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ABSTRACT

In this work, we introduce a planning neural operator (PNO) for predicting the
value function of a motion planning problem. We recast value function approxima-
tion as learning a single operator from the cost function space to the value function
space, which is defined by an Eikonal partial differential equation (PDE). Therefore,
our PNO model, despite being trained with a finite number of samples at coarse
resolution, inherits the zero-shot super-resolution property of neural operators. We
demonstrate accurate value function approximation at 16× the training resolution
on the MovingAI lab’s 2D city dataset, compare with state-of-the-art neural value
function predictors on 3D scenes from the iGibson building dataset and show-
case optimal planning with 4-DOF robotic manipulators. Lastly, we investigate
employing the value function output of PNO as a heuristic function to accelerate
motion planning. We show theoretically that the PNO heuristic is ϵ-consistent
by introducing an inductive bias layer that guarantees our value functions satisfy
the triangle inequality. With our heuristic, we achieve a 30% decrease in nodes
visited while obtaining near optimal path lengths on the MovingAI lab 2D city
dataset, compared to classical planning methods (A∗, RRT∗). See project code
https://github.com/sharath-matada/Planning_Operator.

1 INTRODUCTION

Classical tools for motion planning in complex environments face performance degradation as the
scale of the environment increases. To alleviate this issue, modern approaches introduce neural
network models enabling computational efficacy (Lehnert et al., 2024). Recent connections have
been made between motion planning and scientific machine learning in the context of solving partial
differential equations (PDEs). Specifically, the motion planning problem can be formulated from
an optimal control perspective leading to an Eikonal PDE whose solution yields the optimal value
function. Recent work (Ni & Qureshi, 2023a) has explored solving the Eikonal equation via physics
informed neural networks (PINNs) without the requirement of labeled data. However, as with classical
PINNs, these approaches require retraining for each environment and, therefore, are computationally
intractable for recomputing the solution quickly in dynamic environments governing the real-world.

In this work, we reformulate the solution to the Eikonal equation as an operator learning problem
between function spaces. This new perspective enables the training of a single neural operator which
maps an entire space of cost functions, with each cost function representing a separate environment,
to a corresponding space of value functions. We design a new neural operator architecture, called
Planning Neural Operator (PNO), that learns the solution operator of the Eikonal PDE and thus the
value function. Due to our architecture design, PNO generalizes to new environments with different
obstacle geometries without retraining. Furthermore, we capitalize on the resolution invariance
property of neural operators, enabling training with coarse resolution data and deployment of the
learned neural operator on test maps with 16× the training data resolution as illustrated in Fig. 1. In
summary, our contributions are given as follows:

(a) We formulate the motion planning problem as an optimal control problem whose value
function satisfies the solution to the Eikonal PDE. We then prove to arbitrarily tight accuracy,
the existence of a neural operator approximation to the Eikonal PDE solution operator.

∗equal contribution
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Figure 1: Example of super-resolution capabilities of PNO for motion planning on a map of NYC.
The operator is trained on a dataset of resolution 64× 64 and the examples shown here (resolutions
256× 256, 512× 512, and 1024× 1024) were not seen during training. See Sec. 4 for details.

(b) We design a Planning Neural Operator (PNO) to approximate the solution operator of the
Eikonal PDE and enable generalizable motion planning. By design, the architecture is
(i) resolution invariant, (ii) encodes obstacle geometries into the learned weight space to
enable generalization across different environments, and (iii) introduces a projection layer
satisfying the triangle inequality to enable generalization across goal positions.

(c) We develop four experiments to highlight PNO’s advantages. These include zero-shot
super resolution, optimal path planning on 3D iGibson building environments, 4-degree of
freedom (DOF) manipulators, and deployment as a heuristic function in A∗ reducing the
expanded nodes by 33% while maintaining near-optimal paths.

Related work. This work builds on ideas from two fields – PDEs and motion planning. Thus, we
briefly review popular motion planning approaches while identifying connections between motion
planning and PDEs and conclude with a brief overview of operator learning.

Motion planning. Motion planning techniques can classically be split into two categories – sample-
based algorithms and search-based algorithms. Sampling-based motion planners generate random
samples in configuration space (C-space) to construct graph structures whose edges connect to form
collision-free paths. The two most widely known algorithms are probabilistic roadmaps (PRM)
(Kavraki et al., 1996) and rapidly-exploring random trees (RRT) (LaValle, 2006; Karaman & Frazzoli,
2011) Since the development of these methods, there have been significant extensions using ideas
such as biased sampling with heuristic functions (Gammell et al., 2015; 2014), parallelization
(Sundaralingam et al., 2023), domain decomposition (Chamzas et al., 2021), and potential fields
(Qureshi & Ayaz, 2015). We refer readers to Orthey et al. (2024) for a review.

In contrast with sampling-based planners, search-based planners trade speed in favor of obtaining
optimal paths. The most well known approaches are Dijkstra’s algorithm (Dijkstra, 1959) and A∗

(Hart et al., 1968; Likhachev et al., 2003), which prioritizes the search order using a heuristic function.
More recent search-based planners include Cohen et al. (2010), Liu et al. (2018) which plan using
motion primitives. Lastly, we briefly mention planners based on Eikonal solvers such as Sethian
(1996), Janson et al. (2015), Valero-Gomez et al. (2013), Pêtrès et al. (2005). These approaches,
instead of planning by exploring nodes in configuration space, aim to solve the Eikonal PDE yielding
an optimal function for the resulting environment and then perform corresponding gradient descent.

Despite the success of classical planning methods, they suffer from computational limitations when
scaling to higher dimensions. Thus, with the recent success of deep learning, neural motion planners
(NMPs) have exploded in popularity for reducing the computational burden of motion planning.
For example, many works such as value iteration networks (VIN) (Tamar et al., 2016), motion
planning networks (MPN) (Qureshi et al., 2021) as well as more recent approaches such as Zeng
et al. (2019),Chaplot et al. (2021) and Fishman et al. (2022) attempt to plan completely from neural
networks designs. Moreover, other approaches instead augment classical algorithms. For example,
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Chen et al. (2020), Zhang et al. (2022) speedup the collision checker in RRT and Ichter et al. (2019),
Wang et al. (2020) learn sampling biases. See McMahon et al. (2022) for a comprehensive review.
Further, some approaches use gradient information directly from either Neural Distance Fields (Ortiz
et al., 2022; Liu et al., 2022) or Neural Radiance Fields (NeRF) (Adamkiewicz et al., 2022). Lastly,
we mention three approaches that are most close to ours. The first, NTFields/P-NTFields (Ni &
Qureshi, 2023a;b) learns a PINN for motion planning based on the Eikonal equation, but requires
retraining for new environments. Meanwhile Li et al. (2022) learns implicit functions for planning
but has no guarantees of obstacle avoidance and pays large startup costs for data generation.

Operator learning. The goal of operator learning is the design of models for approximating
infinite-dimensional mappings across function spaces. Neural operators were first introduced in
a seminal paper by Chen & Chen (1995) that designed the first architecture and a corresponding
universal operator approximation theorem for approximating PDE solutions. This work was recently
rediscovered and extended using modern neural network models under the DeepONet and FNO
frameworks (Lu et al., 2021; Deng et al., 2022; Lanthaler et al., 2022; Li et al., 2021; Kovachki et al.,
2023; 2021). Since, there have been a series of expansive papers addressing numerous challenges
from non-uniform geometries (Liu et al., 2023; Li et al., 2023a;b; Fang et al., 2024) to architectural
limitations (Seidman et al., 2022; You et al., 2022a; Gupta et al., 2021; Hao et al., 2023; Furuya et al.,
2023) of the original works. Furthermore, neural operators have been employed in an eclectic range
of applications spanning, but not limit to, weather forecasting (Kurth et al., 2023), material modeling
(You et al., 2022b), seismic wave propagation (Yang et al., 2021), and control of PDEs (Bhan et al.,
2023). Lastly, from a theoretical perspective, Lanthaler et al. (2023) unified the neural operator
framework, introducing an abstract formulation of the operator learning problem and a corresponding
universal approximation theorem (see Theorem 2) that encompasses a wide array of architectures,
including Fourier neural operator (FNO) and DeepONet.

