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Abstract— Introducing object-level semantic information into
simultaneous localization and mapping (SLAM) system is crit-
ical. It not only improves the performance but also enables
tasks specified in terms of meaningful objects. This work
presents OrcVIO, for visual-inertial odometry tightly coupled
with tracking and optimization over structured object models.
OrcVIO differentiates through semantic feature and bounding-
box reprojection errors to perform batch optimization over the
pose and shape of objects. The estimated object states aid in
real-time incremental optimization over the IMU-camera states.
The ability of OrcVIO for accurate trajectory estimation and
large-scale object-level mapping is evaluated using real data.

I. INTRODUCTION

The foundations of visual understanding in robotics, ma-
chine learning, and computer vision lie in the twin technolo-
gies of inferring geometric structure and semantic content.
Researchers have made a significant progress to infer the
structure of the scene using techniques like visual-inertial
odometry (VIO) [1] and SLAM [2]. State of the art VIO
approaches work with monocular or stereo cameras [3],
often complemented by inertial information [4], [5]. How-
ever, most real-time incremental SLAM results provide only
geometric representations that lack a semantic understanding
of the environment.

At the other end of the spectrum, impressive results have
been achieved in object recognition and semantic under-
standing using deep neural networks [6]. Methods related
to VIO and SLAM focus on learning to regress camera
poses and image depth directly from images [7], [8]. For
instance, monocular depth, optical flow, and ego-motion
are jointly optimized from video in [9] by relying on a
view-synthesis loss. Deep learning techniques have shown
impressive performance in localization, object recognition,
and semantic segmentation but do not yet provide global
positioning of the semantic content.

This paper focuses on the joint visual-inertial odometry
and object-level mapping (for rigid, static objects). Gen-
erating geometrically consistent and semantically meaning-
ful maps allows compressed representation, improved loop
closure (recognizing already visited locations), and robot
mission specifications in terms of human-interpretable ob-
jects. There are mainly two groups of object-based SLAM
techniques. Category-specific approaches optimize the pose
and shape of object instances, using semantic keypoints [11],
[12] or 3D shape models [13], [14]. Category-agnostic
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Fig. 1. We propose a tightly coupled visual-inertial odometry and object
state optimization algorithm. (a) Back-projection of the estimated object
shapes (red) and ellipsoids (green) on an image from the KITTI dataset
[10]. Blue rectangles are the bounding-boxes from the object detector, with
the object ID label at the top left corner. (b) Camera poses (colored axes)
and object states (red: semantic keypoints, blue: car shape, green: ellipsoid)
are shown in the global frame. A demo can be found at https://youtu.
be/fPfBzfGnEcY.

approaches use geometric shapes, such as spheres [15],
cuboids [16], or ellipsoids [17], to represent objects.
CubeSLAM [16] generates and refines 3D cuboid proposals
using multi-view bundle adjustment without relying on prior
models. QuadricSLAM [17] uses an ellipsoid representation,
suitable for defining a bounding-box detection model. Struc-
tural constraints based on supporting and tangent planes,
commonly observed under a Manhattan assumption, may
also be introduced [18]. Using generic symmetric shapes,
however, makes the orientation of object instances potentially
irrecoverable.

Our work takes advantage of both specific and generic
representations and proposes a coarse-to-fine object model.
We use an ellipsoid at the coarse level to restrict an object’s
pose variation, and semantic keypoints at the fine level to
obtain a precise shape deformation. Our contribution is
a lightweight incremental semantic visual-inertial odometry
algorithm, tightly coupled with iterative multi-view optimiza-
tion of object poses and shapes. The approach relies on
residuals and Jacobians obtained from inertial measurements,
geometric features, object bounding-box detections and mid-
level object part features (e.g., car wheels, windshield,
doors). Inspired by the multi-state constraint Kalman filter
(MSCKF) [4], we combine fast filter-based propagation of



IMU-camera states with corrections based on object states,
optimized over multiple views. We dub our method Object
residual constrained Visual-Inertial Odometry (OrcVIO) to
emphasize the role of the semantic error terms in the opti-
mization process. OrcVIO is capable of producing meaning-
ful object maps and estimating accurate sensor trajectories,
as shown in Fig. 1. We will make our source-code publicly
available for the benefit of the research community.

