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Abstract— This work presents a distributed algorithm for
node localization problems in static sensor networks in n-
dimensions. We focus on networks in which n + 1 nodes with
known locations (anchors) are arbitrarily placed among all
other nodes with unknown locations. In the noiseless case,
barycentric coordinates computed from range measurements
are used to transform the non-convex node localization problem
into a standard linear system of equations. Meanwhile, adding
independent zero mean Gaussian noise to range measurements
turns all barycentric coordinates to dependent random vari-
ables with no known standard distribution which may not even
be identically distributed. Relying on online optimization meth-
ods, we provide a distributed online gradient descent algorithm
to solve the noisy range-only localization problem. Finally,
comparisons among simple barycentric coordinate averaging,
a centralized gradient descent formulation and our distributed
algorithm are provided.

I. INTRODUCTION

Deployments of mobile robotic sensors have tremendous
potential to revolutionize information gathering and explo-
ration in applications such as environmental monitoring,
search and rescue, and security and surveillance. It is al-
ways the case that the sensors need to know their own
locations with respect to a common frame of reference before
they can utilize each other’s measurements successfully and
collaborate on higher level tasks. Relative localization is
especially challenging but also most important to solve
robustly in harsh operational conditions, where GPS access
is denied, the surroundings are featureless, and the sensed
information is lower-dimensional than the sensor states of
interest (e.g., bearing-only or range-only measurements used
for 3-D position and orientation estimation) and perturbed
by significant measurement noise. To uniquely determine a
frame of reference for the sensor network positions, it is
usually required that the locations of a small subset of the
nodes, called anchor nodes, are known [1]. The problem has
been considered in planar, 3-D, or even higher-dimensional
settings, with different types of measurements and noise
distributions. Some methodologies utilize range and bearing
measurements simultaneously [2], [3], while others rely on
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bearing-only [4]–[7] or range-only [8]–[12] measurements.
Another usual algorithmic classification relates to how un-
known node locations are computed. If all available network
information is sent to one computational node, it is called
centralized [8]; else, if each node processes its own infor-
mation along with data obtained from its communication
neighbors and computes all node locations, it is called
distributed [5], [13], [14].

Our goal is to provide a distributed algorithm capable of
estimating node locations from noisy range-only measure-
ments and arbitrary anchor configurations in n dimensions.
Trilateration methods, such as [9] and [15], are perhaps
the most common techniques for range-only localization
problems. They solve a set of non-linear equations, in which
measured distances between nodes must equal the Euclidean
norm of their Cartesian coordinates. Thomas et al. [9]
proposed a different set of equations based on barycentric
coordinates instead of the standard Trilateration set to solve
a two-dimensional localization problem. The advantage is
that all non-linearities occur in the barycentric coordinate
computation, while the final system of equations is linear.
Barycentric coordinates are a set of n+1 scalars which sum
to one and uniquely determine the Cartesian coordinates of
a point in a n-dimensional affine space in relation to a set of
n+ 1 points, which are not all contained in any sub-spaces
of n−1-dimensions. Their algorithm utilizes Cayley-Menger
bi-determinants and determinants [16] in order to compute
necessary coordinates based on a geometrical view of the
2-D problem. Trilateration methods have a weakness in that
unlocalized nodes can be localized only if they are connected
to a minimum of n+1 previously localized nodes. Therefore,
the sequence in which the nodes are localized is important.
The following methods have lesser requirements on the node
network.

Khan et al. [10], [17] provided a framework for solving
localization problems in n-dimensional spaces whenever all
unknown nodes are strictly inside the convex-hull of the
anchor nodes and each unknown node also resides inside the
convex-hull of n+1 of its neighbors. These two assumptions
allow them to compute barycentric coordinates from the
absolute values of Cayley-Menger determinants. Diao et
al. [11] relaxed the constraint on anchor and unknown node
locations. Unfortunately, the later method is only defined for
the 2D case and utilizes heuristics to determine the signed
barycentric coordinates. Han et al. [18] proposed a hybrid
method based on Multidimensional Scaling (MDS) and the
framework proposed by Khan et al. [10], an approach for
non-convex non-linear optimization over a set of trilateration



equations [12], [19], in order to overcome the difficulties of
correctly obtaining signed barycentric coordinates for arbi-
trarily placed nodes in 3-D space. MDS is employed locally
at each node to compute its barycentric coordinates with
respect to its neighbors and global consistency is ensured
using the approach of Khan et al. [10].