2 EIKONAL PDE FORMULATION OF THE MOTION PLANNING PROBLEM

2.1 MOTION PLANNING AS AN OPTIMAL CONTROL PROBLEM

Consider a continuous-time dynamical system with state x(t) ∈ X ⊂ Rn, compact state space X ,
control input u(t) ∈ U ⊂ Rk, compact control space U , and dynamics:

ẋ(t) = f(x(t),u(t)). (1)
Given an initial condition x(0) = x0, we aim to design a control policy π : X → U that maintains
the system state x(t) in a safe set S ⊂ X for all t and drives it to a goal set G ⊂ S . We formulate this
problem through an infinite-horizon first-exit optimal control problem (OCP) as Bertsekas (2017)

min
π

cτ (x(τ)) +

∫ τ

0

c(x(t), π(x(t)))dt , (2a)

s.t. τ = inf{t ∈ R≥0 | x(t) ∈ G}, (2b)
ẋ(t) = f(x(t), π(x(t))) , x(0) = x0, x(t) ∈ S , ∀t ≥ 0 , (2c)

where τ is the first-exit time, the smallest time at which the system reaches the goal region G,
c : X × U → R is the stage cost function that measures the quality of the system trajectory, and
cτ : X → R is a terminal cost function evaluated when the system reaches the goal region. To
ensure the well-posedness of (2), we enforce the following standard assumption (Liberzon, 2012). In
practice, this assumption is satisfied when there is a feasible path from every start position to the goal.

Assumption 1. There exists a policy π : X → U such that, for any initial condition x(0) ∈ S, the
trajectories of the closed-loop system with u(t) = π(x(t)) in (1), reach the goal region G by a finite
first-exit time τ < ∞.

As standard, the optimal value function V : X → R is the minimum cost attained in (2) given by

V (x) := min
π

{cτ (x(τ)) +
∫ τ

0

c(x(t), π(x(t)))dt}, (3)
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subject to the constraints in (2). A sufficient condition for optimality is that the function V satisfies
the Hamilton-Jacobi-Bellman equation:

0 = min
u∈U

{
∇V (x)⊤f(x,u) + c(x,u)

}
, ∀x ∈ S \ G, (4a)

V (x) = cτ (x), ∀x ∈ G, (4b)
where ∇V denotes the gradient of V . As in (4a), (4b), to simplify notation, we omit the time
argument for x(t) and π(x(t)) in the remainder of the paper.

2.2 EIKONAL EQUATION FOR OPTIMAL MOTION PLANNING

In this work, we capitalize on the structure of common motion planning problems to simplify the
HJB equation. In practice, one commonly splits the OCP described above into two subproblems:
i) a motion planning problem, which determines a reference path from the initial state x(0) to the
goal region G without considering the dynamics constraint in (2c), and ii) a control problem, which
determines a control policy for the system to track the planned reference path. We focus on the
planning problem, which simplifies the system dynamics to be fully actuated, ẋ(t) = u(t).

To ensure feasible paths, it is common to limit the magnitude of the control input u(t). Thus, we
constrain the input to an admissible control set U = {u ∈ Rk|∥u∥ = 1} of unit vectors. When
the input magnitude is already constrained by U , it is not necessary to penalize it in the stage cost.
Hence, we let c(x,u) = c(x) be a control-independent cost, and let cτ (x) = c(x) for presentation
simplicity. Thus, the optimal control problem in (2) reduces to the optimal motion planning problem:

min
π

c(x(τ)) +

∫ τ

0

c(x(t))dt , (5a)

s.t. τ = inf{t ∈ R≥0 | x(t) ∈ G}, (5b)
ẋ(t) = π(x(t)) , x(0) = x0, (5c)
x(t) ∈ S, ∥π(x(t))∥ = 1, ∀t ≥ 0, (5d)

and the associated HJB equation in (4) simplifies to:

0 = min
u∈U

{
∇V (x)⊤u+ c(x)

}
, ∀x ∈ S \ G, (6a)

V (x) = c(x), ∀x ∈ G. (6b)
Note that the minimization in (6a) is now linear in u with the constraint ∥u∥ = 1. The minimizer is
readily computable in closed-form u = − ∇V (x)

∥∇V (x)∥ , yielding a PDE in the Eikonal class:

∥∇V (x)∥ = c(x), ∀x ∈ S \ G, (7a)
V (x) = c(x), ∀x ∈ G. (7b)

2.3 PROPERTIES AND UNIVERSAL APPROXIMATION OF THE EIKONAL SOLUTION OPERATOR

The solution to the Eikonal PDE in (7) can be viewed as an infinite-dimensional nonlinear operator
Ψ that maps cost functions c(x) into corresponding value function solutions V (x). However, given
an arbitrary cost function c, there is no known analytical representation for the operator V = Ψ(c).
Thus, in this work, we ask if it is possible to learn an approximation to the operator Ψ and, if so,
how to design a resolution invariant neural network to approximate Ψ? To start, we answer the first
question affirmatively by theoretically proving the existence of such a neural operator approximation.

To theoretically show the existence of Ψ̂, we begin with a brief review of neural operators. A neural
operator Ψ̂ is a neural network architecture consisting of a lifting neural network, a kernel approx-
imation neural network, and a projection neural network (See Appendix B for full formalization).
Under such an architecture several universal approximation theorems exist of which we focus on
(Lanthaler et al., 2023, Theorem 2.1) (restated as Theorem 2 in Appendix B.1) due to its abstract
formulation that encompasses a variety of architectures.

Under the universal approximation theorem, there are two challenges to establishing the existence of
a neural operator Ψ̂ for approximating the Eikonal PDE solution. First, we require that the domain is
a compact set of continuous functions and second we require continuity of the operator. For the first
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condition, since the solution to the Eikonal PDE is not continuous, we aim to learn the continuous and
unique viscosity solution (see Appendix C). Let Fc be the function space of costs X → R, namely
c(·) ∈ Fc. Likewise, let Fv be the function space of value functions X → R, that is V (·) ∈ Fv. To
ensure well-posed solutions of Problem (7), we require the following assumption.
Assumption 2 (Continuity and uniform boundedness of cost function space). The cost function space
Fc is uniformly equicontinuous. Further, there exists a constant θ > 0 such that

inf
x∈X

c(x) > 1/θ, sup
x∈X

c(x) < θ , ∀c ∈ Fc . (8)

The set Fc needs to be equicontinuous to ensure the continuity of the operator Ψ. The uniform
positivity of the cost c is required to ensure the existence and uniqueness of viscosity solutions to
the Eikonal PDE. In practice, this assumption can be satisfied by creating smooth boundaries around
each obstacle associated with strictly positive motion cost. Lastly, by the continuity of cost functions
in Assumption 2 and the Arzelá Ascoli theorem (Folland, 1999, Theorem 4.43), Fc is compact. From
these assumptions, a viscosity solution Ψ : Fc → Fv to the Eikonal PDE always (7) exists (See
Appendix C). We are now ready to present the existence of a neural operator approximation to Ψ.
Theorem 1. (See Appendix A.1 for proof) Let Assumptions 1, 2 hold and consider Ψ : Fc → Fv as
the solution to (7). Then, for any ϵ > 0, there exists a neural operator Ψ̂ : Fc → Fv such that

sup
c∈Fc

∥Ψ(c)− Ψ̂(c)∥ ≤ ϵ . (9)

While Theorem 1 guarantees the existence of a neural operator for approximating the Eikonal PDE, it
does not include the construction of the neural operator Ψ̂. This is the focus of the next section.

