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Abstract— We design a cooperative, decentralized inference
algorithm allowing sensor networks to learn a probability density
over a discrete set of hypotheses representing a joint parameter
that best explains their combined observations. We aim to an-
swer two questions: (i) an agent-hypothesis assignment problem,
balancing estimation quality, storage and communication con-
straints in the networks, and (ii) the design of a provably-correct
distributed estimation algorithm under restricted hypothesis sets
for agents. We make the following contributions to the state of the
art. First, our proposed algorithm allows each agent to perform
updates on partial likelihoods and exchange local information on
a limited hypothesis set. Second, our algorithm does not require
step-wise renormalization across agents, while still guaranteeing
consensus and convergence of sensor estimates. Third, we also
address agent-hypothesis assignment by formulating it as an
integer programming problem, that matches agent sub-networks
to hypotheses based on a diversity criterion for estimation quality.

I. INTRODUCTION

Distributed estimation algorithms have long been studied
from a 2-agent agreement [1] to studies on network topology
among multiple agents [6]. A major improvement appeared in
the form of non-Bayesian updates [2], performed by updating
the hyper- parameters of a probability density function (pdf)
instead of the updating the function itself. The stationary dis-
tribution and convergence rates of this approach have recently
been studied in [4]. Even though recent approaches can deal
with network-level updates, they require maintaining and com-
municating each agents pdf over the entire set of hypotheses.
Drawing inspiration from the idea of distributed computation, it
is of interest and practically useful to also consider a distributed
storage scheme, in which agents only maintain and exchange
a partial pdf over the parameter space. This naturally raises
the question of defining hypothesis assignments for agents,
which is a problem akin to Sensor selection. Load assignment
for sensor selection at is usually studied as an assignment
problem [5], mostly tackled via integer-programming solutions.
With increasing performance requirements, there is a need to
develop new techniques and representations. We present our
novel proposals for agent-hypothesis assignment and partial
space distributed assignment problems.

II. PROBLEM FORMULATION

We consider a set of sensors N = {1, . . . , n} whose
communications are modeled via an undirected graph G =
(N , E), with edges E representing the communicating pairs.
Each agent i ∈ N has a corresponding state variable xi ∈ Rdx
and receives data zi,t ∈ Rdz , at time t. The observation model
is specified for sensor i by a pdf pzi(z|θ) defined on discrete
domain Θi. The network aims to find the true value of a joint
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parameter θ ∈ Rdθ from the set Θ ≡ ∪i∈NΘi, which may
represent the location of a data-generating source. The set Θ
is discrete and finite with cardinality |Θ| = m. The true set of
parameter values generating the agent observations is Θ∗ ⊂ Θ.
The set of neighbors for each agent i in the communication
graph G is defined as Ni. Each agent i maintains the prob-
ability pi,t(θ),θ ∈ Θi, denoting agent’s confidence on the
correctness of hypothesis θ at time step t. The agents use their
observations zi,t and neighbor estimates pj,t(θ), (i, j) ∈ E at
hypothesis θ to update their own probability density pi,t+1(θ)
over the values of θ ∈ Θi.

Sub-network assignment for hypotheses. We can now
formalize the implications of the restriction imposed by the
set Θi. This set limits the computational load of agent i
by restricting its likelihood over |Θi| ≤ mi hypotheses.
The coverage of entire hypothesis space is ensured with the
condition ∪i∈NΘi = Θ implying that every hypothesis is
tracked by at least one agent in the network. We denote the
set of agents observing a specific hypothesis v, θv ∈ Θ,
as V(θv) ⊆ N . If the agents in V(θv) form a connected
component of G, we define subgraph Gθv ≡ Gv . The con-
nectedness is desirable to achieve consensus on estimates
at each hypothesis. Based on these constraints, we define
the diversity criterion using distance between observation
models as F (Gθ) =

∑
i,j∈V(θ)
(i,j)∈E

DKL(pzi(·|θ),pzj(·|θ)) +∑
i∈V(θ) H(pzi(·|θ)). Thus, our first research question is ad-

dressed by means of an optimization problem over sets of
subgraphs Gθ ⊆ G,∀θ ∈ Θ,

max
{Gθ}θ∈Θ

∑
θ∈Θ

F (Gθ), (1)

Gθ is a connected induced subgraph ofN , ∀θ ∈ Θ, (2)
0 <|Θi| ≤ mi ∀i ∈ N , (3)
∪iΘi = Θ. (4)

Distributed inference on limited hypothesis sets. In this
problem, each agent is tasked with finding the values of a
probability mass function pi,T (θ) for the hypotheses θ ∈
Θi at time T using only neighbor estimates and received
observations zi,1:T . For the values θ ∈ Θ \ Θi at time T ,
the network will collectively assign a complementary mass
value. As T →∞, the algorithm should converge to a common
distribution p∞(θ) that assigns mass to only the true hypothesis
set Θ∗ = arg maxθ p(θ|z1:n,1:T ) and which best explains the
observations of all agents.

