowl 3 - 9 - 5 8 - 3 5 -
glass 2 - - - 7 - - - - -

TABLE IV: Number of iterations and move it took to recognize
correctly on real robot. T: tree policy, G: greedy. T1/G1: first time
SVM recognizing correctly; T3/G3: SVM correct 3 times in a row;
T33/G33: all 3 metrics correct 3 times in a row. - denotes never.

Fig. 8: Real robot actions selected by tree policy at test time.

A. Running Time

The running time for the tree search is directly propor-
tional to horizon T . Each tree simulation takes 0.5 seconds
for T = 20, 0.1 seconds for T = 5, and 0.02 seconds
for T = 1. Times reported are on an Intel Xeon 3.6GHz
quad-core desktop simultaneously running the rest of the
experiment software. It can be improved by array access.

Even though the greedy approach (T = 1) took shorter
time per iteration, it took many more iterations before correct
recognition (Table IV). The reason is that T = 1 generates
only one pose per iteration, and when the pose is unfeasible
due to joint limits or collision, the iteration is wasted.
Overall, the tree policy took significantly shorter time.
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Fig. 7: (a). Mug, bottle, jar, bowl, glass, used for real robot experiments. (b). Experiment setup. (c). Real robot results. Distance to true
class vs. number of poses, for baseline (dashed) and tree policy (solid). Dots and crosses show hits and misses. Each curve is an object.

VII. CONCLUSION

We described an algorithm for actively selecting a se-
quence of end-effector poses for the objective of confident
object recognition. We formulated the problem as a MDP and
associated tactile observations with relative wrist poses in
training, which allows the next desired actions to be predicted
by observations alone at test time. The method outperforms
greedily selected poses in a physics engine and on a real
robot.

An improvement to optimize recognition even more di-
rectly is to select actions that would produce the most salient
features in the descriptor. Analysis methods exist for finding
the most discriminative features in a classifier. The histogram
descriptor makes this easy; each feature is simply a bin,
which we already use as discretized observations z. To select
the most salient action, simply select zt+1 that maximizes
saliency in addition to recognition confidence.
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