3 DESIGNING NEURAL OPERATORS FOR EIKONAL PDES

We introduce a new neural operator architecture, which we call Planning Neural Operator (PNO),
to approximate the solution operator Ψ(c) = V of the Eikonal PDE in (7). We ensure that our
architecture achieves three goals: (i) invariance to resolution differences between train and test maps,
(ii) generalization across environment geometries, and (iii) generalization across goal positions.

To achieve property (i), we employ the resolution-invariant Fourier neural operator (FNO) architecture
(Li et al., 2021) with two key extensions. First, to enable generalization across environments, we
hard encode the obstacle geometries into the operator structure. Second, to generalize across goals,
we design the output layer of the FNO model to ensure that the predicted value function satisfies the
triangle inequality. Particularly, when the goal set is a singleton G = {g}, let V (x, g) denote the
solution to (7) with goal g. Then, by the principle of optimality (Bellman, 1957), V satisfies:

V (x, g) ≤ V (x,y) + V (y, g) , ∀x,y, g ∈ S . (10)

Thus, we seek a neural operator V (x, g) = (Ψ̂(c; g))(x) that encodes this property of the value
function. Next, we review the structure of the FNO model, which ensures property (i). Then, we
present our PNO architecture that extends the FNO model to enable properties (ii) and (iii).

3.1 REVIEW OF FNO AND DAFNO

An FNO model consist of three components: (1) a lifting neural network that maps to high dimensional
space, (2) a series of Fourier layers, and (3) a projection neural network to the target resolution. It
can be viewed as a mapping Ψ̂ = Q ◦ LM ◦ · · · ◦ L1 ◦R, where R(c(x),x) is the lifting network,
Lm for m = 1, . . . ,M are the hidden Fourier layers, and Q is the projection network (See Appendix
B.1 for details). The Fourier layers consist of applying a Fast Fourier transform (FFT) to the input,
multiplying that transform by a learnable weight matrix and then transforming back via an Inverse
FFT. Mathematically, this is formalized as Lm(x) := F−1(Wθm · F (x)) where F ,F−1 are the
Fourier and inverse Fourier transforms and Wθm is a learnable, complex valued weight matrix. The
key idea is that, by learning in frequency space, the operator is resolution invariant as one can project
any desired resolution to and from a pre-specified number of Fourier modes.

However, to perform a Fourier transform, FNO needs a rectangular domain and thus cannot be
applied to non-uniform geometries. Recently, a new model, Domain Agnostic FNO (DAFNO) (Liu
et al., 2023) addressed this issue. DAFNO circumscribes the non-uniform geometry of the solution
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Figure 2: PNO network architecture. The input to a PNO is a binary occupancy grid, which is
transformed into a sign distance function (SDF) via an independently trained FNO. This, along with
the original binary map is passed to a series of modified FNO layers which hard encode the obstacles.
Finally, this result, along with the goal, is then fed to a projection layer (ensuring satisfaction of the
triangle inequality) obtaining the final value function prediction.

operator into a rectangle and then encodes, in the Fourier layer, where the true solution domain
is active. To achieve such an encoding, DAFNO explicitly introduces an indicator matrix of the
active solution geometry χ̃ into the Fourier layer multiplication. Explicitly, this is expressed by
the following modified layer Lm,DAFNO := F−1(Wθm · χ̃ · F (x)) where χ̃ is the aforementioned
indicator function (Details on the DAFNO architecture are in Appendix B.2). In PNO, we take
inspiration from DAFNO by explicitly encoding the obstacles using a similar indicator function.

3.2 PNO ARCHITECTURE: GENERALIZING ACROSS ENVIRONMENTS

The PNO model maps a cost function to the corresponding value function of the motion planning
problem by explicitly designing the layers R,L1, . . . , LM , Q to achieve goals (ii) and (iii). However,
before discussing the layer design, we begin by formalizing the input to a PNO. We consider a
minimum-time motion planning problem by choosing the cost function as

c(x) =

{
1 x ∈ S,
∞ x ∈ X\S, (11)

where we penalize the unsafe set with infinite cost. In practice, to avoid numerical instability, we
use 1/c(x), or a binary occupancy map as the input function. We then employ a neural network for
our lifting layer as in FNO, that is RPNO(1/c(x)) := WθR(1/c(x)) + BθR where WθR and BθR
are learnable weight tensors. To achieve property (ii), we ensure that PNO explicitly captures the
obstacle configuration of the environment. That is, we hard encode the obstacle locations in the
Fourier layer of our architecture. To do so, taking inspiration from DAFNO, we modify the Fourier
layer by multiplying the learnable weight matrix with the following smoothed indicator function

χ̃PNO(x) := tanh(βdS(x))(1/c(x)− 0.5) + 0.5 , (12)
where β is a smoothing hyperparameter

dS(x) =

 inf
y∈∂S

∥x− y∥, if x ∈ S
− inf

y∈∂S
∥x− y∥, if x /∈ S ,

(13)

where ∂S is the boundary of S. Thus, the inner layers of a PNO are given by Lm,PNO(x) :=
F−1(Wθm · χ̃PNO · F (x)), m = 1, . . . ,M . Multiplication by χ̃PNO achieves two goals. First,
it ensures that the indicator approximation in (12) is continuous and thus retains the guarantees
of Theorem 1. Second, for each environment, PNO ignores the unsafe space in the weight matrix
multiplication, which greatly improves generalization to new obstacle configurations.

In large motion planning problems, computing the SDF in the smoothing function (12) can be
computationally challenging. However, note that a SDF dS(x) is itself a solution to an Eikonal PDE:

∥∇dS(x)∥ = 1, x ∈ X , dS(x) = 0, x ∈ ∂S . (14)
Thus, under Theorem 1, there exists a neural operator approximation to (14). As such, we introduce
a second neural operator, in the form of an FNO, trained independently, that maps from a binary
occupancy map to the corresponding SDF, namely 1/c(x) 7→ dS(x). Thus, the occupancy function
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1/c(x) and the SDF dS(x) are taken as inputs to generate the smoothed indicator χ̃ in (12). This is
then used to modulate the kernel in the Fourier layers of PNO. Since we use an FNO to generate the
SDF function, our entire architecture maintains property (i), namely resolution invariance. Lastly,
inspired by PINNs for motion planning Ni & Qureshi (2023a), we introduce a PINN loss:

Loss(V, V̂ ) := ∥V − V̂ ∥L2 + ξ

(∫
x∈S

(∥∇V̂ (x, ·)∥ − c(x))2
)1/2

, (15)

where ξ controls the weighting of the PINN component. Note, if ξ ≫ 1, the PINN loss dominates
resulting in any solution that satisfies the gradient (e.g. Euclidean norm) and thus must be tuned.