II. BACKGROUND

We denote the IMU, camera, object, and global reference
frames as {I}, {C}, {O}, {G}, respectively. The transfor-
mation from frame {A} to {B} is specified by a 4×4 matrix:

B
AT ,

[
B
AR B

Ap
0> 1

]
∈ SE(3) (1)

where B
AR ∈ SO(3) is a rotation matrix and B

Ap ∈ R3

is a translation vector. To simplify the notation, we will
not explicitly indicate the global frame when specifying
transformations. For example, the pose of the IMU frame
{I} in {G} at time t is specified by ITt. We overload θ×
to denote the mapping from an axis-angle vector θ ∈ R3 to
a 3×3 skew-symmetric matrix θ× ∈ so(3) and the mapping
from a position-rotation vector ξ ∈ R6 to a 4 × 4 twist
matrix ξ× ∈ se(3). We define an infinitesimal change of pose
T ∈ SE(3) using a left perturbation exp

(
ξ×
)
T ∈ SE(3)

(see [19, Ch.7]).
Let x be the homogeneous coordinates [20, Ch.1] of a

vector x. We will use the operators [19, Ch.7]:

x� ,

[
I3 −x×
0> 0>

]
∈ R4×6 x} ,

[
0 x
−x× 0

]
∈ R6×4. (2)

An axis-aligned ellipsoid centered at 0 can be described as:

Eu ,
{
x | x>U−>U−1x ≤ 1

}
, (3)

where U , diag(u) and the elements of the vector u are the
lengths of the semi-axes of Eu. In homogeneous coordinates,
Eu can be represented as a quadric surface [20, Ch.3],{
x | x>Qux ≤ 0

}
, where Qu = diag(U−>U−1,−1).

This describes the ellipsoid as a collection of points lying
on its surface. Alternatively, a quadric can be defined by
the set of planes π = Qux tangent to its surface at x.
This dual quadric surface is defined as

{
π | π>Q∗uπ = 0

}
,

where Q∗u = adj(Qu)1. A dual quadric defined by Q∗u
can be transformed by T ∈ SE(3) to another reference
frame as TQ∗uT>. Similarly, it can be projected to a lower-
dimensional space by P =

[
I 0

]
as PQ∗uP>.

III. PROBLEM FORMULATION

Let xt , (Ixt, Cxt) be the state of an IMU-camera sensor
at time t. The IMU state Ixt , (IRt, Ipt, Ivt, bg, ba)
consists of orientation IRt ∈ SO(3), position Ipt ∈
R3, velocity Ivt ∈ R3, gyroscope bias bg ∈ R3, and
accelerometer bias ba ∈ R3. The camera state Cxt ,
(CTt−W+1, . . . , CTt) consists of a history of W camera

1If Q is invertible, Q∗ = adj(Q) = det(Q)Q−1 can be simplified to
Q∗ = Q−1 due to the scale-invariance of the dual quadric definition.

Fig. 2. (a) An object class is defined by a semantic class σ and a mean
shape specified by semantic keypoints s (blue) and an ellipsoid with shape
u (red). (b) A specific instance has keypoints and shape deformations,
parameterized by δs (blue arrows) and δu (red arrows). (c) The keypoints
are transformed from the object frame {O} to the global frame {G} via
the instance pose OT.

poses CTi ∈ SE(3). Ideally, the camera state would contain
the camera pose trajectory for all time but to maintain
bounded computational complexity, only a subset of the
camera poses are kept. The system trajectory over time is
a collection X , {xt}Tt=1.

The system evolves in an environment that contains geo-
metric landmarks L , {`m}Nm

m=1 and objects O , {oi}Ni

i=1,
represented in a global frame {G}. A geometric landmark
`m is a static point in R3, detectable via image corner feature
algorithms such as FAST [21]. Each object oi = (ci, ii) is
an instance ii of a semantic class ci detectable via object
recognition algorithms such as YOLO [22]. The precise
definitions of an object class and instance are as follows.

Definition. An object class is a tuple c , (σ, s,u), where
σ ∈ N specifies a semantic class (e.g., chair, table, monitor)
and s ∈ R3×Ns , u ∈ R3 specify a mean shape. The shape
is determined by semantic landmarks {sj}Ns

j=1 ∈ R3 in an
object canonical frame {O}, corresponding to mid-level parts
(e.g., front wheel of a car), and an axis-aligned ellipsoid Eu.

Definition. An object instance of class c is a tuple oi ,
(OT, δs, δu), where OT ∈ SE(3) is the instance pose, and
δs ∈ R3×Ns are the deformations of the average semantic
landmarks s, δu ∈ R3 represents the ellipsoid semi-axes
lengths u.

The shape of an object (c, i) in the global frame {G}
is specified by semantic landmarks OT

(
sj + δsj

)
and dual

ellipsoid OTQ∗(u+δu)OT>. These definitions are illustrated
for a car model with 12 semantic landmarks in Fig. 2.

