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Safe Control Synthesis with Uncertain Dynamics and Constraints
Kehan Long1 Vikas Dhiman2 Melvin Leok1 Jorge Cortés1 Nikolay Atanasov1

Abstract—This paper considers safe control synthesis for
dynamical systems with either probabilistic or worst-case un-
certainty in both the dynamics model and the safety constraints.
We formulate novel probabilistic and robust (worst-case) control
Lyapunov function (CLF) and control barrier function (CBF)
constraints that take into account the effect of uncertainty
in either case. We show that either the probabilistic or the
robust (worst-case) formulation leads to a second-order cone
program (SOCP), which enables efficient safe and stable control
synthesis. We evaluate our approach in PyBullet simulations of
an autonomous robot navigating in unknown environments and
compare the performance with a baseline CLF-CBF quadratic
programming approach.

I. INTRODUCTION

AUtonomous robotic systems are increasingly employed
in warehouse and home automation, transportation, and

security applications. A crucial aspect of successfully deploy-
ing such systems is the satisfaction of safety and stability
requirements, even in the presence of uncertainty in the
system model or constraints. The notion of safety in the
context of program correctness was first introduced in the
1970’s [1]. Around the same time, Artstein [2] introduced
control Lyapunov functions (CLFs) to enforce stability in the
context of nonlinear system control. The seminal work of
Sontag [3] established a universal formula for constructing
feedback control laws that stabilize nonlinear systems. In the
2000’s, barrier certificates were proposed to formally prove the
safety of closed-loop nonlinear and hybrid systems [4], [5].
Control barrier functions (CBFs) were developed to support
task-independent safe control synthesis, serving as a barrier
certificate for a closed-loop nonlinear system [6].

A key observation is that, for control-affine systems, the
CLF and CBF conditions are linear in the control input,
allowing a formulation of safe and stable control synthesis as
a quadratic program (QP) [7]–[9]. CLF-CBF-QP techniques
have been successfully employed in a variety systems, includ-
ing aerial robots [10], walking robots [11], and automotive
systems [12]. Most existing work, however, assumes complete
knowledge of the system dynamics and control barrier func-
tions. In reality, the dynamics model and safety constraints are
obtained using noisy sensor data and simplifying assumptions,
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leading to uncertainty and errors that should be captured when
ensuring safety and stability.

Capturing system-model and barrier-function estimation er-
rors impacts the formulation of CLF and CBF constraints, and
no longer give rise to QPs. Our main contribution is to show
that such uncertainty-aware stability and safety constraints can
still be formulated as convex constraints under two different
models of uncertainty: probabilistic and worst-case. To capture
probabilistic uncertainty, we specifically consider Gaussian
Process (GP) regression as an example approach for modeling
a probability distribution over a function space. When the
estimated barrier function and system dynamics are described
by a GP, we aim to ensure probabilistic safety and stability up
to a user-specified risk tolerance. We compute the distribution
of the CLF and CBF constraints, and use Cantelli’s inequality
[13] to bound the computed means with a margin dependent
on the variances and the desired risk-tolerance. The control
input appears linearly in the mean and quadratically in the
variance of the CLF and CBF constraints. This allows us
to restate the probabilistic constraints as second-order cone
constraints, leading to a second-order cone program (SOCP),
which is convex and can be solved efficiently online.

When worst-case error bounds on the system dynamics,
barrier function and its gradient are given, we formulate
a robust safe control synthesis problem. Under worst-case
disturbances, we show that the input appears both linearly and
within a norm term in the CLF and CBF constraints. Like
the probabilistic formulation, the original QP problem can be
reformulated as a convex SOCP for safe control synthesis.

We demonstrate our safe control synthesis techniques in
mobile robot navigation simulations. We consider a robot
tasked to follow a desired path in an unknown environment,
relying on online noisy obstacle sensing and offline dynamic
model estimation to ensure safety and stability. We show
that both the probabilistic and the robust CLF-CBF-SOCP
formulation allows the robot to safely track the deisred path.

In summary, we make the following contributions. First, we
formulate novel probabilistic safety and stability constraints
by considering stochastic uncertainty in the barrier functions
and system dynamics. Second, we formulate novel robust
safety and stability constraints by considering worst-case error
bounds in the barrier functions and system dynamics. Finally,
we show that either the probabilistic or the worst-case formu-
lations lead to a (convex) SOCP, enabling efficient synthesis
of safe and stable control.

II. RELATED WORK

This section reviews recent works on safe control synthesis
that address uncertainty due to unmodeled dynamics, input
disturbances, and barrier function estimation.

Jankovic [14] considers worst-case disturbance bounds on
the system dynamics and proposes robust CBF formulations.
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Eman et al. [15] utilize convex hulls to model disturbances in
a CBF-based safety framework. Clark [16] considers stochas-
tic control systems with incomplete information and derives
sufficient conditions for ensuring safety on average. Nguyen
and Sreenath [17] formulate a robust CLF-CBF QP by in-
troducing robust constraints to guarantee stability and safety
under model uncertainty. Hewing et al. [18] present a model
predictive control (MPC) approach that integrates a nominal
system with a residual part modeled as a GP. Compared to
our formulation, this approach enables optimizing the control
performance over a longer future horizon but requires time
discretization and convexification of the safety constraints.
In contrast, our formulations operate in continuous time and
handle general safe set descriptions. Ahmadi et al. [19]
introduce a conditional value-at-risk (CVaR) barrier function
to ensure safety for systems with stochastic uncertainty. The
approach guarantees safety with high probability even for
worst-case scenarios but the computation cost is high and
the formulation is restricted to linear systems. Our approach
enables efficient control synthesis for general control-affine
systems. Another line of research formulates safe control
synthesis as trajectory optimization. Alcan and Kyrki [20]
employ differential dynamics programming (DDP) to enforce
safety under additive uncertainty. In [21], the DDP idea is
combined with CBF to introduce a barrier state formulation
for safety of discrete-time systems.