In this paper, we present a new formulation for computing
barycentric coordinates in n-dimensions with arbitrary place-
ment of anchor and unknown nodes. We make use of Cayley-
Menger bi-determinant and determinant properties and rela-
tions to algebraic and geometric views of the problem. As
a result, we deduce a formula for computing barycentric
coordinates for any possible arrangement of a node and a
configuration of its neighbors in n-dimensional space based
only on Cayley-Menger bi-determinants and inter-node range
measurements. Therefore, we can extend the approach of
Diao et al. [11] to n-dimensional space. Even though cur-
rent applications seem to be restricted to 3-dimensions, we
can not discard possible applications in higher dimensional
graphs in computer graphics and physics. The formula,
however, is accurate only with noiseless range measurements,
as it is computed via determinants of matrices consisting
of range measurements. In particular, noisy measurements
introduce a sequence of matrices that are neither independent
nor identically distributed, and as a result, standard central
limit theorems do not provide a solution in this scenario.

While in the centralized case online gradient descent [20]
is applicable, to solve the problem in a distributed fash-
ion, we use the distributed online mirror descent technique
proposed in [21]. Due to the geometry of the localization
problem, a suitable method turns out to be a distributed
online gradient descent algorithm, which enables the nodes
to collectively calculate barycentric coordinates from noisy
range measurements. In summary, this paper makes the
following contributions.
• We provide a closed-form expression for computing

barycentric coordinates in n dimensions using Cayley-
Menger bi-determinants.

• We develop an n-dimensional range-only localization algo-
rithm that relies on n+ 1 arbitrarily placed anchor nodes.

• We develop a distributed algorithm capable of handling
noisy range measurements with arbitrary noise distribu-
tion.

II. PROBLEM DEFINITION

A static sensor network in n-dimensional Euclidean space
can be modeled as a graph G = {V, E}, with vertex set V =
{1, . . . ,m}. We refer to the Cartesian coordinates xi ∈ Rn

of node i ∈ V as its location. Let the set of node locations
X := {x1, . . . ,xm} be divided into a set Xa of anchor nodes
with known locations and a set Xu of nodes with unknown
locations such that Xa

⋃
Xu = X and Xa

⋂
Xu = ∅. An

edge (i, j) ∈ E , where E ⊆ V × V , exists whenever nodes
i and j are able to communicate and measure their relative
distances, d(xi,xj) = ||xi−xj ||2. Supposing that each node
i ∈ V has a maximum sensing range ri ∈ R>0, an edge
between node pair (i, j) exists if d(xi,xj) < ri.

Fig. 1. Regions (blue) containing a node’s location determined by the sign
of its (non-zero) barycentric coordinates.

We suppose that each pair of nodes (i, j) ∈ E obtains
range measurements, zij(t) = d(xi,xj) + δij(t), over time
t = 1, . . . , T perturbed by independent identically distributed
(iid) measurement noise δij(t) with an unknown probability
distribution. Assuming δij(t) and δji(t) are independent
random variables, the measured quantities zij(t) and zji(t)
are distinct random variables and thus the generated graph is
directed. Conversely, the noiseless case leads to an undirected
graph formulation.

Problem. Given the anchor node locations Xa ⊂ X of a
static sensor network and noisy range measurements zij(t) ∈
R, ∀(i, j) ∈ E and t = 1, . . . , T , estimate the locations of
all unknown nodes Xu ⊂ X .

The following sections present a centralized solution for
the noiseless case based on barycentric coordinates (Sec. III),
an approach for handling noisy measurements based on
barycentric coordinate averaging (Sec. IV-A), a centralized
gradient descent algorithm (Sec. IV-B) and, finally, a dis-
tributed gradient descent algorithm (Sec. V).