The IMU-camera sensor provides three sources of in-
formation: inertial, geometric, and semantic, illustrated in
Fig. 3. The inertial observations izt ,

(
iat,

iωt
)
∈ R6

are the IMU’s body frame linear acceleration and angular
velocity at time t. The geometric observations are noisy
detections gzt,n ∈ R2 of the image projections of the geo-
metric landmarks L visible to the camera at time t. To obtain
semantic observations, an object detection algorithm [22]



Fig. 3. OrcVIO utilizes visual-inertial information to optimize the sensor trajectory and the shapes and poses of objects. The observations include geometric
keypoints (FAST keypoints indicated by green dots in (c)), semantic keypoints (car parts indicated by red dots in (c)), semantic keypoint covariances (blue
ellipses in (c)), bounding-boxes (green boxes in (c)), and inertial data (orange dotted lines in (a)). The semantic keypoints and their covariances are obtained
from a Bayesian stacked hourglass CNN (b), composed of residual modules (blue dotted rectangle in (b)) including convolution, ReLU, batch normalization,
and dropout layers. The dropout layers are used to sample different weight realizations to enable a test-time estimate of the semantic keypoint covariances.

is applied to the image at time t, followed by semantic
keypoint extraction [23] within each detected bounding-box.
The k-th object detection includes its class czt,k ∈ N,
bounding-box bzt,j,k ∈ R, described by j = 1, . . . , 4 lines
in normalized pixel coordinates2 and semantic keypoints
szt,j,k ∈ R2 in normalized pixel coordinates associated with
the j = 1, . . . , Ns semantic landmarks3.

Let 1t,m,n ∈ {0, 1} indicate whether the n-th geometric
keypoint observed at time t is associated with the m-th
geometric landmark. Similarly, let 1t,i,k ∈ {0, 1} indicate
whether the k-th object detection at time t is associated with
the i-th object instance. These data association functions are
unknown and need to be estimated. We describe an approach
for geometric keypoint and object tracking to determine the
data associations in Sec. IV. Given the associations, we
introduce error functions:
iet,t+1 , ie

(
xt,xt+1,

izt
)

get,m,n , ge (xt, `m,
gzt,n)

set,i,j,k , se (xt,oi,
szt,j,k) bet,i,j,k , be

(
xt,oi,

bzt,j,k
)

for the inertial, geometric, semantic keypoint and bounding-
box measurements, respectively, defined precisely in Sec. V.
We also introduce a regularization error term re (oi) to
ensure that the instance deformations (δs, δu) remain small.
We consider the following problem.

Problem. Determine the sensor trajectory X ∗, geometric
landmarks L∗, and object states O∗ that minimize the
weighted sum of squared errors:

min
X ,L,O

iw
∑
t

‖iet,t+1‖2iV + gw
∑
t,m,n

1t,m,n‖get,m,n‖2gV

+sw
∑
t,i,j,k

1t,i,k‖set,i,j,k‖2sV + bw
∑
t,i,j,k

1t,i,k‖bet,i,j,k‖2bV

+rw
∑
i

‖re (oi) ‖2 (4)

2Given pixel coordinates z ∈ R2 and a camera intrinsic calibration matrix
K ∈ R3×3, the normalized pixel coordinates of z are K−1z.

3The semantic landmark-keypoint correspondence is provided by the
semantic keypoint detector. Some landmarks may not be detected due to
occlusion but we do not make this explicit for simplicity.

where ∗w are positive constants determining the relative
importance of the error terms and ∗V are matrices speci-
fying the covariances associated with the inertial, geometric,
semantic, and bounding-box measurements and define a
quadratic (Mahalanobis) norm ‖e‖2V , e>V−1e.

Inspired by the MSCKF [4], we decouple the optimiza-
tion over L and O from the optimization over X . When
a geometric keypoint or object track is lost, we perform
multi-view iterative optimization over its state based on the
latest IMU-camera state estimate. The IMU-camera state is
propagated using the inertial observations izt and updated
using the optimized landmark and object states and the
geometric and semantic observations. This decoupling leads
to higher efficiency compared to window or batch keyframe
optimization [24]. Our approach is among the first to offer
tight coupling between semantic information and geometric
structure in visual-inertial odometry. The error functions and
Jacobians, defined in Sec. V, can also be used for batch
keyframe optimization.

IV. KEYPOINT AND OBJECT TRACKING

Geometric keypoints gzt,n are detected using the FAST
detector [21] and are tracked temporally using the Lucas-
Kanade (LK) algorithm [25]. Keypoint-based tracking has
lower accuracy but higher efficiency than descriptor-based
methods, allowing our method to use a high frame-rate cam-
era. Outliers are eliminated by estimating the essential matrix
between consecutive views and removing those keypoints
that do not fit the estimated model. Assuming that the time
between subsequent images is short, the relative orientation
is obtained by integrating the gyroscope measurements iωt
and only the unit translation vector is estimated using two-
point RANSAC [26].