Input-to-state safety (ISSf) was introduced in [22] to handle
input disturbances and was used in [23] to enlarge a safe set
by modifying a CBF. Alan et al. [24] introduce a tunable ISSf-
CBF for safe control synthesis while reducing conservatism.
Cosner et al. in [25] introduce measurement-robust CBFs
to account for uncertainty in state estimation and conduct
experiments on a Segway.

Srinivasan et al. [26] estimate barrier functions online
using a Support Vector Machine and solve a CLF-CBF QP
to generate safe control inputs. Zhang et al. [27] construct
robust output CBFs from safe expert demonstrations while
considering worst-case error bounds in the measurement map
and system dynamics.

This paper unifies and extends our prior work [28], [29]
by considering safe control synthesis with uncertainty in the
system dynamics and the barrier function simultaneously and
studying two separate cases of probabilistic and worst-case
uncertainty. In contrast, [28] only considered probabilistic
uncertainty in the dynamics using Gaussian process regression,
while [29] only considered worst-case error bounds in the
barrier function. We show that in either case the safe control
synthesis problem is a convex SOCP, which enables efficient
safe and stable control synthesis online.

III. PROBLEM FORMULATION

Consider a robot with dynamics model:

ẋ = f(x) + g(x)u = [f(x) g(x)] ·
[

1
u

]
=∆ F (x)u, (1)

where x ∈ X ⊆ Rn is the robot state and u ∈ U = {1}×Rm
is the control input.1 We assume f : Rn 7→ Rn and g : Rn 7→
Rn×m are continuously differentiable.

Definition III.1. A continuously differentiable function V :
Rn 7→ R≥0 is a control Lyapunov function (CLF) for the
system (1) if there exists a class K function αV such that:

inf
u∈U

CLC(x,u) ≤ 0, ∀x ∈ X , (2)

where the control Lyapunov condition (CLC) is:

CLC(x,u) =∆ LfV (x) + LgV (x)u + αV (V (x))

= [∇xV (x)]>F (x)u + αV (V (x)).
(3)

A CLF V may be used to encode a variety of control ob-
jectives, including path following [29], adaptive cruise control
[12], and bipedal robot walking [11].

To define safety requirements for the control objective,
consider a continuously differentiable function h : Rn 7→ R,
which implicitly defines a (closed) safe set of system states
S =∆ {x ∈ X | h(x) ≥ 0}. The following definition is a useful
tool to ensure that S is forward invariant, i.e., the robot state
remains in S throughout its evolution.

Definition III.2. A continuously differentiable function h :
Rn 7→ R is a control barrier function (CBF) on X ⊆ Rn for
(1) if there exists an extended class K∞ function αh with:

sup
u∈U

CBC(x,u) ≥ 0, ∀x ∈ X , (4)

where the control barrier condition (CBC) is:

CBC(x,u) =∆ Lfh(x) + Lgh(x)u + αh(h(x))

= [∇xh(x)]>F (x)u + αh(h(x)).
(5)

According to [7], [9], any Lipschitz-continuous controller
k : X 7→ U that satisfies CBC(x,k(x)) ≥ 0 for all x ∈ X
renders the set S forward invariant for the system (1).

A. Safety and Stability with Known System Dynamics and
Barrier Function

When the system dynamics F (x) and barrier function h(x)
are known, a safe controller can be synthesized by combining
CLF and CBF constraints in a quadratic program:

min
u∈U,δ∈R

‖L(x)>(u− k̃(x))‖2 + λδ2,

s.t. CLC(x,u) ≤ δ, CBC(x,u) ≥ 0.
(6)

The term k̃(x) is a baseline controller and may be used
to specify additional control requirements, such as desirable
velocity or orientation. This term may be set to k̃(x) ≡ e1 if
minimum control effort is the main objective. The term L(x)
is a weighting matrix penalizing deviation from the baseline
controller. The term δ ≥ 0 is a slack variable that relaxes the
CLF constraints to ensure the feasibility of the QP, controlled

1Notation: We denote by In ∈ Rn×n the identity matrix and ∂A the
boundary of a set A ⊂ Rn. For a vector x and a matrix X, we use
‖x‖ and ‖X‖ to denote the Euclidean norm and the spectral norm. We use
vec(X) ∈ Rnm to denote the vectorization of X ∈ Rn×m, obtained by
stacking its columns. We denote by ∇ the gradient and LfV = ∇V · f
the Lie derivative of a differentiable function V along a vector field f . We
use ⊗ to denote the Kronecker product and GP(µ(x),K(x,x′)) to denote
a Gaussian Process distribution with mean function µ(x) and covariance
function K(x,x′). A continuous function α : [0, a) → [0,∞) is of class
K if it is strictly increasing and α(0) = 0, and it is of class K and
limr→∞ α(r) =∞.
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by the scaling factor λ > 0. The QP formulation in (6)
modifies the baseline controller k̃(x) online to ensure safety
and stability via the CBF and CLF constraints.