3.3 PNO ARCHITECTURE: GENERALIZING ACROSS GOAL POSITIONS

Given the lifting layer and the modified Fourier layers discussed above, we move to design the
projection layer of PNO. The projection layer contains two inputs, namely the output from the
last hidden layer and the goal location g. This goal location is equivalent to passing the boundary
condition (7b) for the solution operator Ψ into our network. To enable goal generalization (iii), we
leverage the fact that the optimal value function must satisfy the triangle inequality. Thus, we design
our output with an inductively biased Deepnorm layer Q(·, ·) (Pitis et al., 2020) given by:

QPNO(ϕ,x, g) = fθQ(ϕ(x)− ϕ(g)) , (16)
where ϕ = LM,PNO ◦ · · · ◦ L1,PNO ◦ RPNO, and thus ϕ(x) − ϕ(g) is the subtraction of the
feature vectors between x and the goal g. fθQ consists of regular neural network layers with a
non-negative activation function (e.g., ReLU) and a positive weight matrix W+. This ensures that
our value function satisfies the triangle inequality with respect to g (Pitis et al., 2020) and enables
generalization across different goal positions (Section 4). Lastly, we summarize the PNO architecture
in Fig. 2, starting from a binary occupancy input 1/c(x) and returning a value function as the output.

4 LEARNING MOTION PLANNING VALUE FUNCTIONS

To validate the efficacy of our PNO architecture, we design four experiments. First, we test our method
on grid-world environments comparing PNO against learning-based motion planners. However, given
the simplicity of the small grid world dataset, the environments lack the complexity of real-world tasks.
Thus, we introduce three real-world experiments. The first experiment highlights the super-resolution
property of PNO by training on small synthetic maps and evaluating on large real-world maps from
the Moving AI 2D city dataset (Sturtevant, 2012). In remaining experiments, we showcase the
scalability of our approach in 3D iGibson environments (Shen et al., 2021) and 4DOF manipulators.

We compare our method against the FMM (Sethian, 1996) which solves the Eikonal PDE numerically,
state-of-the-art neural motion planners: VIN (Tamar et al., 2016), NTFields (Ni & Qureshi, 2023a),
P-NTFields Ni & Qureshi (2023b), IEF2D (Li et al., 2022), and two operator learning architectures:
FNO (Li et al., 2021), DAFNO (Liu et al., 2023) (Baselines details in Appendix D).

Table 1: Comparison of planning on learned value
functions on the Grid World dataset at various sizes.

Avg. success
rate ↑

Avg. computation
time (ms) ↓

82 162 282 82 162 282

VIN 99.6 99.3 96.7 3.9 22.7 82.1
IEF2D 99.7 98.3 97.0 13.3 14.8 20.4
PNO (ours) 99.9 97.3 99.3 2.6 4.7 6.4

Grid-world environments. In the first ex-
periment, we consider a small Grid-World
dataset as in Tamar et al. (2016), consisting
of 5k training maps and 1k testing maps. We
compare with VIN and IEF2D. For planning,
we perform gradient descent on the test-map
value function predictions from VIN, IEF2D,
and PNO. In Table 1, we present the computa-
tion time needed for value function prediction
and the success rate of reaching the goal. We
can see that all baselines perform quite well, with PNO outperforming both methods on the larger
28× 28 sized mazes while achieving an improved computational time. In Appendix D, we give an
example of the learned value function and corresponding map for the PNO. The superior performance
of PNO on the Grid World dataset is primarily due to the fact PNO satisfies the triangle inequality
and guarantees obstacle avoidance where as both VIN and IEF2D lack such properties.

Ablation study: Moving AI 2D city maps. To highlight the advantage of reformulating motion
planning as an operator learning problem in continuous function space, we demonstrate that our
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PNO architecture can be trained with a coarse resolution and deployed at a finer super-resolution
on the Moving AI 2D real-world city maps (see Fig. 1). For training, we use a synthetic map
dataset generated at 64× 64 resolution (See Appendix D.3). We then evaluate the super-resolution
performance of our method in comparison with two operator learning architectures in Table 2. These
results constitute an ablation study of the obstacle encoding and Deepnorm components of our PNO
model (see Fig. 2). In particular, DAFNO and PNO outperform FNO on the synthetic and real-world
datasets, highlighting the importance of explicitly encoding the obstacle geometry into the network
structure. Furthermore, we see the effect of the Deepnorm layer as PNO generalizes better compared
to DAFNO, particularly in the unseen real-world city dataset achieving a 50% reduction in L2 error.
In the third column of Table 2, we see the computational speedup at scale of the PNO architecture. In
particular, the SDF generation significantly slows DAFNO and we achieve almost 10× speedup over
the fast marching method (FMM). Lastly, we provide an example of navigating New York City in Fig.
1 where we showcase that the FNO is able to learn the SDF accurately (relative L2 test error of 0.064)
and that the corresponding value function is accurately computed at all three super-resolution scales.

Table 2: Average L2 value function error of FNO, DAFNO, and PNO versus FMM.

Avg. relative L2 error ↓ Avg. computation time ↓
Map Size 642 2562 5122 10242 642 2562 5122 10242 642 2562 5122 10242

Synthetic obstacle dataset
(100 maps, in-distribution)

MovingAI real-world city dataset
(90 maps, out-of-distribution)

Synthetic + real-world city
(1000 maps, ms)

FNO (PNO w/o Deepnorm
and obstacle encoding) 0.1996 0.5771 0.6214 0.6405 — 0.7188 0.7519 0.7692 1.62 1.64 1.66 2.28

DAFNO (PNO w/o
Deepnorm layer) 0.0985 0.3868 0.4060 0.4120 — 0.4090 0.4259 0.4315 3.10 4.97 11.44 49.82

PNO (ours) 0.1136 0.1197 0.1190 0.1194 — 0.1748 0.1885 0.2034 5.57 5.31 6.33 8.31
PNO w/ PINN loss (ours) 0.0698 0.0865 0.0869 0.0872 — 0.1675 0.1761 0.1842 5.57 5.31 6.33 8.31
FMM (numerical solver) — — — — — — — — 0.34 5.96 25.66 104.64

FMM NTFields P-NTFields PNO (ours)
Bolton environment

FMM NTFields P-NTFields PNO (ours)
Samuel environment

Average
relative

L2 error ↓

Average
computation time

(100 inst, ms) ↓
Bolton Environment

PNO (ours) 0.0771 33.60
NTFields 0.2529 56.07
P-NTFields 0.3008 39.86
FMM — 101.05

Samuel Environment
PNO (ours) 0.2413 31.67
NTFields 0.3119 58.04
P-NTFields 0.3230 38.81
FMM — 180.07

Figure 3: (left) Comparison of 3D value function approximations for two iGibson environments (best
L2 PNO, sliced at z = 0). (right) On top, we show example paths in the Bolton environment. On the
bottom table, we present a aggregate quantitative comparison. See Appendix D.4 for more examples.
3D planning in iGibson environments. In this experiment, we consider planning in 3D real-world
iGibson environments (details in Appendix D.4). For comparison, we train NTFields and P-NTFields
models on the Bolton and Samuel environments which takes approximately 3 hours to train per
environment (NVIDIA A100 GPU). To validate the generalization of our PNO, we ensure that our
training dataset contains no instances of the Samuel environment, but does contain instances of the
Bolton environment with different start goal positions than during testing. Generating our dataset
takes approximately 1 hour and the model training takes 4 hours (NVIDIA A100 GPU).

Fig. 3 shows slices of the predicted value functions, where all four methods capture the general
structure. On the top right, we showcase an example of planning. NTFields, due to local minima, is
unable to guarantee valid paths whereas P-NTFields, PNO and FMM reach the goal successfully. In
table of Fig. 3, we see that, quantitatively, our method performs well at predicting the exact value
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Star t Goal

Figure 4: Planning with PNO generated value functions for a 4-DOF manipulator around two
obstacles. The top and bottom rows show two separate examples with end-effector trajectory
snapshots demonstrating motion from a start (blue dot) to a goal configuration (green dot).

function of FMM. Furthermore, P-NTFields does not accurately capture the exact magnitude of
the FMM value function, but generates smooth paths due to effectively capturing the overall shape
and thus the gradient direction. Finally, all the neural network approaches perform faster then the
numerical solver achieving speedups of 2× (NTFields) and 3× (PNO, P-NTFields) over FMM.