The YOLO detector [22] is used to detect object classes
czt,k and bounding-box lines bzt,j,k. Semantic keypoints
szt,j,k are extracted within each bounding box using
the StarMap stacked hourglass convolutional neural net-
work [23]. We augment the original StarMap network with
dropout layers as shown in Fig. 3b). Several stochastic for-
ward passes are preformed using Monte Carlo dropout [27]



to obtain semantic keypoint covariances sV (see Fig. 3 c)).
The bounding boxes bzt,j,k are tracked temporally using
the SORT algorithm [28], which performs intersection over
union (IoU) matching via the Hungarian algorithm. The
semantic keypoints szt,j,k within each bounding box are
tracked via a Kalman filter, which uses the LK algorithm for
prediction and the StarMap keypoint detections for update.

V. LANDMARK AND OBJECT RECONSTRUCTION

This section first introduces the linearization of the errors
in (4) around perturbations for iterative optimization, and
then defines the error functions and their Jacobians.

We linearize the error functions in (4) around estimates
of the IMU-camera state x̂t, geometric landmarks ˆ̀

m, and
object instances ôi using perturbations x̃t, ˜̀

m, and õi:

xt = x̃t ⊕ x̂t, `m = ˜̀
m + ˆ̀

m, oi = õi ⊕ ôi, (5)

where ⊕ emphasizes that some additions are over the SE(3)
manifold, defined as follows:

IR = exp (Iθ×) IR̂ Ip = I p̃ + I p̂ Iv = I ṽ + I v̂

CT = exp
(
Cξ×

)
CT̂ bg = b̃g + b̂g ba = b̃a + b̂a

OT = exp
(
Oξ×

)
OT̂ δs = δs̃ + δŝ δu = δũ + δû.

(6)

Next, we define the geometric-keypoint, semantic-
keypoint, bounding-box, and regularization error terms and
describe how to perform the optimization in (4) over the
object states O. We emphasize that the error function argu-
ments include the object, camera, and IMU poses, defined
on the SE(3) manifold, and, hence, particular care should
be taken when obtaining the error Jacobians.

A. Landmark and Object Error Functions

Define the geometric keypoint error as the difference be-
tween the image projection of a geometric landmark ` using
camera pose CT and its associated keypoint observation gz:

ge (x, `, gz) , Pπ
(
CT−1`

)
− gz, (7)

where P =
[
I2 0

]
∈ R2×4 and π(s) , 1

s3
s ∈ R4 is the

perspective projection function.

Proposition 1. The Jacobians of ge with respect to pertur-
bations Cξ, ˜̀, evaluated at estimates x̂t, ˆ̀, are:

∂ge

∂Cξt
= −P

dπ

ds

(
CT̂−1t

ˆ̀
)
CT̂−1t

[
ˆ̀
]�
∈ R2×6

∂ge

∂˜̀
= P

dπ

ds

(
CT̂−1t

ˆ̀
)
CT̂−1t

[
I3
0>

]
∈ R2×3

(8)

where dπ
ds (s) is the Jacobian of π(s) evaluated at s.

The semantic-keypoint error is defined as the difference
between a semantic landmark sj+δsj , projected to the image
plane using instance pose OT and camera pose CTt, and its
corresponding semantic keypoint observation szt,j,k:

se(x,o, sz) , Pπ
(
CT−1OT (s + δs)

)
− sz. (9)

Proposition 2. The Jacobians of se with respect to pertur-
bations Cξt,Oξ, δs̃, evaluated at estimates x̂t, ô, are:

∂se

∂Cξt
= − ∂

se

∂Oξ
∈ R2×6 (10)

∂se

∂Oξ
= P

dπ

ds

(
CT̂
−1
t OT̂

(
sj + δŝ

)
j

)
CT̂
−1
t

[
OT̂

(
sj + δŝ

)
j

]�
∂se

∂δs̃j
= P

dπ

ds

(
CT̂
−1
t OT̂

(
sj + δŝ

)
j

)
CT̂
−1
t OT̂

[
I3
0>

]
∈ R2×3.

The Jacobians with resp. to other perturbations in (6) are 0.

To define a bounding-box error, we observe that if the dual
ellipsoid Q∗(u+δu) of instance oi is estimated accurately, then
the lines bzt,j,k of the k-th bounding-box at time t should
be tangent to the image plane conic projection of Q∗(u+δu):

be(x,o, bz) , bz>PCT−1OTQ∗(u+δu)OT>CT−>P>bz. (11)

Proposition 3. The Jacobians of be with respect to pertur-
bations Cξt,Oξ, δũ, evaluated at estimates x̂t, ô, are:

∂be

∂Cξt
= − ∂

be

∂Oξ
∈ R1×6

∂be

∂Oξ
= 2bz>PCT̂−1t OT̂Q̂∗(u+δû)OT̂>

[
CT̂−>t P>bz

]}>
∂be

∂δũ
= (2(u + δû)� y � y)> ∈ R1×3 (12)

y ,
[
I3 0

]
OT̂>CT̂−>t P>bz.

where � denotes element wise multiplication. The Jacobians
with resp. to other perturbations in (6) are 0.