We focus on enforcing safety and stability for the control-
affine system in (1) when the system dynamics F (x) and the
barrier function h(x) are unknown and need to be estimated
from data. We present an approach for estimating the system
dynamics and barrier functions from data in Sec.VI-A and
Sec.VI-B, respectively. Our main goal is to develop techniques
for safe and stable control synthesis with the estimated F (x)
and h(x). We consider two scenarios, depending on whether
probabilistic or worst-case error descriptions of the dynamics
and barrier functions are available.

B. Safety and Stability with Gaussian Process Distributed
System Dynamics and Barrier Function

When the system dynamics and barrier functions can be
described as GPs, we consider the following probabilistic
control synthesis problem.

Problem 1 (Safety and stability under Gaussian uncer-
tainty). Given an estimated distribution on the unknown
system dynamics vec(F (x)) ∼ GP(vec(F̃ (x)),KF (x,x′))
and an estimated distribution on the barrier function h(x) ∼
GP(h̃(x),Kh(x,x′)), design a feedback controller k such
that, for each x ∈ X :

P(CLC(x,k(x)) ≤ δ) ≥ p, P(CBC(x,k(x)) ≥ 0) ≥ p,

where p ∈ (0, 1) is a user-specified risk tolerance.

C. Safety and Stability with Worst-Case Uncertainty in System
Dynamics and Barrier Function

Many robotic systems require instead the guarantee that
safety and stability hold under all possible error realizations,
which motivates us to also consider the following problem.

Problem 2 (Safety and stability under worst-case uncer-
tainty). Given estimated system dynamics F̃ (x) with known
error bound eF (x),

‖F (x)− F̃ (x)‖ ≤ eF (x), ∀x ∈ X , (7)

and estimated barrier function h̃(x) and gradient ∇h̃(x) with
known error bounds eh(x) and e∇h(x), i.e., for all x ∈ X ,

|h(x)− h̃(x)| ≤ eh(x), ‖∇h(x)−∇h̃(x)‖ ≤ e∇h(x), (8)

design a feedback controller k such that, for each x ∈ X :

CLC(x,k(x)) ≤ δ, CBC(x,k(x)) ≥ 0.

IV. PROBABILISTIC SAFE CONTROL

This section presents our solution to Problem 1. Inspired
by the design (6) when the dynamics and the barrier function
are known, we formulate the control synthesis problem via the
following optimization problem:

min
u∈U,δ∈R

‖L(x)>(u− k̃(x))‖2 + λδ2, (9)

s.t. P(CLC(x,u) ≤ δ) ≥ p, P(CBC(x,u) ≥ 0) ≥ p.

The uncertainty in F and h affects the linearity in u of the
CLC and CBC conditions in the constraints of (9), making
this optimization problem no longer a QP. Here, we justify
that nevertheless the optimization can be solved efficiently. To
show this, we start by analyzing the distributions of CBC(x,u)
and CLC(x,u) in detail.

Proposition IV.1 (Mean and Variance for CBC). As-
sume h is a CBF with a linear function αh, i.e.,
αh(z) = a · z for a ∈ R≥0. Given independent distri-
butions h(x) ∼ GP(h̃(x),Kh(x,x′)) and vec(F (x)) ∼
GP(vec(F̃ (x)),KF (x,x′)), the mean and variance of
CBC(x,u) satisfy

E[CBC(x,u)] = E[p(x)]>u (10a)

Var[CBC(x,u)] = u>Var[p(x)]u, (10b)

where p(x) := F>(x)[∇xh(x)] +
[
ah(x) 0>m

]> ∈ Rm+1

and E[p(x)], Var[p(x)] are computed in (16).

Proof. The control barrier condition can be written as:

CBC(x,u) = [∇xh(x)]>f(x) + [∇xh(x)]>g(x)u + ah(x)

=
[
[∇xh(x)]>F (x)+

[
ah(x) 0>m

] ]
u = p(x)>u.

Note that ∇xh(x) is a GP because the gradient of a GP with
differentiable mean function and twice-differentiable covari-
ance function is also a GP, cf. [28, Lemma 6],

∇xh(x) ∼ GP(∇xh̃(x),Hx,x′Kh(x,x′)),

where Hx,x′Kh(x,x′) =
[
∂2Kh(x,x′)
∂xi,∂x′

j

]n,n
i=1,j=1

is finite for all

(x,x′) ∈ R2n. Since vec(ABC) = (C> ⊗ A)vec(B) for
appropriately sized matrices A, B, C, we can write

Var(F (x)u) = Var((u> ⊗ In)vec(F (x)))

= (u> ⊗ In)KF (x,x)(u⊗ In).
(11)

For brevity, we let KF := KF (x,x′) and Kh := Kh(x,x′)
and p1 = F>(x)[∇xh(x)]. The term [∇xh(x)]>F (x)u
is an inner product of two independent GPs, ∇xh(x)
and F (x)u. Thus, using [28, Lemma 5], (11), and that
Cov(∇xh(x), F (x)u) = 0, p>1 u corresponds to a distribution
with mean and variance:

E[p>1 u] = [∇xh̃(x)]>F̃ (x)u,

Var[p>1 u] = [∇xh̃(x)]>(u> ⊗ In)KF

(u⊗ In)∇xh̃(x) + u>F̃>(x)Hx,x′KhF̃ (x)u.