Planning with 4 DOF Manipulator. We further highlight the efficacy of the PNO design by planning
with a 4-DOF robotic manipulator. In particular, the PNO architecture learns a mapping from a 4
dimensional C-space representation of the binary occupancy grid to the corresponding value function.
We learn on a grid of size 174 generating 40 maps with 10 randomized goal positions for training
and 10 maps with 10 randomized goal positions for testing. The PNO achieves a 0.027 L2 relative
training error and a 0.041 L2 relative testing error (Details in Appendix D.5.) We show two examples
of corresponding paths computed with classical gradient descent in Fig. 4. Furthermore, we showcase
slices of the value function in Fig. 10 in Appendix D.5.

5 LEARNED OPERATOR VALUE FUNCTIONS AS NEURAL HEURISTICS

Although one can plan on the learned value functions directly, they may exhibit local minima due to
approximation error. To address this challenge, we capitalize on the rich set of classical planning
algorithms by employing our learned value function as a neural heuristic. Typically, motion planners
such as A∗ use the Euclidean norm as a heuristic as it is both fast to compute and guarantees an
optimal path. However, the Euclidean norm ignores the geometry of the obstacles and thus regions
surrounding obstacles can require extensive exploration before an optimal path is found. Accordingly,
we propose using the learned value functions from PNO as an alternative heuristic to the Euclidean
norm. We prove that our heuristic is ϵ−consistent and showcase the advantage numerically, achieving
a 33% decrease in the number of explored nodes compared to the Euclidean norm.

We begin by showing that PNO value function is an ϵ-consistent heuristic, which is a sufficient
property for the A∗ algorithm to compute an ϵ-optimal path (Likhachev et al., 2003).
Definition 1. Let V (x, g) be the value function with goal position g. A heuristic function h(x) :
X → R is said to admissible if h(x) ≤ V (x, g) for any x ∈ X . It is said to be consistent if h(x) ≤
V (x,y) + h(y). Furthermore, for any ϵ > 1, a heuristic is ϵ-consistent if h(x) ≤ ϵV (x,y) + h(y).
Lemma 1 (ϵ-consistency of neural heuristic). Let Assumption 1 hold and let Fc be the cost function
space satisfying Assumption 2. Let ϵNO be the neural operator approximation error as in (9). Then,
V̂ (x), generated from the neural operator is an ϵ-consistent heuristic with:

ϵ = max
{x,y∈S|x̸=y}

1 + 2ϵNO/V (x,y) . (17)

Further, if one is interested in a neural operator satisfying a specific ϵ−consistency for ϵ > 1, then
the neural operator must have error no worse than:

ϵNO ≤ min
{x,y∈S|x̸=y}

(ϵ− 1)/V (x,y) . (18)

In continuous space, it is likely that ϵ → ∞ in Lemma 1. However, motion planning algorithms, such
as A∗, discretize the space yielding ϵ < ∞. Further, in Lemma 1, it is impossible to identify the
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true approximation error ϵNO. Thus, we introduce a second, practical improvement. Our key idea
is to "erode" the obstacles (as in Fig. 5) with the intuition the neural operator applied to the eroded
environment is more likely to be an under-approximation to the true value function. This encourages
admissibility which can improve the paths generated under the heuristic (Pearl, 1984). To conduct the
erosion, we remove the outermost layer from each obstacle (Serra, 1983) and repeat this operation
several times depending on the environment size. Formally, this can be expressed as increasing the
safe space as S̃ ⊃ S , where S̃ is the safe set after erosion and then computing the cost as in (11) with
S̃. The following result guarantees that our eroded PNO heuristic does not harm the ϵ-consistency.
Lemma 2 (Eroded heuristic is "more" consistent). Let Assumptions 1, 2 hold. For any ϵNO > 0,
let Ψ̂(c), Ψ̂(c̃) be the learned solutions to (7) satisfying Theorem 1 with ϵNO according to costs c, c̃
defined in (11) with S, S̃ respectively. Let ϵ and ϵ̃ be the ϵ−consistent value functions generated by
operators Ψ̂(c) and Ψ̂(c̃) with ϵNO error as in Lemma 1. Then, ϵ ≥ ϵ̃.

To ensure we do not significantly underestimate the value function, we combine our heuristic with the
Euclidean norm via h(x) = max{∥x− g∥, Ψ̂(c̃(x))} while preserving ϵ-consistency. We evaluate
the impact of our PNO heuristic on the Moving AI lab city maps. For planning, we use A∗ with
our PNO estimated value function as the heuristic. In Table 3, we see that the PNO heuristic with
erosion achieves near optimal paths while expanding 33% fewer nodes compared to the Euclidean
norm heuristic. Furthermore, note that without erosion, the PNO heuristic generates sub-optimal
paths (Ablation study in Appendix E). Lastly, in Fig. 5, we highlight a single example of planning
where the PNO heuristic yields an optimal path while expanding fewer nodes.

Table 3: Comparison of heuristics for A∗ against classical RRT and RRT∗ over 2D maps. The number
of eroded layers is 12, 14, and 18 for 2562 , 5122, and 10242, respectively.

Avg. path length ↓ ϵ suboptimality
estimate ↓

Avg. number of
nodes expanded ↓

Avg. computational
time (50 inst., s) ↓

Map size (2D) 2562 5122 10242 2562 5122 10242 2562 5122 10242 2562 5122 10242

A* - Euclidean norm 144.05 311.21 605.14 1.000 1.000 1.000 3310 14850 59965 0.186 0.868 3.606
A* - PNO (ours) w Erosion 144.05 311.72 608.54 1.000 1.000 1.000 2024 9869 41394 0.136 0.684 2.759
A* - PNO (ours) w/o Erosion 144.88 315.25 614.40 1.005 1.013 1.015 1757 8882 39438 0.121 0.587 2.703
RRT 191.98 418.61 800.31 1.333 1.345 1.322 - - - 0.014 0.045 0.066
RRT* 177.29 403.56 783.83 1.231 1.297 1.295 - - - 0.120 0.600 2.71

Euclidean norm PNO value w/o erosion PNO value w erosion

Figure 5: Path planning using various heuristics on the Moving AI Shanghai city map. Each example
on the left showcases the A∗ planning under the corresponding heuristic given on the right. The
nodes expanded are in orange, the start in red, the goal in green, and the path in blue.

6 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We reformulated the motion planning problem as an Eikonal PDE and focused on learning its solution
operator. To learn the operator, we developed the Planning Neural Operator (PNO) which is (i)
resolution invariant, (ii) does not require retraining in new environments, and (iii) generalizes across
goal positions. We evaluated our architecture on the 2D MovingAI city dataset and the 3D iGibson
building dataset, showcasing super-resolution value function prediction while achieving speedups
of 10× over a numerical PDE solver. Lastly, we proved that our value function predictions can be
used as ϵ-consistent heuristics for motion planning algorithms, and demonstrated a 33% decrease in
expanded nodes in the A∗ algorithm compared to planning with a Euclidean norm heuristic.