Finally, the object shape regularization error is defined as:

re (o) ,
[
δu 1

N2
s
δs
]
∈ R3×(1+Ns), (13)

whose Jacobians with respect to the perturbations δũ, δs̃ are:

∂δu

∂δũ
= I3

∂δs

∂δs̃
=

1

N2
s

I ∈ R3×Ns×3×Ns . (14)

B. Landmark and Object State Optimization
We temporarily assume that the sensor trajectory X is

known. Given X , the optimization over L and O is decou-
pled into individual geometric landmark and object instance
optimization problems. The error terms in these decoupled
problems can be linearized around initial estimates ˆ̀

m and
ôi, using the Jacobians in Prop. 1, 2, and 3, leading to:

min
˜̀
m

gw
∑
t,n

1t,m,n
∥∥g êt,m,n +

∂g êt,m,n

∂˜̀m
˜̀m
∥∥2

gV

min
õi

sw
∑
t,j,k

1t,i,k
∥∥sêt,i,j,k +

∂sêt,i,j,k
∂õi

õi
∥∥2

sV
+ (15)

bw
∑
t,j,k

1t,i,k
∥∥bêt,i,j,k+ ∂bêt,i,j,k

∂õi
õi
∥∥2

bV
+rw

∥∥re(ôi)+ ∂re(ôi)

∂õi
õi
∥∥2

These unconstrained quadratic programs in ˜̀
m and õi can

be solved iteratively via the Levenberg-Marquardt algo-
rithm [19, Ch.4], updating ˆ̀

m ← ˜̀
m+ˆ̀

m and ôi ← õi⊕ ôi
until convergence to a local minimum.



The geometric landmarks are initialized by solving the
linear system of equations:

0 = gêt,m,n = PCT̂−1t
ˆ̀
m − λt,ngzt,n (16)

for all t,m, n such that 1t,m,n = 1, where the unknowns are
ˆ̀
m and the keypoint depths λt,n. The deformations of an

object instance ôi are initialized as δŝ = 0 and δû = 0. The
instance pose is determined from the system of equations:

0 = sêt,i,j,k = PCT̂−1t OT̂sj − λt,j,kszt,j,k (17)

0 = bêt,i,j,k = bz>t,j,kPCT̂−1t OT̂Q∗uOT̂>CT̂−>t P>bzt,j,k

for all j and all t, k such that 1t,i,k = 1, where the unknowns
are OT̂ and the semantic keypoint depths λt,j,k. This is
a generalization of the pose from n point correspondences
(PnP) problem [29]. While this system may be solved using
polynomial equations [30], we perform a more efficient
initialization by defining ζj , OR̂sj + Op̂ and solving the
first set of (now linear) equation in (17) for ζj and λt,j,k. We
recover OT̂ via the Kabsch algorithm [31] between

{
ζj
}

and
{sj}. This approach works well as long as there is a sufficient
number of semantic keypoints szt,j,k (at least two per
landmark across time for at least three semantic landmarks
sj) associated with the object. If fewer semantic keypoints
are available, we use an initial guess OR̂ provided by the
keypoint detection algorithm StarMap [23] and solve (17) for
Op̂ and λt,j,k. Given OR̂, we eliminate Op̂ in (17), reducing
the problem to a set of quadratic equations in the positive
scalars λt,j,k and then recover Op̂ from λt,j,k and OR̂.

VI. THE ORCVIO ALGORITHM

We return to the problem of joint IMU-camera, geomet-
ric landmark, and object instance optimization. The IMU-
camera state is tracked using an Extended Kalman filter.
Predictions are performed using the inertial observations izt.
When a geometric keypoint or object track is lost, iterative
optimization is performed over ˆ̀

m or ôi as discussed in
Sec. V and the final landmark and instance estimates are
used to update the IMU-camera state mean x̂t and covariance
Σt. This object-based version of the multi-state constraint
Kalman filter [4] is described next.

A. Prediction Step

The continuous-time IMU dynamics are [32]:

IṘ = IR
(
iω − bg − nω

)
× ḃg = ng ḃa = na

I ṗ = Iv I v̇ = IR
(
ia− ba − na

)
+ g

(18)

where nω,na,ng,na ∈ R3 are Brownian motion noise terms
associated with the angular velocity measurements, linear ac-
celeration measurements, gyroscope bias, and accelerometer
bias. Using the perturbations in (6), we can split (18) into

deterministic nominal and stochastic error dynamics:

I
˙̂
R = IR̂

(
iω − b̂g

)
×

˙̂
bg = 0

˙̂
ba = 0

I
˙̂p = I v̂ I

˙̂v = IR̂
(
ia− b̂a

)
+ g (19)