(12)

To factorize u from the variance expression, we apply the
property (A⊗B)(C⊗D) = AC⊗BD two times,

(u⊗ In)[∇xh̃(x)] = (u⊗ In)(1⊗ [∇xh̃(x)])

= u⊗∇xh̃(x) = (Im+1 ⊗∇xh̃(x))u.
(13)

By substituting (13) in (12), we can factorize out u to get,

Var[p1] = (Im+1 ⊗ [∇xh̃(x)]>)KF (Im+1 ⊗∇xh̃(x))

+ F̃>(x)Hx,x′KhF̃ (x). (14)

Next, we write Cov(h(x),p>1 u) using [28, Lemma 5] and
Cov(h(x), F (x)u) = 0,

Cov(h(x),p>1 u) = Cov(h(x),∇xh(x))F̃ (x)u
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=
[
[∇xKh]>f̃(x) [∇xKh]>g̃(x)

]
u. (15)

Using (12), (14) and (15), we write the mean and variance,

E[p(x)] = [∇xh̃(x)]>F̃ (x) + a[h̃(x) 0>m]>

Var[p(x)] = F̃>(x)Hx,x′KhF̃ (x)

+ (Im+1 ⊗∇xh̃(x)>)KF (Im+1 ⊗∇xh̃(x)) (16)

+

[
a2Kh + 2a[∇xKh]>f(x) a[∇xKh]>g(x)

ag(x)>[∇xKh] 0m×m

]
,

from which the statement follows.

Next, we describe the distribution of CLC(x,u).

Proposition IV.2 (Gaussian distribution for CLC). Given
the distribution vec(F (x)) ∼ GP(vec(F̃ (x)),KF (x,x′)), the
CLC(x,u) is Gaussian with mean and variance:

E[CLC(x,u)]=E[q(x)]>u (17a)

Var[CLC(x,u)]=u>Var[q(x)]u, (17b)

where q(x) := F>(x)[∇xV (x)] + [αV (V (x)) 0>m]> ∈
Rm+1 and E[q(x)], Var[q(x)] are computed in (18).

Proof. We can write the control Lyapunov condition as
CLC(x,u) = [∇xV (x)]>F (x)u+αV (V (x)) = q>(x)u. We
use the Kronecker product property vec(ABC) = (C> ⊗
A)vec(B) to rewrite first term in q(x) as:

[∇xV (x)]>F (x) = (Im+1 ⊗ [∇xV (x)]>)vec(F (x)).

Since [∇xV (x)], αV (V (x)) are known and deterministic and
vec(F (x)) ∼ GP(vec(F̃ (x)),KF (x,x′)), we can express the
distribution of q(x) as follows:

E[q(x)]= F̃>(x)[∇xV (x)] + [αV (V (x)) 0>m]> (18)

Var[q(x)]=(Im+1 ⊗ [∇xV (x)]>)KF (Im+1 ⊗ [∇xV (x)]).

The result follows from plugging (18) into CLC(x,u).

We use the mean and variance of CBC(x,u) and CLC(x,u)
obtained above to approximate the probabilistic safety and
stability constraints in (9).

Proposition IV.3 (Probabilistic CLF-CBF SOCP). Given a
user-specified risk tolerance p ∈ [0, 1), let c(p) =

√
p

1−p . The
optimization problem (9) can be formulated as the following
second-order cone program:

min
u∈U,δ∈R,l∈R

l

s.t. δ − E[q(x)]>u ≥ c(p)
√
u>Var[q(x)]u,

E[p(x)]>u ≥ c(p)
√
u>Var[p(x)]u,

l + 1 ≥
√
‖2L(x)>(u− k̃(x))‖2 + (2

√
λδ)2 + (l − 1)2

(19)
where p, q are defined in Propositions IV.1 and IV.2, resp.

Proof. To deal with the probabilistic constraints in (9), we
employ Cantelli’s inequality [13]. For any scalar γ ≥ 0,

P(CBC(x,u) ≥ E[CBC(x,u))]− γ|x,u) ≥

1− Var[CBC(x,u)]

Var[CBC(x,u)] + γ2
.

Given this inequality, and since we want P(CBC(x,u) ≥ 0) ≥
p, we choose γ = E[CBC(x,u)] and require the lower bound
to be greater than or equal to p, i.e., 1− Var[CBC(x,u)]

Var[CBC(x,u)]+γ2 ≥ p.
The equation can be rearranged into

E[CBC(x,u)] = γ ≥
√

p

1− p
Var[CBC(x,u)],

which corresponds to the safety constraint in (19).
Next, we show that this is a second-order cone (SOC)

constraint. By (10), given that h̃, ∇h̃ and F̃ are known and
deterministic, the expectation E[CBC(x,u)] = E[p(x)]>u is
affine in u. Since Var[p(x)] is positive semi-definite,√

Var[CBC(x,u)] =
√

u>Var[p(x)]u = ‖D(x)u‖ (20)

where D(x)>D(x) = Var[p(x)]. Acccording to [30], the
safety constraint in (19) is a valid SOC constraint.

For stability, the CLC condition can be constructed using a
similar approach with Cantelli’s inequality, resulting in (19).
By (17), we know that the expectation is affine in u and the
variance is quadratic in terms of u, similar to (20). This shows
that the CLC condition is also a valid SOC constraint.