III. AGENT-HYPOTHESIS MATCHING

The closest problem to the optimization problem in Eqn. (1-
4) is the reference on generalized maximum-weight connected
subgraph problems [3]. Although the solution finds connected
sensor sub-network with weights on nodes and edges, it isn’t



scaled for several subgraphs coupled with cardinality con-
straints on selected agents. Therefore, we present a new formu-
lation in terms of binary variables representing nodes and edges
in the optimal subgraph. Consider yv = [y1v, . . . , ynv]

> ≡
[yiv]

n
i=1 ∈ {0, 1}m, where yiv = 1 implies that agent i

tracks probabilities for hypothesis v. Consider another variable
bv = [bij1,v, . . . bij`,v] ∈ {0, 1}`, where with a slight abuse
of notation we denote one of the ` = |E| edges in the agent
network as ijl ≡ (i, j)l ∈ E , l ∈ {1, . . . , `}, and we use the
shorthand bij,v to refer to a generic entry of bv . Exploiting the
separability of the objective function on each θv , we define
the linear objective in terms of the new node and edge binary
variables.

m∑
v=1

[
max
yv,bv

∑
(i,j)∈E

bij,v DKL(pzi(z|θv),pzj(z|θv))

+

n∑
i=1

yiv H(pzi(z|θv))
] (5)

m∑
v=1

yiv ≤ mi, ∀i ∈ {1, . . . , n}, (Cardinality)∑
i

yiv ≥ 1, ∀v ∈ {1, . . . ,m}. (Coverage)

In addition, the first set of graph connectivity constraints can
be expressed by adding constraints on the edges for each
hypothesis v ∈ {1, . . . ,m} as in Eqn. (6).∑

ij∈E
bij,v =

n∑
i=1

yiv − 1, bij,v ≤ yiv, yjv, ∀ij ∈ E . (6)

We can further note that nodes i, j defining a selected edge
(i, j) with bij,v = 1 are automatically selected, i.e. yiv, yjv =
1. This is seen with arguments relating number of nodes and
edges in the Eqn. (6) suffices if the original graph is a tree.
Otherwise, one can rely on introducing average node degree
constraints. The average node degree of a network is defined
as the average over all node degrees in the network. Therefore,
the maximum average degree of a connected tree of k nodes is
2− 2/k. This idea is harnessed by introducing flow variables
f iij,v, f

j
ij,v ∈ {0, 1} on each edge (i, j) ∈ E with f iij,v+f jij,v =

2, and another quadratic constraint on the average degree of
the optimal subgraph

∑
j∈Ni f

j
ij,v ≤ 2− 2∑n

i=1 yiv
to guarantee

connectivity in selected sets at hypothesis θv ∈ {1, . . . ,m}.

IV. DISTRIBUTED CONSENSUS ON PARTIAL HYPOTHESIS

In this section, we propose a network-wide inference al-
gorithm that can be implemented with partial observation
likelihoods for each agent without any network-wide renor-
malization. As it can be observed in Algorithm 1, agent i
depends on estimates µj,t(θ),∀j ∈ V(θ),θ ∈ Θi. The scalar
term A(θ)ij describes the weight assigned by agent i to the
belief received from agent j at hypothesis θ. Each agent only
updates pi,T (θ) over the set Θi and depends on other agents
for obtaining pi,T (θ) for θ ∈ Θ\Θi. At the final time step T ,
other agent estimates are used to obtain the probability values at
hypothesis θ ∈ Θ\Θi for computing normalization factor Zi,T .

Algorithm 1: Partial likelihood estimation algorithm

Input: observations {zi,t}Tt=1, hypothesis set Θi, prior
hypothesis likelihoods pi,0(θ) and
communication matrices A(θ) for all θ ∈ Θi

Output: posterior probability pi,T for all θ ∈ Θi

1 µi,0(θ) ← pi,0(θ), ∀(θ) ∈ Θi

2 for t ∈ {1, . . . , T − 1} do
3 for θ ∈ Θi do
4 µi,t+1(θ) =

∏
j∈Ni µj,t(θ)A(θ)ij pzi(zi,t|θ)

5 end
6 end
7 Zi,T+1 =

∑
θ∈Θi

µi,T+1(θ) +
∑

θ∈Θ\Θi µj,T+1(θ)

8 pi,T (θ) = µi,T (θ)/Zi,t+1 ∀θ ∈ Θi

Fig. 1. (a) Hypothesis assignments for agents positioned at
(−0.375,−1.125), (1.125,−0.375), (0.375, 1.125) and (−1.125, 0.375).
The 9 hypotheses are equally spaced in a grid of [−2, 2]2. The observation
models are given as pzi(zi,t|θ) ∼ N(xi − θv , 1

||xi−θv||
I2). Consistent

agent probability estimates pi,t(θ) at all hypotheses upon running the
algorithm for 100 time steps at (b) true hypothesis θ = [2, 2] and at (c) false
hypothesis θ = [0, 2].

V. CONCLUSION

In this work, we have proposed a distributed inference algo-
rithm that allows each sensor to work with partial observation
likelihoods, leading to significant savings in the number of
hypotheses stored at each sensor and the messages exchanged
among neighbors. The devised algorithms has proven con-
vergence guarantees in the absence of normalization factors
at each update step. As the distributed estimation algorithm
depends on hypothesis agent matching, we have also devised
a novel integer programming formulation for assigning con-
nected subgraphs of agents to each hypothesis.
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