I θ̇ = −IR̂
(
b̃g + nω

)
˙̃
bg = ng

˙̃
ba = na

I
˙̃p = I ṽ I

˙̃v = −
[
IR̂
(
ia− b̂a

)]
×
Iθ − IR̂

(
b̃a + na

)
Given time discretization τ and assuming iω and ia remain
constant over intervals of length τ , we can integrate the
nominal dynamics in closed-form to obtain the predicted
IMU mean I x̂

p
t+1:

IR̂
p
t+1 = IR̂t exp

(
τ
(
iωt− b̂g,t

)
×

)
b̂pg,t+1 = b̂g,t b̂pa,t+1 = b̂a,t (20)

I p̂
p
t+1 = I p̂t+I v̂tτ+g

τ2

2
+IR̂tHL

(
τ
(
iωt−b̂g,t

)) (
iat−b̂a,t

)
τ2

I v̂
p
t+1 = I v̂t + gτ + IR̂tJL

(
τ
(
iωt− b̂g,t

)) (
iat− b̂a,t

)
τ

where JL (ω) ,
(
I + ω×

2! +
ω2

×
3! + . . .

)
is the left Jacobian

of SO(3) and HL (ω) ,
(

I
2! + ω×

3! +
ω2

×
4! + . . .

)
. Both

JL (ω) and HL (ω) have closed-form (Rodrigues-like) ex-
pressions:

JL (ω) = I3 +
1− cos ‖ω‖
‖ω‖2

ω× +
‖ω‖ − sin ‖ω‖
‖ω‖3

ω2
×

HL (ω) =
1

2
I3 +

‖ω‖ − sin ‖ω‖
‖ω‖3

ω× +
2(cos ‖ω‖ − 1) + ‖ω‖2

2‖ω‖4
ω2
×.

(21)

To obtain C x̂pt+1, the camera poses are augmented with a
new predicted pose CT̂p

t+1 based on I x̂
p
t+1:

CT̂p
t+1 = IT̂

p
t+1

I
CT (22)

where I
CT is assumed known from an offline IMU-camera

calibration [33]. The oldest pose CT̂t+1−W is removed from
C x̂pt+1 to ensure that W is not exceeded.

Next, consider the propagation of the state covariance
Σt ∈ R(15+6W )×(15+6W ). We use Euler discretization of
the IMU error dynamics in (19) with time step τ to obtain:

x̃pt+1 =

[
Ft 0
0 I6W

]
x̃t + nt nt ∼ N (0,Q) (23)

where the matrices Ft and Q are:

Ft =


I3 0 0 −τ IR̂t 0
0 I3 τI3 0 0

−τ
[
IR̂t

(
iat − b̂a,t

)]
×

0 I3 0 −τ IR̂t

0 0 0 I3 0
0 0 0 0 I3


Q = diag

(
σ2
ωτ

2I3,03, σ
2
aτ

2I3, σ
2
gτI3, σ

2
aτI3,06W

)
(24)

and σω [rad/s], σa [m/s2], σg [rad/s3/2], σa [m/s5/2]
can be obtained from the IMU datasheet or experimental
data [34, Appendix E]. The propagated state covariance is:

Σp
t+1 =

[
Ft 0
0 I6W

]
Σt

[
Ft 0
0 I6W

]>
+ Q. (25)



Finally, after adding a new camera pose and dropping the
oldest one, the covariance matrix becomes:

Σp
t+1 = At+1Σ

p
t+1A

>
t+1 (26)

At+1 ,

 I15 0 0
0 0 I6(W−1)

Bt+1 0 0

 Bt+1 ,

[
(I p̂t+1)× I3 0

I3 0 0

]
where Bt+1 is the Jacobian of the camera pose perturbation
Cξ

p
t+1 with respect to the IMU perturbation I x̃

p
t+1.

B. Update Step

We perform an update to x̂pt+1 and Σp
t+1 without storing

the geometric landmarks ˆ̀
m or object instances îi in the filter

state using the null-space projection idea of [4]. Let ŷi denote
an estimate (from Sec. V) of a geometric landmark or object
instance whose track gets lost at time t + 1. The geometric
and semantic error functions, linearized using perturbations
Cξ

p
t , ỹi around estimates CT̂p

t , ŷi are of the form:

et,i ≈ êt,i +
∂êt,i
∂Cξ

p
t
Cξ

p
t +

∂êt,i
∂ỹi

ỹi + nt,i (27)

where nt,i is the associated noise term with covariance Vt,i.
Stacking the errors for all camera poses in x̂pt+1 associated
with i, leads to:

ei ≈ êi +
∂êi
∂x̃pt+1

x̃pt+1 +
∂êi
∂ỹi

ỹi + ni. (28)

The perturbations ỹi can be eliminated by left-multiplication
of the errors in (28) with unitary matrices Ni whose columns
form the basis of the left nullspaces of ∂êi

∂ỹi
:

N>i ei ≈ N>i êi + N>i
∂êi
∂x̃pt+1

x̃pt+1 + N>i ni (29)

Finally, let ê, J, V be the stacked errors, Jacobians, and noise
covariances (after null-space projection) across all geometric
landmarks and object instances, whose tracks are lost at t+1.
The updated IMU-camera mean and covariance are:

K = Σp
t+1J

> (JΣp
t+1J

> + V
)−1

x̂t+1 = (−Kê)⊕ x̂pt+1 (30)

Σt+1 = (I−KJ)Σp
t+1(I−KJ)> + KVK>.