Our last step is to reformulate the minimization of the
objective function as a linear objective with an SOC constraint,
resulting in the standard SOCP in (19). We introduce a new
variable l so that the problem in (9) is equivalent to

min
u∈U,δ∈R,l∈R

l

s.t. P(CLC(x,u) ≤ δ) ≥ p, P(CBC(x,u) ≥ 0) ≥ p,
‖L(x)>(u− k̃(x))‖2 + λδ2 ≤ l. (21)

The last constraint in (21) corresponds to a rotated second-
order cone, Qnrot := {(xr, yr, zr) ∈ Rn+2 | ‖xr‖2 ≤
yrzr, yr ≥ 0, zr ≥ 0}, which can be converted into a standard
SOC constraint [30],

∥∥∥[2xr yr − zr
]>∥∥∥ ≤ yr + zr. Let

yr = l, zr = 1 and consider the constraint ‖L(x)>(u −
k̃(x))‖2 + λδ2 ≤ l. Multiplying both sides by 4 and adding
(l − 1)2, makes the constraint equivalent to

4‖L(x)>(u− k̃(x))‖2 + 4λδ2 + (l − 1)2 ≤ (l + 1)2.

Taking a square root on both sides, we end up with√
‖2L(x)>(u− k̃(x))‖2 + (2

√
λδ)2 + (l − 1)2 ≤ l + 1,

which is equivalent to the third constraint in (19).

Remark IV.4 (Effects of risk-tolerance p and variance).
When p = 0, the probabilistic CLF-CBF-SOCP (19) reduces
to the original CLF-CBF-QP (6). As p and/or Var[p(x)],
Var[q(x)] increase, the feasible region of (19) gets smaller,
and the optimal value worsens, cf. Fig. 1b for an illustration.

V. ROBUST SAFE CONTROL

In this section, we develop a solution to Problem 2. Let F̃
denote the estimated system dynamics, h̃, ∇h̃ the estimated
barrier function and its gradient, and let eF : Rn×(m+1) 7→
R≥0, eh : R 7→ R≥0, and e∇h : Rn 7→ R≥0 be associated
error bounds. For convenience, for each x ∈ X , we denote
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DF (x) := F (x) − F̃ (x), dh(x) := h(x) − h̃(x) and
d∇h(x) := ∇h(x)−∇h̃(x). By (7) and (8), we have

‖DF (x)‖ ≤ eF (x), |dh(x)| ≤ eh(x), ‖d∇h(x)‖ ≤ e∇h(x).
(22)

Using this notation, we can rewrite CBC(x,u) as

CBC(x,u) = [∇h(x)]>F (x)u + αh(h(x))

= [∇h̃(x)]>F̃ (x)u + d>∇h(x)F̃ (x)u + [∇h̃(x)]>DF (x)u

+ d>∇h(x)DF (x)u + αh(h̃(x) + dh(x)).

Let p̃(x) := F̃>(x)∇h̃(x). We group the error term in
the expression for CBC(x,u) in the variable dCBC(x,u) :=
CBC(x,u)− p̃(x)>u. Thus, CBC(x,u) ≥ 0 is satisfied if

min
DF ,d∇h,dh

CBC(x,u) = p̃(x)>u + min
DF ,d∇h,dh

dCBC(x,u) ≥ 0.

Similarly, let q̃(x) := F̃>(x)∇V (x) + [αV (V (x)) 0>m]>

and dCLC(x,u) := [∇V (x)]>DF (x)u, a robust version of the
stability constraint CLC(x,u) ≤ δ can be written as:

max
DF

CLC(x,u) = q̃(x)>u + max
DF

dCLC(x,u) ≤ δ. (23)

This leads us to the following robust reformulation of the
original control synthesis problem in (6),

min
u∈U,δ∈R,l∈R

l

s.t. q̃(x)>u + max
DF

dCLC(x,u) ≤ δ

p̃(x)>u + min
DF ,dh,d∇h

dCBC(x,u) ≥ 0

l + 1 ≥
√
‖2L(x)>(u− k̃(x))‖2 + (2

√
λδ)2 + (l − 1)2.

(24)
Note that we used the same approach as in the proof of
Proposition IV.3 to reformulate the original quadratic objective
with a linear objective plus a SOC constraint. The second
constraint in (24) requires solving minDF ,dh,d∇h

dCBC(x,u)
subject to (22). In general, this is a non-convex constrained
quadratic program which does not have a closed-form expres-
sion of the minimizer as a function of u. Instead, we make the
second constraint in (24) more conservative using the Cauchy-
Schwarz inequality, which leads to a convex SOCP, whose
optimal solution is guaranteed to be feasible for (24).

Proposition V.1 (Robust CLF-CBF SOCP). Let F̃ , h̃, ∇h̃
denote estimates of the system dynamics and barrier function,
with error bounds in (22). Then, the feasible set of the
following SOCP is included in the feasible set of (24):

min
u∈U,δ∈R,p∈R,q∈R,l∈R

l

s.t. δ − q̃(x)>u ≥ eF (x)‖∇V (x)‖‖u‖,
p ≥ e∇h(x)‖F̃ (x)u‖,

q ≥
(
eF (x)‖∇h̃(x)‖+ e∇h(x)eF (x)

)
‖u‖,

[∇h̃(x)]>F̃ (x)u + αh(h̃(x)− eh(x)) ≥ p+ q,

l + 1 ≥
√
‖2L(x)>(u− k̃(x))‖2 + (2

√
λδ)2 + (l − 1)2

(25)

Proof. The stability constraint in (24) is reformulated using:

max
‖DF (x)‖≤eF (x)

dCLC(x,u) = eF (x)‖∇V (x)‖‖u‖.