III. CENTRALIZED NOISELESS SOLUTION

In this section, we develop a centralized noiseless solution
for the localization problem based on barycentric coordi-
nates. We show how to use Cayley-Menger bi-determinants
to compute generalized barycentric coordinates [11] and
construct a linear system, whose solution determines all
unknown node locations.

Definition 1 ([22, Prop.3.6.2 (modified)]). Let {xi}ni=0 be a



frame1 for an affine space X. For any point x ∈ X there exist
λi ∈ R, 0 ≤ i ≤ n, such that

∑
i λi = 1 and x =

∑
i λixi.

The scalars λi are uniquely defined by this property and are
called the barycentric coordinates of x in the frame {xi}ni=0.

The importance of Definition 1 is that it allows us to
determine the location of an unknown node i using its
barycentric coordinates with respect to n+1 neighbor nodes
with known coordinates. Also, note that the signs of the
barycentric coordinates of a node reveal a lot of information
about its location in relation to its neighbors. If all signs are
positive, then the node is located inside the convex hull of
its neighboring nodes; if at least one coordinate is negative,
then it is outside of the convex hull. A node’s barycentric
coordinates can also be zero, which would indicate that it
lies on a hyperplane formed by the neighbors. In Fig. 1, we
show the region of 3-D space that contains a node’s location,
determined based on the sign of its barycentric coordinates.

The barycentric node coordinates will play a fundamental
role in the localization algorithms we develop and hence we
need an efficient approach for computing them in arbitrary
n-dimensional node configurations. For this purpose, we first
introduce the notions of Cayley-Menger bi-determinant and
determinant.

Definition 2. The Cayley-Menger bi-determinant of points
{xi}ni=0 and {yi}ni=0 is defined as:

D(x0, . . . ,xn;y0, . . . ,yn) =

2

(
−1

2

)n+1

∣∣∣∣∣∣∣∣
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...
...

...
. . .

...
1 d(xn,y0)
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2 ... d(xn,yn)

2

∣∣∣∣∣∣∣∣
(1)

where d(xi,yj) := ‖xi − yj‖2 as before.

Definition 3. The Cayley-Menger determinant of points
{xi}ni=0 is defined as:

D(x0, . . . ,xn) = D(x0, . . . ,xn;x0, . . . ,xn). (2)

The Cayley Menger bi-determinant is related to the signed
hyper-volumes VX and VY ∈ R of the simplexes formed by
points {xi}ni=0 and {yi}ni=0, respectively, as follows:

D(x0, . . . ,xn;y0, . . . ,yn) = (n!)VX · (n!)VY . (3)

The special case where both sets have the same points
arranged in the same order was presented in [9] and [16] and
is called Cayley-Menger determinant. Equation (3) shows
that the Cayley-Menger determinant of the simplex formed
by points {xi}ni=0 is related to its hyper-volume by:

D(x0, . . . ,xn) = (n!)2V 2
X . (4)

We use the previous definitions and relations to obtain
a formula for computing barycentric coordinates in n-
dimensions from noiseless distance measurements.

1An affine frame is a set of points in an affine space such that vectors
from one of the points to all others are linearly independent.

Proposition 1. For each node i ∈ V , let N i = {j ∈
V|(i, j) ∈ E} be the set of neighbor nodes of i. Also, let
Ii be the index set containing sub-sets of all combinations
of n + 1 neighbors of i which form a complete subgraph
of G; i.e. each sub-set k of Ii, called Iik ⊂ N i, has n + 1
distinct indexes of neighbors of node i. Then, all possible
barycentric coordinates of node i can be arranged row-wise
in matrix Li ∈ R|Ii|×m as follows:

[Li]kj = (5)
D(xIi

k0
, . . . ,xIi

kn
;xIi

k0
, . . . ,xIi

k,l−1
,xi,xIi

k,l+1
, . . . ,xIi

kn
)

D(xIi
k0
, . . . ,xIi

kn
)

if Ik = j or [Li]kj = 0 otherwise.