In the future, we plan to extend PNO. For example, our heuristic is computed once without updates
during planning. However, it is possible to introduce dynamic heuristic evaluation as PNO exhibits
fast forward inference time. In addition, we aim to extend the PNO formulation to include the
physical constraints of the robot dynamics. Lastly, we considered cost functions with uniform step
penalties. An exciting extension would be to train PNO in environments with non-uniform costs.
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APPENDIX

A PROOFS OF LEMMAS AND THEOREMS

A.1 PROOF OF THEOREM 1

Proof. We show Ψ is a continuous operator in L∞ and then invoke Theorem 2 noting that Fc is
compact by Assumptions 2 and the Arzelá Ascoli theorem. Since, Ψ is the viscosity solution, it
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satisfies the comparison principle (Katzourakis, 2014, Theorem 1). Thus, let c1, c2 ∈ Fc such that
c1 ≤ c2. Then, via the comparison principle, Ψ(c1) ≤ Ψ(c2). Furthermore, by the Archimedean
property, we can find a real number λ > 0 such that λc1 ≥ c2. A simple choice for such a λ
is λ = supx∈X ( c2c1 )(x). Then we have that λΨ(c1) ≥ Ψ(c2) again by the comparison principle.
Finally, using substitution, Cauchy Schwartz, and then substitution again, we obtain

∥Ψ(c2)−Ψ(c1)∥L∞ ≤ ∥(λ− 1)Ψ(c1)∥L∞

≤
(
sup
x∈X

(
c2 − c1

c1

)
(x)

)
∥Ψ(c1)∥L∞

≤ θvθc∥c2 − c1∥L∞ , (19)
where θv is the diameter of the value function space Fv. Thus Ψ, Fc satisfy the requirements of
Theorem 2 completing the result.

A.2 PROOF OF LEMMA 1

Proof. Let h∗(x) = Ψ(c)(x) be the optimal value function. The optimal value function is consistent,
namely for any x,y ∈ X , we have h∗(x)−h∗(y) ≤ V ∗(x,y). Now, for any ϵNO, there exists some
Ψ̂(c) satisfying Theorem 1 such that ∥Ψ(c)− Ψ̂(c)∥ < ϵNO for any x,y ∈ X . Then, we have

h(x)− h(y) ≤ h∗(x)− h∗(y) + 2ϵNO

≤ V ∗(x,y) + 2ϵNO . (20)
To ensure, that (20) is ≤ ϵV ∗(x,y) for every x,y, we can choose ϵNO ≤

min
{x,y∈X|x̸=y}

(ϵ− 1)V ∗(x,y)

2
. Likewise, the smallest ϵ achieved is ϵ ≥ max

{x,y∈X|x ̸=y}
1 +

2ϵNO

V ∗(x,y)
.

A.3 PROOF OF LEMMA 2

Proof. Let V ∗(x,y) and Ṽ ∗(x,y) be the optimal value functions for c, c̃ respectively. Then,
V ∗ ≥ Ṽ ∗ by definition of c, c̃. Let ϵ(c), ϵ(c̃) be the minimum ϵ2 satisfying Lemma 1, (20) for
c, c̃ respectively. Explicitly

ϵ(c) = max
{x,y∈X|x ̸=y}

V ∗(x, y) + 2ϵNO

V ∗(x, y)
, (21)

ϵ(c̃) = max
{x,y∈X|x ̸=y}

Ṽ ∗(x, y) + 2ϵNO

V ∗(x, y)
. (22)

Now, noting that Ṽ ∗ ≤ V ∗ everywhere yields ϵ(c̃) ≤ ϵ(c).

B NEURAL OPERATORS

B.1 NONLOCAL NEURAL OPERATORS

Formally, we provide a review of the nonlocal neural operator (NNO) as in Lanthaler et al. (2023)
under the architecture of the general neural operator first introduced in Kovachki et al. (2023).
Such a framework is useful as it encompasses almost all neural operator architectures including
the well known DeepONet Lu et al. (2021) and FNO Li et al. (2021). Let X ⊂ Rn be a bounded
domain and define the following function spaces consisting of continuous functions Fc ⊂ C0(X ;R),
Fv ⊂ C0(X ;R). Then, a NNO is defined as a mapping Ψ̂ : Fc(X : R) → Fv(X ;R) which can be
written in the compositional form Ψ̂ = Q ◦ LL ◦ · · · ◦ L1 ◦ R consisting of a lifting layer R, hidden
layers Ll, l = 1, ..., L, and a projection layer Q. Given a channel dimension dc, the lifting layer R is
given by

R : Fc(X ;R) → Fs(X ;Rdc), c(x) 7→ R(c(x),x) , (23)

where Fs(X ;Rdc) is a Banach space for the hidden layers and R : R × X → Rdc is a learnable
neural network acting between finite dimensional Euclidean spaces. For l = 1, ..., L each hidden
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layer Ll is of the form
(Llv)(x) := σ (Wlv(x) + bl + (Klv)(x)) (24)

where weights Wl ∈ Rdc×dc and biases bl ∈ Rdc are learnable parameters, σ : R → R is a smooth,
infinitely differentiable activation function that acts component wise on inputs and Kl is the nonlocal
operator given by

(Klv)(x) =

∫
X
Kl(x,y)v(y)dy (25)

where Kl(x,y) is the kernel containing learnable parameters given in various forms. For example,
in the FNO architecture, Kl(x,y) = Kl(x − y), Kl(x) =

∑
|k|≤kmax

P̂l,ke
ikx is a trigonometric

polynomial (Fourier) approximation with kmax nodes and P̂l,k is a matrix of complex, learnable
parameters P̂l,k ∈ Cdc×dc . Note that (24) is almost a traditional feed-forward neural network except
for the kernel term (25), that is nonlocal - it depends on points over the entire domain rather then just
x. Lastly, the projection layer Q is defined as

Q : Fs(X ;Rdc) → Fv(X ;R), s(x) 7→ Q(s(x),y) , (26)
where Q is a finite dimensional neural network from Rdc × X → R yielding the final value of the
operator (Ψ̂c) (c ∈ Fc) at the point x ∈ X .
Theorem 2 (Neural operator approximation theorem Lanthaler et al. (2023, Theorem 2.1)). Let
X ⊂ Rn be a bounded domain with Lipschitz boundary and X its respective closure. Let Ψ :
C0(X ;R) → C0(X ;R) be a continuous operator, where C0(X ;R) is the set of continuous functions
X → R. Then for any ϵ > 0 and some compact set K ⊂ C0(X ;R), there exists a nonlocal neural
operator Ψ̂ : K ⊂ C0(X ;R) → C0(X ;R) such that

sup
c∈K

∥Ψ(c)− Ψ̂(c)∥∞ ≤ ϵ. (27)

B.2 DOMAIN-AGNOSTIC FOURIER NEURAL OPERATORS

Domain-Agnostic Fourier Neural Operators (DAFNO), first introduced in Liu et al. (2023), augment
the FNO with a mask such that FNO’s can be applied on non rectangular geometries despite the
requirement of Fourier transforms to operate on periodic domains. For the motion planning problem,
as above, consider partitioning X into two domains S for the safeset and X\S as the unsafe set.
Furthermore, if X is not a box, we consider the smallest rectangle T that contains X (see Liu et al.
(2023, Fig. 1)) and add all the padded points in T\X to the unsafe set. Then, consider the following
two characteristic functions that encode the geometry

χ(x) :=

{
1 x ∈ S
0 x ∈ X\S , (28a)

χ̃(x) := tanh(βdS(x))(χ(x)− 0.5) + 0.5 , (28b)
where β ∈ R is a chosen hyper parameter parameter and dS is the sign distance function (SDF) given
by

dS(x) =

{
infy∈∂XS ∥x− y∥ if x ∈ S
− infy∈∂XS ∥x− y∥ if x /∈ XS .