For the safety constraint in (24), note that

min
DF ,dh,d∇h

dCBC(x,u)

= min
DF ,d∇h

(
d>∇h(x)F̃ (x)u + [∇h̃(x)]>DF (x)u+

d>∇h(x)DF (x)u
)

+ min
dh

αh(h̃(x) + dh(x)). (26)

Since eh(x) ≥ 0 and αh is an extended class K∞ function,

min
|dh(x)|≤eh(x)

αh(h̃(x) + dh(x))=αh(h̃(x)− eh(x)). (27)

Applying the Cauchy-Schwarz inequality on each term,

min
DF ,dh,d∇h

dCBC(x,u) ≥ −‖d∇h‖‖F̃ (x)u‖

− ‖∇h̃(x)‖‖DF (x)u‖ − ‖d∇h(x)‖‖DF (x)u‖
+ αh(h̃(x)− eh(x))

≥ −e∇h(x)‖F̃ (x)u‖ − eF (x)‖∇h̃(x)‖‖u‖−
e∇h(x)eF (x)‖u‖+ αh(h̃(x)− eh(x)).

In the last step, we minimized each term independently, so the
lower bound is not tight. We write the safety constraint as

e∇h(x)‖F̃ (x)u‖+ (eF (x)‖∇h̃(x)‖+ e∇h(x)eF (x))‖u‖
≤ [∇h̃(x)]>F̃ (x)u + αh(h̃(x)− eh(x)). (28)

Constraints of the form ‖Az−a‖+ ‖Bz− b‖ ≤ c>z can be
replaced by the set of constraints ‖Az−a‖ ≤ p, ‖Bz−b‖ ≤ q,
p+q ≤ c>z combined. Thus, (28) is equivalent to the second,
third, and fourth constraints in (25) together.

Remark V.2 (Effects of error bounds). If there are no errors
in either the dynamics or the barrier function (eF ≡ eh ≡
e∇h ≡ 0), then the robust CLF-CBF SOCP (25) reduces to a
CLF-CBF QP (6). If eF ≡ 0 while eh(x), e∇h(x) > 0, the
result in Proposition V.1 recovers [29, Proposition 2]. As the
error bounds eF , eh, e∇h increase, the feasible region of (25)
gets smaller and the optimal solution worsens. Also, note that
the choice of kernel function, KF (x,x) =

e2F (x)
c2(p) I(m+1)n,

reduces the inequality for stability in (19) to that in (25).

VI. EVALUATION

In this section, we present an approach to estimate the
unknown dynamics of a mobile robot, and construct CBF
constraints online. Then, we evaluate our safe control synthesis
using the estimated robot dynamics and CBFs in autonomous
navigation tasks in 10 simulated environments, containing
obstacles a priori unknown to the robot.

A. System Dynamics Estimation

We consider a Turtlebot robot simulated in the PyBullet
simulator [31] (see Fig. 1a). We first present a learning
approach to model the unknown dynamics of the TurtleBot
using training data collected from the PyBullet simulator. The
robot state and input are x := [x, y, µ]> ∈ R2 × [−π, π)
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(a) Pybullet Simulator (b) Probabilistic Trajectory

Fig. 1: (a) is the Pybullet simulation environment where we conduct our
experiments. (b) shows the results in a region of an environment, where
the probabilistic (p = 0.2, 0.4, 0.8, 0.99) controller and QP controller both
succeed. The ground-truth obstacle surface is shown in black while the
estimated obstacles is shown in orange.

and u := [1, v, ω]> ∈ {1} × R2, respectively. We collect
a dataset D = {t(i)0:N ,x

(i)
0:N ,u

(i)
0:N}Di=1 of D = 40000 state

sequences x
(i)
0:N obtained by applying random control inputs

u
(i)
0:N to the robot with initial condition x

(i)
0 at time intervals

of τ = 0.02 seconds. For each trajectory i, a constant control
input is applied for N = 5 time steps.

We employ a neural ODE network [32] to approximate the
unknown robot dynamics F with a neural network Fθ based
on the dataset D. A forward pass through the ODE network
is obtained using an ODE solver:

{x̃i1, x̃i2, · · · , x̃iN} = ODESolve(xi0, Fθ(·)ui, ti1, · · · , tiN ).

We use a loss function,

min
θ

D∑
i=1

N∑
j=1

`(x
(i)
j , x̃

(i)
j ),

s.t. ˙̃x(i)(t) = Fθ(x̃(i)(t))u(i)(t), x̃(i)(jτ) = x̃
(i)
j ,

u(i)(t) ≡ u
(i)
j for t ∈ [jτ, (j + 1)τ),

(29)

where `(x, x̃) = ‖[x, y, cosµ, sinµ]>−[x̃, ỹ, cos µ̃, sin µ̃]>‖2.
To update the weights θ, the gradient of the loss function is
back-propagated by solving another ODE with adjoint states
backwards in time. Please refer to [32] for details.

Gal and Ghahramani [33] showed that introducing dropout
layers in a neural network is approximately equivalent to
performing deep Gaussian Process regression. We use a 6-
layer fully-connected neural network with tanh activations and
800 neurons in each layer to model Fθ, and apply dropout
to each hidden layer with rate 0.05. Given a query state
x ∈ X , Monte-Carlo estimates of the predictive mean F̃θ(x)
and element-wise standard deviation Σ̃(x) of the dynamics are
obtained with T = 100 stochastic forward passes through the
dropout neural network model. We use F̃θ(x) for the mean of
system dynamics and KF (x,x) = diag(vec(Σ̃(x))2) for the
variance of the dynamics. To obtain worst-case error bounds
eF (x), we set eF (x) = ‖3.89Σ̃(x)‖ (99.99% confidence).