Proof. The linear system in Definition 1 can be solved for
λ utilizing Cramer’s rule. In this case, each component of
Li is obtained by dividing the signed hyper-volumes of two
simplexes:

[Li]kj =
V{x

Ii
k0

,...,x
Ii
k,l−1

,xi,xIi
k,l+1

,...,x
Ii
kn
}

V{x
Ii
k0

,...,x
Ii
kn
}

, (6)

if Ik = j or [Li]kj = 0 otherwise. Pre-multiplying the

right side of equation (6) by
(n!)V{x

Ii
k0

,...,x
Ii
kn
}(n!)

(n!)V{x
Ii
k0

,...,x
Ii
kn
}(n!)

does

not change its value but allow us to use equations (3) and
(4) to arrive at equation (5).

Following this method, one can compute all possible
barycentric coordinates of node i ∈ V with respect to
different combinations n+ 1 neighbors, as long as the nec-
essary range measurements are available. Though utilizing
all possible combinations of neighbors may be computation-
ally expensive, it allows us to guarantee the localizability
of all unknown nodes. Thus, one may solve the relative
localization problem by concatenating all matrices Li, for
i = 1, . . . ,m, forming an overdetermined linear system.
We use this approach in our online distributed algorithm
described in Sec. V. First, however, we describe the al-
gorithm of Diao et al. [11], that defines a generalization
of barycentric coordinates using averages. The generalized
barycentric coordinates of node i are defined as:

λi
j =

|Ii|∑
k=1

[Li]kj . (7)

Based on equation (7), one can construct the following
linear system which relates the generalized barycentric co-
ordinates and the Cartesian coordinates of all nodes. Let
X = [x1, . . . ,xm]T ∈ Rm×n and Λ = [λ1, . . . ,λm]T ∈
Rm×m, i.e., [Λ]ij , λi

j . Then, based on Definition 1, we
have X = ΛX . As the anchor node coordinates Xa ∈ Rp×n

are known, we can isolate the unknown nodes Xu ∈ Rq×n

by permuting the rows and columns of the linear system as
follows: [

Xa

Xu

]
=

[
Λaa Λau

Λua Λuu

] [
Xa

Xu

]
, (8)



where block matrices Λaa ∈ Rp×p, Λau ∈ Rp×q , Λua ∈
Rq×p and Λuu ∈ Rq×q relate generalized barycentric coor-
dinates among anchor and unknown nodes.

Based on this construction, we can develop a centralized
algorithm for relative localization with noiseless measure-
ments by simply solving the linear system in (8) as follows.

Proposition 2. The centralized noiseless localization prob-
lem can be solved by computing the estimate

X̃u = arg min
X∈Rq×n

||(Λuu − I)X + ΛuaXa||2, (9)

which leads to:

X̃u = −(Λuu − I)−1ΛuaXa. (10)

in the case that (Λuu − I) is invertible.

Diao et al. [11] provide conditions for the existence of
a unique solution for this problem in 2-D space based on
the structure of the network graph. As long as there is a
sufficient number of unique paths in the measurement graph
from the anchor nodes to every unknown node, the solution
to the centralized noiseless relative localization problem in
n dimensions would be unique and given by (10). We
investigate the noisy measurements case next.

IV. AVERAGING NOISY MEASUREMENTS

Sec. III showed that the entries of the matrix Λ in
(8), which specifies the linear system of equations for the
unknown nodes, have a nonlinear dependence on the range
measurements due to the Cayley-Menger bi-determinant
computations. In this section, we consider the relative local-
ization problem in the presence of noisy measurements. The
main challenge is that the distribution of the measurement
noise δij(t) is, in general, unknown and even if we were
to make an assumption on its class (e.g., common choices
include Gaussian, Laplace, Rayleigh, or Rice), when it
is propagated through the nonlinear barycentric coordinate
function in (5), the posterior would not be a standard or
stable distribution. We begin by introducing two averaging
schemes to mitigate the noise effects and allow Proposition
2 to be applied in the noisy case.