Note that the dimension of J can be reduced in the compu-
tation above via QR factorization as described in [4].

VII. EVALUATION

We evaluate OrcVIO on the KITTI dataset [10] both
qualitatively and quantitatively. We use the raw data se-
quences with object annotations to evaluate the object state
estimation, and the odometry sequences without object an-
notations for trajectory accuracy evaluation. Since KITTI
provides synchronized velocity measurements, we use a
simpler velocity-based prediction step, described in Sec. IX.

Fig. 4 shows the IMU-camera trajectory and object states
estimated on KITTI odometry sequence 07. The result
demonstrates that OrcVIO is capable of producing mean-
ingful object-level maps and accurate sensor trajectories

Fig. 4. Estimated IMU-camera trajectory (yellow) and object states (red
landmarks and green ellipsoids) from KITTI Odom. Seq. 07.

(without loop closure). Moreover, the estimated car instance
shapes vary in accordance with the semantic observations.

The quality of the estimated object poses and shapes is
evaluated using 3D Intersection over Union (IoU). We obtain
a 3D bounding box b̂i from the semantic landmarks of each
estimated object instance. The 3D IoU is defined as the ratio
of the intersection volume over the union volume,

3D IoU :=
∑
i

Volume of Intersection(b̂i, bi)

Volume of Union(b̂i, bi)
, (31)

with respect to the 3D bounding box bi of the closest ground
truth object. The ground truth 3D annotations are obtained
from the KITTI tracklets and the KITTI detection benchmark
labels. Table I reports 3D IoU results comparing OrcVIO
against state-of-the-art methods including a deep learning
approach for single-view bounding box estimation (Single-
View [35]), and the multi-view bundle-adjustment algorithm
that uses cuboids to represent objects (CubeSLAM [16]).
The performances of OrcVIO and CubeSLAM are similar
since both rely on point and bounding box measurements to
optimize the object states.

There are two approaches for evaluating VIO quantita-
tively: Absolute Trajectory Error (ATE) and the Relative
Pose Error (RPE). We show the RPE [10] in Table I,
defined as the average norm of the position component of the
error poses

(
IT̂t+1IT̂

−1
t

) (
ITt+1IT

−1
t

)−1
over distance

travelled. Table I shows that OrcVIO is also very close to
CubeSLAM for RPE.

Since the object mapping evaluation in Table I does not
contain the same number of detected objects, and to better
understand the distribution for the rotation/translation errors
of the estimated objects, we compare the precision and recall
of OrcVIO on the KITTI raw sequences (2011 09 26 00XX,
XX = [01, 19, 22, 23, 35, 36, 39, 61, 64, 93]) against a single-
view, end-to-end object estimation approach (SubCNN [36]),
and a visual-inertial object detector (VIS-FNL [14]). An
object estimate is true positive if a ground truth object
exists within a specific rotation/translation error threshold.
We define precision as the fraction of true positives over
all estimated objects, whereas recall as the fraction of true
positives over all ground truth objects. In Table II, the



TABLE I
OBJECT DETECTION AND POSE ESTIMATION ON KITTI OBJECT SEQUENCES

Metric KITTI Sequence → 22 23 36 39 61 64 95 96 117 Mean

3D IoU
SingleView [35] 0.52 0.32 0.50 0.54 0.54 0.43 0.40 0.26 0.25 0.42
CubeSLAM [16] 0.58 0.35 0.54 0.59 0.50 0.48 0.52 0.29 0.35 0.47
OrcVIO 0.44 0.56 0.52 0.54 0.48 0.44 0.38 0.34 0.29 0.44

Trans. error (%) CubeSLAM [16] 1.68 1.72 2.93 1.61 1.24 0.93 1.49 1.81 2.21 1.74
OrcVIO 1.64 2.51 2.11 1.03 3.11 2.48 1.05 1.40 1.36 1.85

TABLE II
PRECISION-RECALL EVALUATION ON KITTI OBJECT SEQUENCES

Translation error → ≤ 0.5 m ≤ 1.0 m ≤ 1.5 m

Rotation error Method Precision Recall Precision Recall Precision Recall

≤ 30◦
SubCNN [36] 0.10 0.07 0.26 0.17 0.38 0.26
VIS-FNL [14] 0.14 0.10 0.34 0.24 0.49 0.35
OrcVIO 0.10 0.12 0.18 0.21 0.22 0.25