In our experiment, no external disturbances are added to
the system dynamics model. Given M = 5000 random-
sampled different state control sequences {xi,ui}Mi=1 as test
data, we consider the following test-time loss function, L =
1
M

∑M
i=1 `(F (xi)ui, F̃ (xi)ui). Our learned dynamics model

is quite accurate, and the average test loss is L = 0.0037.

TABLE I: Empirical SDF estimation error E and dropout-network SDF
estimation error averaged across 8 object instances under different LiDAR
measurement noise standard deviation σ.

LiDAR Noise σ SDF Empirical Error SDF Dropout Error
0.01 0.0173 0.0132
0.02 0.0288 0.0184
0.05 0.0463 0.0242

(a) Training data (b) Mean SDF (c) Variance (d) P(ϕ̃ ≤ 0) =
0.95

Fig. 2: Shape estimation with dropout neural network. (a) shows the training
data. (b) shows the estimated mean SDF results. The black heart curve shows
the ground-truth obstacle boundary, while colored regions are level-sets of
the SDF estimate. The white region denotes the estimated obstacle boundary.
The blue (resp. red) region denotes negative (resp. positive) signed distance.
In (c), the variance of the SDF estimate is shown. In (d), we plot the estimated
unsafe region with high probability, where P(ϕ̃ ≤ 0) = 0.95.

B. Online CBF Estimation

The robot is equipped with a LiDAR scanner with a 270◦

field of view, 200 rays per scan, 3 meter range, and zero-
mean Gaussian measurement noise with standard deviation
σ ∈ {0.01, 0.02, 0.05}. The LiDAR scans are used to estimate
the unsafe regions Oi in the environment and construct a CBF
constraint for each. We rely on the concept of signed distance
function (SDF) (e.g. Fig. 2b) to describe each Oi. The SDF
function ϕi : R2 7→ R of set Oi ⊆ R2 is

ϕi(y) :=

{
−d(y, ∂Oi), y ∈ Oi,
d(y, ∂Oi), y /∈ Oi,

(30)

where d denotes the Euclidean distance from a point y ∈ R2

and the set boundary ∂Oi. We employ incremental training
with replay memory (ITRM) [29, Sec. IV] to estimate an
SDF ϕi for each Oi from the LiDAR measurements. We use
a 4-layer fully-connected neural network with parameters θ
and dropout layers to yield ϕ̃i(y;θ) with dropout rate 0.05
applied to each 512-neuron hidden layer. Given y ∈ R2, we
obtain the predictive SDF mean ϕ̂i(y) and standard deviation
σ̂i(y) by Monte-Carlo estimation with T = 20 stochastic
forward passes through the dropout neural network model.
When the TurtleBot moves along a circle of radius 2 while
the object is placed at the center, we measure the accuracy
of the online SDF method using the empirical SDF error,
Ei = 1

m

∑m
j=1 |ϕ̂i(yj)|, where {yj}mj=1 are m = 500 points

uniformly sampled on the surface of the object. In Fig. 2, we
show the SDF estimation with measurement noise σ = 0.01.

Since we deal with system dynamics with relative degree
one, one can verify [34] that the SDF is a valid CBF. Let
z = [x, y] ∈ Z ⊂ R2 be the position part of x. To account for
the fact that the robot body is not a point mass, we subtract
the robot radius ρ = 0.177 from each SDF estimate when
defining each mean CBF: h̃i(x) = ϕ̃i(z;θ)− ρ. For variance
Kh(x,x) in Sec. IV, we set Ki

h(x,x) = σ̂2
i (z). We also

take ∇h̃i(x) = ∇ϕ̃i(z;θ) and compute Hx,x′Ki
h(x,x′) by

Monte-Carlo estimation using double back-propagation. We
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TABLE II: Success rate of the navigation tasks in 100 realizations (10
realizations for each of the 10 different environments) using the Probabilistic
CLF-CBF-SOCP, Robust CLF-CBF-SOCP, and the original CLF-CBF-QP
frameworks for different LiDAR measurement noise levels σ.

LiDAR
Noise σ

QP Success
Rate

Probabilistic Success Rate Robust
Success Ratep = 0.2 p = 0.4 p = 0.8

0.01 0.82 0.98 1.0 1.0 1.0
0.02 0.65 0.92 0.97 1.0 1.0
0.05 0.37 0.72 0.89 0.96 1.0

TABLE III: Fréchet distance between the reference path and the robot
trajectories generated by the Probabilistic CLF-CBF-SOCP, Robust CLF-
CBF-SOCP, and the CLF-CBF-QP controllers (smaller values indicate larger
trajectory similarity, the value in the parentheses indicates the success rates
while values without parentheses indicate the success rate is 1, and N/A
indicates the robot collides with obstacles in all 10 realizations).

Env QP Probabilistic Robust
p = 0.2 p = 0.4 p = 0.8

1 0.337 0.338 0.343 0.363 0.357
2 0.378 0.408 0.404 0.432 0.485
3 0.372 0.398 0.412 0.457 0.538
4 0.416 0.438 0.427 0.473 0.515
5 0.395 0.418 0.412 0.483 0.572
6 0.385 (0.8) 0.371 0.378 0.392 0.424
7 0.462 (0.5) 0.502 0.546 0.593 0.737
8 0.535 (0.2) 0.588 0.612 0.673 0.814
9 N/A 0.756 (0.8) 0.887 (0.9) 0.926 1.016
10 N/A 0.905 (0.4) 0.937 (0.8) 1.046 1.224

set the worst case error bounds eh(x), e∇h(x) in Sec. V as
the 99.99% confidence bounds of a Gaussian random variable
with standard deviation σ̂i(z). If the robot observes multiple
obstacles in the environment, we compute multiple CBFs
h̃i(x) and their corresponding uncertainty, and add multiple
CBCs to (6), (19), (25) for safe control synthesis.