A. Two-phase averaging

We follow the approach of Khan et al. [17] to deal with
this challenge. Their idea is to leverage the Law of Large
Numbers, which ensures the that iid measurements zij(t),
when averaged over time, almost surely converge to the
noiseless range measurement d(xi,xj), and compute the
matrix Λ using averaged measurements. In detail, instead
of computing Λ(t) at each time step t using the raw mea-
surements {zij(t) | (i, j) ∈ E}, we compute Λ(t) using the
following averaged range measurements:

z̄ij(t) =
t− 1

t
z̄ij(t− 1) +

1

t
zij(t), with z̄ij(0) = 0. (11)

This process, guarantees that after sufficient time passes,
Λ(t) will be close to the matrix resulting from the true

node barycentric coordinates, and the noisy relative local-
ization problem can again be solved via Proposition 2.
Despite the measurement averaging, there may be instances
in which large instantaneous noise at time t would lead to
an inaccurate Λ(t). To mitigate the noise introduced by the
most recent measurement, we introduce a second averaging
process over the elements of matrix Λ(t). In detail, we
propose the following recursive steps for computing time-
averaged blocks of Λ(t):

A(t) = [ΛT
au(t), (Λuu(t)− I)

T
]T ∈ Rm×q

B(t) = [(Λaa(t)− I)
T
,ΛT

ua(t)]T ∈ Rm×p

Ā(t) =
t− 1

t
Ā(t− 1) +

1

t
A(t), with Ā(0) = 0

B̄(t) =
t− 1

t
B̄(t− 1) +

1

t
B(t), with B̄(0) = 0.

(12)

Given these definitions, we can return to the approach in
Proposition 2 but this time using the time-averaged matrices.
In the noisy case, more accurate results can be obtained by
using all available equations in (8):

X̃u = arg min
X∈Rq×n

||Ā(t)X + B̄(t)Xa||2, (13)

leading to the following least-squares estimate of the un-
known node locations:

X̃u(t) = −
(
Ā(t)T Ā(t)

)−1
Ā(t)T B̄(t)Xa. (14)

While this process mitigates the effect of the measurement
noise on the computation of the blocks of Λ(t) for large
enough t, the computation requires centralized information.
As a centralized solution to the relative localization problem
is not suitable for large networks, in Sec. V we develop
a distributed gradient descent algorithm. To motivate the
distributed algorithm, we first derive a gradient descent
approach for the centralized case with noise measurements.

B. Centralized gradient descent

The gradient of the objective function in (13) is:

G(t) := 2Ā(t)T
(
Ā(t)X + B̄(t)Xa

)
. (15)

Thus, we can define an iterative centralized gradient descent
algorithm for computing X̃u as follows:

X̃u(t+ 1) = X̃u(t)− η(t)G(t), (16)

where G(t) is evaluated at X̃u(t) and the step size η(t)
determines the stability and convergence speed of the al-
gorithm. In general, for fixed step sizes in conjunction with
measurement noise, magnitudes of the step size of around
10−6 or smaller were needed to guarantee convergence. The
algorithm is initialized by computing X̃u(1) from the first
set of range measurements via (14). One choice for η(t) that
we found to work particularly well is based on the Barzilai-
Borwein method [23]:

η(t) :=
tr
(

(X̃u(t)− X̃u(t− 1))T (G(t)−G(t− 1))
)

tr ((G(t)−G(t− 1))T (G(t)−G(t− 1)))
.



As can be seen in Fig 3, this dynamic step size behaves
similarly to a well adjusted fixed step size, but it circumvents
the need to manually search for optimal step size values.

V. DISTRIBUTED ONLINE GRADIENT DESCENT

The centralized algorithms presented in Sec. III rely on the
generalized barycentric coordinates (7) proposed by Diao et
al. [11]. Instead of summing the rows of the matrices Li ∈
R|Ii|×m of the standard barycentric coordinates as in (7), we
can directly define an overdetermined linear system in place
of (8). In detail, the barycentric coordinates Li ∈ R|Ii|×m

for every node i ∈ V satisfy:

LiX = 1|Ii|x
T
i ⇔

(
Li − 1|Ii|e

T
i

)
X = 0 (17)

where X =
[
XT

a XT
u

]T ∈ Rm×n as before, 1 is a vector,
whose elements are all equal to 1, and ei ∈ Rn is a standard
basis vector. Defining Li =