(29)

The idea is that χ masks the geometry, setting the domain to 0 where obstacles are and χ̃ is a smoothed
version to ensure that the encoded geometry is continuous satisfying Theorem 2. Then, the DAFNO
architecture uses the following instantiation of the kernel in (25) as

(Klv)(x) =

∫
T
χ̃(x)χ̃(y)Kl(x− y)(v(y)− v(x))dy , (30)

where Kl(x − y) is defined as the trigonometric polynomials as in the original FNO architecture.
Lastly, we mention the subtraction of v(x)− v(y) in (30), was introduced in You et al. (2022a) and
has shown superior performance over FNOs.

C REVIEW OF VISCOSITY SOLUTIONS FOR PDES

Definition 2 (Viscosity solution (Katzourakis, 2014)). A bounded, uniformly continuous function
V : X → R is called a viscosity solution of the Eikonal initial-value Problem (7) provided

17



Published as a conference paper at ICLR 2025

i. V (x) = c(x) when x ∈ G
ii. Given any function v ∈ C1(X ), the following two hold

a. If V − v has a local maximum at the point x ∈ X , then,

∥∇v(x)∥ − c(x) ≤ 0. (31)

b. If V − v has a local minimum at the point x ∈ X , then,

∥∇v(x)∥ − c(x) ≥ 0 . (32)

We briefly mention that the existence of viscosity solutions can be shown in two ways - namely
Perron’s method via the maximum principle or via the vanishing viscosity method. We briefly detail
the latter result and refer the reader to Evans (2010) for more formal analysis.

Lemma 3. (Vanishing viscosity method Evans (2010)) Following the definition above, let Ψ be the
viscosity solution to the given problem (7). Then, let Ψϵ be the classical solution to the following
viscous regularized Eikonal problem

∥∇(Ψϵc)(x)∥+ ϵv∆(Ψϵc)(x) =c(x) , ∀c ∈ Fc,x ∈ X , (33a)
Ψ(g) =c(g) , ∀g ∈ G . (33b)

Then, Ψϵ uniformly converges to Ψ as ϵv → 0.

D LEARNING VALUE FUNCTIONS: EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

D.1 A BRIEF REVIEW OF THE BASELINE METHODS

To evaluate our models, we aimed to compare across a series of different modern motion planning
methodologies. In particularly, we consider perspectives across reinforcement like methods such
as VIN and IEF, operator learning architectures such as FNO and DAFNO, and physics informed
approaches in NTFields and P-NTFields. In this section, we use a series of different GPUs for training
and testing. To clarify, all the 2D experiments use a NVIDIA 3090 Ti. The 3D iGibson experiments
use a NVIDIA A100 for data-generation and training, while we employ a NVIDIA 4060 during
testing.

• Value Iteration Networks (VIN) Tamar et al. (2016) VIN attempts to learn value functions
by approximating the value iteration (VI) algorithm. To do so, they introduce two neural
network components to their algorithm. The first model, deemed the VI module, takes in
the previous value function estimate and the current reward observed to provide an estimate
on the current value function. In implementation, for 2D experiments, the VI module is a
classical CNN. They then combine this module a planning module that takes in the value
function and current state and passes this through an attention mechanism coupled with a
classical NN to achieve the best path direction.

• Implicit Environment Functions (IEF) Li et al. (2022) IN IEF2D/IEF3D, the authors
take the classical neural implicit network architecture, which represents 2D and 3D scenes
via their signed distance functions, and instead learns to represent the scene by obtaining
distances between samples start goal pairs. As such their methodology is continuous, and
is able to learn trajectories by analyzing these distance functions. However, to generalize
across environment’s, the authors first project the scene to a latent space via a auto-encoder
and then learn a neural implicit function in that latent space.

• Fourier Neural Operators (FNO) Li et al. (2021) Like PNO, FNOs learn the solution of
operator mappings across continuous function spaces. In particular, FNOs project the input
map into a high dimensional latent space, of which an FFT is then performed. From here,
the FNO learns a weight matrix in frequency space that multiplies with the encoded input
before performing an IFFT and then reprojecting back to the desired output resolution. They
have been extremely successful in learning operator solutions specifically in the context of
weather (See Kurth et al. (2023)).

• Domain-Agnostic Fourier Neural Operators (DAFNO) Liu et al. (2023) DAFNO, an
extension of FNO, maintains the same network structure as an FNO, but additionally
encodes the domain geometry into the kernel calculation in frequency space. That is,
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DAFNO, multiplies the encoded input in frequency space by an additional mask containing
the domain geometry. This approach, taking advantage of the fact that Fourier transforms
only operate on periodic grids, enable users to learn FNO approximations on non-uniform
geometries.

• Neural Time Fields (NTFields) Ni & Qureshi (2023a) NTFields is similar to the operator
learning architectures in that the network aims to learn an operator, but specifically they
constrain that operator to be the solution operator of an Eikonal PDE. In particular, they
re-parameterize the value function as a factorized Eikonal equation V (x, g) = ∥x−g∥

τ(x,g) where
τ is learned via a neural network. They then perform training with a physics informed
loss based on the satisfaction of the Eikonal PDE enabling NTFields to learn paths without
training data. As such NTFields is able to generalize to high dimensional environments, but
is constrained as it needs retraining for each new environment geometry.

• P-Neural Time Fields (P-NTFields) Ni & Qureshi (2023b) P-NTFields is an extension
to NTFields where the authors propose a progressive learning approach. Particularly, they
modify the model training of NTFields by linearly increasing the speed field as the model is
trained for more epochs. This helps eliminate the local minima in the value function and
thus better captures the geometry of the environment. However, like NTFields, P-NTFields
is a physics informed approach and therefore is limited as it also requires retraining for each
new environment geometry.

D.2 SMALL-SCALE 2D MAZE EXPERIMENTS

Table 4: Model parameters and performance met-
rics for PNO over the GridWorld dataset. The PNO
for 8× 8 was smaller than that trained for 16× 16
and 28× 28.

Map size
PNO model
number of
parameters

Avg. L2

relative error
training data

Avg. L2

relative error
test data

8× 8 238816 0.019 0.022
16× 16 690432 0.031 0.035
28× 28 690432 0.027 0.045

To compare with state of the art value function
predictors such as VIN and IEF2D, we explore
the efficacy of a PNO on the small-scale 2D
Grid-world experiments in Tamar et al. (2016).
We used the same dataset used to test the VIN
framework of which IEF2D also employs.

The parameters and the relative errors of our
model are presented in Table 4. To develop
our model, it took approximately 40 minutes of
training on a NVIDIA RTX 3090 Ti GPU.
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Figure 6: Two examples of PNO planning on 28× 28 Grid-world dataset. Planning is done on the
value function generated by PNO using classical gradient descent.

D.3 MOVINGAI CITY EXPERIMENTS

In this experiment, we highlight the super-resolution capabilities of the planning operator architecture.
To do so, we created a custom 64× 64 resolution dataset (will be publicly available) and trained the
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neural operator on the custom dataset. Note, this dataset consists of just objects on a rectangular grid
as shown in the example in Fig. 2. Furthermore, our dataset did not include any of the city maps,
but the synthetic object maps closely resemble a similar structure as the city maps. Our architecture
consisted of 157808 parameters and we achieved an L2 relative error of 0.1 for both training and
testing taking approximately 10 minutes for training on a NVIDIA 3090 Ti GPU.