≤ 45◦
SubCNN [36] 0.10 0.07 0.26 0.17 0.38 0.26
VIS-FNL [14] 0.15 0.11 0.35 0.25 0.50 0.36
OrcVIO 0.15 0.17 0.25 0.28 0.31 0.35

−
SubCNN [36] 0.10 0.07 0.27 0.18 0.41 0.28
VIS-FNL [14] 0.16 0.11 0.40 0.29 0.58 0.42
OrcVIO 0.29 0.33 0.50 0.56 0.62 0.69

TABLE III
TRAJECTORY RMSE (M) ON KITTI ODOMETRY SEQUENCES

KITTI Sequence → 00 02 04 05 06 07 08 09 10 Mean

Object BA [15] 73.4 55.5 10.7 50.8 73.1 47.1 72.2 31.2 53.5 51.9
CubeSLAM [16] 13.9 26.2 1.1 4.8 7.0 2.7 10.7 10.7 8.4 9.5
OrcVIO 25.7 27.1 1.2 4.6 4.5 1.8 14.3 10.4 8.8 10.9

first six rows are the precision and recall associated with
different translation error (row) and rotation error (column)
thresholds, whereas the last 3 rows ignore the rotation error.
The results demonstrate that OrcVIO is able to retrieve a
reasonable amount of the groundtruth objects and provide a
high-quality object map. When both rotation and translation
errors are considered (in the first six rows), OrcVIO is better
than SubCNN, since the latter does not rely on temporal
association of objects. In contrast, OrcVIO is slight worse
than VIS-FNL possibly explained by the fact that VIS-FNL
uses multiple object hypotheses, while OrcVIO only keeps
one object state. Moreover, OrcVIO outperforms SubCNN
and VIS-FNL when only translation error is taken into
account, which suggests that the object position estimates are
accurate but the orientation estimates could be improved.

Although the main contribution of OrcVIO is object map-
ping, we also evaluate the ATE of the IMU-camera trajectory
estimation in Table III for completeness. Suppose that at time
t the groundtruth pose is ITt, while the estimate is IT̂t

and then the error is ∆ITt = {∆IRt,∆Ipt} for rotation,

position, where ∆IRt = IRt

(
IR̂t

)>
,∆Ipt = Ipt −

∆IRtI p̂t. The root mean square error (RMSE) of trans-
lational ATE [37] is: ATEpos = 1

N

∑t=N−1
t=0 (||∆Ipt||2)

1
2 .

OrcVIO is compared with two visual object SLAM meth-

ods: CubeSLAM [16], and a monocular visual SLAM that
integrates spherical object models to estimate the scale via
bundle-adjustment (Object BA [15]). Table III shows that
OrcVIO outperforms Object BA, because spheres are very
coarse object representations compared to our coarse-to-fine
object representations, and thus Object BA cannot main-
tain the object scales as accurately as OrcVIO. Moreover,
OrcVIO uses inertial data while Object BA is a visual
odometry. CubeSLAM has better performance on some of
the sequences, and one possible reason is that OrcVIO uses
low frequency velocity measurements but we assume the
velocity stays constant during the prediction step in Sec. VI-
A, which could increase the drift.

VIII. CONCLUSION

This paper presents a joint ego-motion, object pose and
shape estimation algorithm, which may enable robots to
perform tasks involving object perception and manipulation.
We have also shown that OrcVIO is capable of estimating
the trajectory and producing object-level maps on real world
KITTI dataset. Future work will focus on more general
models of object shape, multiple object categories and object-
level data association for loop closure. We will also include
more object categories for mapping.



IX. APPENDIX: VELOCITY-BASED STATE PROPAGATION

For a robot, such as a ground wheeled vehicle [38],
equipped with a velocity sensor, we may use a simpler
kinematic motion model based on the linear and angular
velocity measurements. The IMU state becomes Ix ,
(IR, Ip, bg, bv), and the continuous-time dynamics in
Eq. (18) simplify to:

IṘ = IR
(
iω − bg − nω

)
× ḃg = ng

I ṗ = IR
(
iv − bv − nv

)
ḃv = nv

(32)

where iv is the velocity measurement in the body frame. In
this case, the matrices Ft and Q in Eq. (23) become:

Ft =


I3 0 −τ IR̂t 0

−τ
[
IR̂t

(
ivt − b̂v,t

)]
×

I3 0 −τ IR̂t

0 0 I3 0
0 0 0 I3


Q = diag

(
σ2
ωτ

2I3, σ
2
vτ

2I3, σ
2
gτI3, σ

2
vτI3,06W

)
. (33)
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