(
Li − 1|Ii|e

T
i

)
∈ R|Ii|×m

and decomposing it into block matrices associated with the
anchors and unknown nodes as before, allows us to write the
above constraints in the noiseless case as:

0|Ii|×n =

[
Li
aa Li

au

Li
ua Li

uu

] [
Xa

Xu

]
, i = 1, . . . ,m. (18)

Let Ai =

[
Li
au

Li
uu

]
and Bi =

[
Li
aa

Li
ua

]
be the columns of Li

corresponding to Xa and Xu, respectively. In the presence
of noisy measurements, the constraints in (18) can only be
satisfied approximately. Hence, we use the same two-phase
averaging process as in eq. (12) in Sec. IV-A to define Āi(t)
and B̄i and aim to compute a least-squares estimated for Xu:

X̃u(t) := arg min
X∈Rq×n

m∑
i=1

∥∥Āi(t)X + B̄i(t)Xa

∥∥2 (19)

Notice that each matrix Li can be computed locally in
each node i with 2-hop information. But each neighbor
already stores information about its neighbors. Therefore,
all necessary computation can be done with only 1-hop
communication. The structure of this interaction is defined
with respect to a communication matrix W , selected based
on Xiao et al. [24] to be

W = I − LG/max{eig(LG)}, (20)

where LG is the Laplacian matrix of graph G and eig(·)
computes the eigenvalues of the respective matrix.

Proposition 3. Given anchor node locations Xa ⊂ X
of a static sensor network and noisy range measurements
zij(t) = d(xi,xj) + δij(t) ∈ R, ∀(i, j) ∈ E and t =
0, . . . , T . We can estimate the locations of all unknown nodes
Xu ⊂ X at each node i with step sizes η(t) by performing
local state updates

Xi
u(t+ 1) =

m∑
j=1

[W ]ijX
j
u(t)− η(t)Gi(t), (21)

where the gradient evaluated at Xi
u(t) is

Gi(t) = 2Āi(t)T
(
Āi(t)Xi

u(t) + B̄i(t)Xa

)
(22)

and W is defined in (20).

Proof. The online mirror descent technique in [21] is devel-
oped to track the minimizer of a global objective function
(at each time t), where the global function can be written as
a sum of m local functions. It is evident that the problem
formulation given in equation (19) conforms to the setup
proposed in [21]. Moreover, all the necessary assumptions
of the method are satisfied when using the Euclidean norm
as the Bregman Divergence.

Consequently, according to this method, the online dis-
tributed algorithm becomes

xui
(t+ 1) = arg min

{
ηt〈x,∇fi,t(xui

(t))〉+
1

2
||x− yi(t)||22

}
yi(t) =

m∑
j=1

[W ]ijxuj (t+ 1),

where xui
and ∇fi,t are derived by vectorizing Xi

u and Gi

in (21) and (22), respectively. Solving the above leads to
(21), thereby concluding the proof.

The previous proposed solution of using Barzilai-Borwein
method [23] does not work in a distributed environment. We
are using a small fixed step size, 10−6, in all distributed
cases.

Remark 1 (Communication cost). Suppose that data is kept
in floats, usually 4 bytes. Then, every iteration each node i
would receive and transmit un|N i|+ (n+ 1)|Ii| floats.

VI. SIMULATIONS RESULTS

We carried out simulations comparing the performance
of the centralized two-phase averaging algorithm (Sec. IV-
A), the centralized gradient descent algorithm (Sec. IV-B)
and the distributed online gradient descent (Sec. V). Fig. 2
shows a randomly generated static network with 4 anchors
and 10 unknown nodes, whose ground truth position lie
on a cube with side length of 10 units. The maximum
measurement range of each node was ri = 8 units and
random Gaussian noise with variance equal to either a tenth
of the actual distance between nodes or the averaged valued
of these proportional variances were applied to the range
measurements. Proportional variances characterize that larger
distances have larger noise, while a constant one says that
the sensors maintain the same amount of noise throughout its
range. In this simulated case, our results had no significant
discrepancies depending on these choices. The node coordi-
nate estimates computed by the first two algorithms over time
are also shown, as well as the estimates locally computed by
the third algorithm in a randomly selected node.