To showcase our the benefit of both the obstacle encoding and inductive bias, we perform comparisons
across a wide set of operator learning benchmarks. We briefly summarize both the training and
testing error in Table 1. Note all the testing sets in each category are the same maps structurally, just
scaled to the target resolution via averaging. For the in-distribution obstacle dataset, we consider 1k
maps with 10 different goals each for training. and 10 maps with 10 different goals each for testing.
For the MovingAI city experiments, we include all 30 city maps with 3 goals each for testing. An
example of the MovingAI city result along with comparison errors is given in Fig. 8 for a snapshot
of Paris. Additionally, we show the effect of the PINN loss in Fig. 7 which certainly improves the
gradient’s residuals. Furthermore, to all models were trained and tested using the PyKonal FMM for
the value function and a classic numerical solver for the SDF was used for DAFNO. For PNO, the
FNO generated SDF was trained over 1k instances of the 64× 64 dataset (achieving an relative L2

error of 0.068) and is also performing super-resolution when applied.

Lastly, for the same calculations, we compute the speedup of the neural operator at various resolutions
on a NVIDIA 3090 Ti GPU (ML models) and utilize the extremely powerful AMD Ryzen 9 7950X
CPU for the numerical solvers. In Table 5, we break down exactly the calculation time of both the
SDFs as well as the value function where on small scaled maps, it is clear the numerical solver
performs best; however, as the scale increases, we can see that the operator architectures do not lose
much computation expenditure while the numerical solvers scale poorly.

Table 5: Computation times for super-resolution calculations average over 1000 instances on the
Moving AI lab 2D dataset (642 indicates 64× 64). The DAFNO SDF was calculated using the SciPy
numerical solver. The numerical solver used for FMM is via Pykonal.

Avg. computation time
signed distance function(1000 inst, ms) ↓

Avg. computation time
value function(1000 inst, ms) ↓

Avg. computation time
total function(1000 inst, ms) ↓

Map size 642 2562 5122 10242 642 2562 5122 10242 642 2562 5122 10242

FNO — — — — 1.6168 1.6356 1.6563 2.281 1.6168 1.6356 1.6563 2.281
DAFNO 0.1734 1.9806 8.4207 46.1614 2.9232 2.9889 3.024 3.6626 3.0966 4.9695 11.4447 49.825
PNO 1.6168 1.6356 1.6563 2.281 3.954 3.6729 4.6735 6.0332 5.5708 5.3085 6.3298 8.3142
Numerical
solver (FMM) — — — — 0.3454 5.9612 25.6555 104.6184 0.3454 5.9612 25.6555 104.6184

D.4 3D IGIBSON DATASET

For our 3D experiments, we use the iGibson Dataset Shen et al. (2021). The dataset consists of only
10 maps which are not sufficient to train an accurate model. As such, we perform two augmentations
for generating sufficient training data. First, we consider different training instances by rotating
the different maps across about the z-axis by 90 degrees creating four versions of the same map.
Additionally, we augmented the dataset with 32 maps from the HouseExpo dataset Li et al. (2020).
The maps were extruded to form 3D maps. Then, for each map, we randomly sampled 5 start goal
pairs leading to a total dataset size of 360. We then performed a 90/10 train test split explicitly
ensuring that the training dataset did not contain any Samuel environments. Further, no start goal
positions in the evaluation dataset in Fig. 3 were seen during training. Fig 3 shows the best performing
L2 example of our result. For completeness, we also present the worst performing example of our
approach in Figure 9. Our model consisted of 418528 parameters of which we achieved a 0.08
L2 relative training error and a 0.19 L2 relative testing error for learning the value function. The
computational calculations for value function generation were computed using a NVIDIA 4060 GPU.

D.5 PLANNING WITH A 4 DOF MANIPULATOR

For our 4-DOF Manipulator experiments, we generate our dataset by randomly positioning the
obstacles in the workspace of the robot. We choose the OpenManipulator-X (RM-X52-TNM) to
test our methods. For training our PNO, we generate the binary occupancy map in the configuration
space of the robot of the size 174. We use 40 maps with 10 randomly generated goal positions each
to generate our training data. The test set used 10 maps with 10 randomly generated goals each. To
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generate the binary occupancy map, we use the checkCollision function available in MATLAB for
each state in the state space of the manipulator. Our model consisted of 55132 parameters. In terms
pf performance, we achieved a 0.027 L2 relative training error and a 0.041 L2 relative testing error.
The model was trained and tested on a NVIDIA 3090Ti GPU. The plan generated by our method
was simulated and rendered on MATLAB. 10 shows a slice of of the value functions generated in
the configuration space with Joint 3 and Joint 4 fixed at 0◦. The Binary occupancy map generation
took 5 hrs for 50 maps with randomly positioned obstacles. For training, FMM was used and the data
generation took 40s while the model took 20 min to be trained over 200 epochs.

E EMPLOYING OPERATOR LEARNED VALUE FUNCTIONS AS NEURAL HEURISTICS:
EXPERIMENT DETAILS AND ADDITIONAL RESULTS.

For this experiment, we trained directly on the city maps at 2562, 5122 and 10242 resolutions. All of
the training and testing in this section was completed using an NVIDIA A100. To build our dataset,
we considered the 30 city maps provided by the MovingAI city dataset along with 10 goals for each
map. Additionally, we randomly erode each of the maps between 1 and 30 layers to generate more
data and to help the operator infer the effect of erosion. Again, for each eroded map, we use 10 goals.

Table 6: Model parameters and performance met-
rics for the PNO models trained and deployed as
neural heuristics.

Map size
PNO model
number of
parameters

Avg. L2

relative error
training data

Avg. L2

relative error
test data

256× 256 26029 0.051 0.065
512× 512 102048 0.049 0.055
1024× 1024 161920 0.058 0.053

For employment as a heuristic, FMM was in-
sufficient for generating training data. This is
due the fact A* algorithm works using a set of
discrete control inputs to find a path with the
shortest distance. However, the value function
generated by the Eikonal equation (FMM) repre-
sents a value function for a continuous control in-
put space. Using this directly as a heuristic does
not yield an accurate value function since such
a function largely under approximates the cost-
to-go function for the shortest distance problem
with discrete control space. In order to alleviate this issue we train our neural operator on value
functions generated using the Dijkstra Algorithm that gives the value function at every node for the
same set of control inputs. This required a data generation time of 8 hours for the 1024 × 1024
city maps (3 hours and 25 minutes for the 512× 512 and 256× 256 maps), but only needed to be
complete once, offline. We provde the full model sizes as well as the relative errors in Table 6.

In addition to our results in Section 5, we also conducted an analysis on the effect of erosion. Fig. 11
shows that as the amount of layers eroded increases, the path improves at the cost of expanding more
nodes as the heuristic which is as expected given that a fully eroded map yields the Euclidean norm.
Perhaps future work can explore different eroding methods for improving the admissibility of the
value function.
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Figure 7: Comparison of PNO with and without the hybrid PINN loss. The left image shows the
value function and corresponding error while the right image shows the gradient norm ∥∇V ∥ and the
corresponding gradient norm error. The example given is in the test set from the 64× 64 synthetic
maps and the red dot indicates the goal position. For this example, the model was trained with
ξ = 0.05 in (15).
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Figure 8: Example of various operator architectures on a Paris 1024 × 1024 map. The red dot
indicates the target goal position.
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Figure 9: A second example of comparison between NTFields, P-NTFields, FMM and PNO unseen
during training. This example is the worst-performing example for the PNO in terms of L2 loss.
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Figure 10: Value function approximation by PNO in 4D C-Space for examples shown in Fig. 4. The
value functions are visualized as slices, with Joint 3 and Joint 4 fixed at an angle of 0◦.
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Figure 11: Effect of erosion on various parameters
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