There are two fundamental differences between the cen-
tralized and distributed algorithms. First, while the central-
ized algorithm has a single set of estimates for the unknown
node locations, the distributed algorithm maintains a different
set of locations estimates for each node in the network. Sec-
ond, the amount of information available to each node in the
distributed algorithm is different compared to the centralized
case and depends on the network communication structure.



Fig. 2. Randomly generated sensor network with 10 unknown nodes
and 4 anchors and trajectories of the node coordinate estimates over time.
Each color represents a different unknown node. The dotted, dot dashed
and full lines beginning with {2,D,4} and ending with {�,×,A} show
the estimates over time obtained by the two-phase averaging (Sec. IV-
A), centralized gradient descent (Sec. IV-B) and distributed online gradient
descent (Sec. V) algorithms, respectively. The ground truth node locations
are marked by circles, while the black tetrahedron shows the convex hull
of the anchor nodes. As each node in the distributed algorithm computes
its own unknown node location estimates, it is not possible to show the
trajectories of the estimates of all nodes. Instead, we show the trajectories
of the estimated node locations computed by one randomly chosen node.

These facts are clearly seen in the results. For example, note
that the two-phase averaging and the centralized gradient
descent algorithms provide estimate trajectories that remain
close to each other, while some estimates obtained by the
distributed gradient descent algorithm follow very different
trajectories. Moreover, it is important to note that while
the first two algorithms have the same initial estimate, the
same does not occur for the distributed algorithm, despite
computing initial estimates in similar ways. This behavior
is due to the fact that the distributed algorithm uses only
the first noisy range measurements to initialize its estimates.
Both centralized algorithms are able to provide better initial
guesses for all node locations, while the distributed algorithm
provides poorer results for nodes with fewer neighbors or at
a further distance from the anchors.

Fig. 3 shows the Root Mean Square Error (RMSE) of the
node coordinate estimates over time for the three algorithms.
Both centralized algorithms arrive at satisfactory location
estimates with less than 5000 iterations, while the same can
not be said for the distributed gradient descent algorithm. It
is clear that the initial estimates in the distributed case are
worse than the ones in the centralized algorithms, which con-
tributes to its slower convergence. Another important factor
that impacts our distributed gradient descent method is the

Fig. 3. Root Mean Square Error (RMSE) of the node coordinate
estimates over time for the two-phase averaging (Sec. IV-A), the centralized
gradient descent with Barzilai-Borwein and fixed step sizes (Sec. IV-B) and
distributed online gradient descent with proportional and constant variances
(Sec. V) algorithms. As each node in the distributed algorithm computes
its own unknown node location estimates, we present RMSE values for the
estimates of each node on the same plot.

choice of the learning rate, η(t). A small learning rate will
provide a more stable but slower convergence. So far, while
we used an η(t) based on the Barzilai-Borwein method [23]
for the centralized gradient descent algorithm with good
results, we were not able to compute η(t) online in a way that



provides faster convergence rates while guaranteeing stability
of the process for different networks. Therefore, we used a
small fixed η only for simulations involving our distributed
online gradient descent algorithm.

VII. CONCLUSION

This paper presented a closed-form expression for comput-
ing barycentric coordinates in arbitrary n-dimensional node
configurations based on Cayley-Menger bi-determinants.
This enabled a formulation of the relative localization prob-
lem as a linear system defined in terms of barycentric coordi-
nates. Based on this construction, we developed centralized
and distributed algorithms capable of handling noise-free or
noisy measurements with arbitrarily distribution in n dimen-
sional sensor networks with arbitrary anchor configurations.
Future work will focus on trade-offs between computational
efficiency and localization accuracy by analyzing the effect
of the number of neighbor subsets of size n + 1 used for
barycentric coordinate computations. Extensions to mobile
networks and mixed bearing-only and range-only measure-
ments across the network are of interest as well.
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