C. Safe Navigation

Our main experiments demonstrate safe navigation and safe
trajectory tracking using the proposed probabilistic (19) and
robust (25) CLF-CBF-SOCP formulations, utilizing the dy-
namics estimates from Sec. VI.A and the online CBF estimates
from Sec. VI.B. To emphasize the importance of accounting
for estimation errors, we also implement the original CLF-
CBF-QP controller (6), which assumes the estimated barrier
functions and system dynamics are accurate (i.e., uses the
mean values from the dropout-network estimation as the true
values). In all three controllers, we set L(x) = diag([0, 10, 3])
and k̃(x) = [1, vmax, 0]> where vmax = 0.65 is the maximum
linear velocity for the TurtleBot. The remaining parameters
were λ = 1000, αV (V (x)) = 2V (x), and αh(hi(x)) = hi(x).

In the first set of experiments (Fig. 3a and Fig. 3b), we
demonstrate safe navigation to a goal point with a CLF candi-
date V (x) = (x−2)2 +(y−3)2. In Fig. 3a, when the LiDAR
noise level is low, the robot controlled by all three controllers
succeeds to reach the goal region and the SOCP formulations
are slightly more conservative than the QP formulation. In
Fig. 3b, the LiDAR noise level increases to σ = 0.02 and we
can observe major differences among the paths generated by
the three controllers. This is because the estimated variance
and error bounds of the barrier function and its gradient
increase with the increase of the LiDAR noise. The robot
controlled by the CLF-CBF-QP controller collides with an
obstacle, while the robot controlled by probabilistic or robust
SOCP controller succeeds in avoiding obstacles. Importantly,
the robot controlled by the robust SOCP controller switches

(a) Noise: σ = 0.01 (b) Noise: σ = 0.02

(c) Safe Trajectory Tracking

Fig. 3: Performance comparison among the three controllers. Ground-truth
obstacle surfaces are shown as black curves. The mean of the estimated
obstacles, obtained after the whole path is traversed by the probabilistic CLF-
CBF-SOCP controller are shown in different colors (red, green, orange, blue).
The trajectories generated by the probabilistic and robust CLF-CBF-SOCP
controllers are in red and blue, respectively, while the CLF-CBF-QP trajectory
is in green. The starting point is cyan and the goal region is a light-green
disk. The robot (purple disk in (b) and (c)), controlled by the CLF-CBF-
QP controller, collides with obstacles and does not reach the goal. In (a)
and (b), we compare the controller performance under different LiDAR noise
level for a same environment. In (a), the results are collected under LiDAR
measurement noise σ = 0.01. In (b), the results are collected under LiDAR
noise σ = 0.02. In (c), the trajectory tracking results of environment 8 is
shown and the reference path is shown in blue.

to bypass the round obstacle from the right because controller
cannot find a feasible path on the left with larger error bounds
on estimated barrier functions.

In the following set of experiments, we consider the problem
of safe trajectory tracking using the approach in [29, Sec. VI]
to construct a valid CLF V (x) for path following. In Table II,
we report the success rate of the trajectory tracking task using
the proposed formulations and the original QP framework
under different measurement noises. As the noise increases, the
success rate of the CLF-CBF-QP controller decreases rapidly,
while the success rate of the probabilistic framework with high
p and the robust framework stays high.

In Fig. 3c, we show one realization in environment 8
(with σ = 0.01), where the CLF-CBF-QP controller fails
to avoid obstacles because it does not consider the errors in
CBC(x,u), while the proposed frameworks guarantee safety.
When there is an obstacle near or on the reference path, the
robot controlled by the robust SOCP controller stays furthest
away, while the probabilistic SOCP controller also guarantees
the robot stays further away from the obstacles than the robot
controlled by the CLF-CBF-QP controller.

In Table III, we show quantitative results using the Fréchet
distance [29, Sec. VI] as the metric to measure trajectory
similarities. The distance value is computed by averaging the
successful realizations in each environment, and the LiDAR
noise is set to be σ = 0.02 in this set of experiments. We
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see that the robust CLF-CBF-SOCP controller is most conser-
vative as it has the largest Fréchet distance values while the
probabilistic CLF-CBF-SOCP controller is less conservative if
we set the user-specified risk tolerance p = 0.8. By lowering
the risk tolerance value (p = 0.2/0.4), the robot with the
probabilistic controller follows the reference path better while
facing a higher risk of collision. A qualitative result is shown
in Fig. 2b, where larger p values indicates higher probability of
being safe for the robot. The trajectory generated by the CLF-
CBF-QP controller has the smallest Fréchet distance values,
but fails in several environments.

Finally, to demonstrate the efficiency of the proposed for-
mulations, we compare the average time needed for solving
the QP, probabilistic SOCP, and robust SOCP formulations
per control synthesis along the trajectory tracking task. All
optimization problems are solved using the Embedded Conic
Solver in CVXPY [35] with an Intel i7 9700K CPU. The
time needed for solving one QP instance is 0.00863s while
the times needed for solving the proposed probabilistic and
robust SOCPs are 0.0109s and 0.0122s. As expected, our
SOCP formulations require slightly more time than the original
QP but are still suitable for online robot navigation.

VII. CONCLUSION

We considered the problem of enforcing safety and sta-
bility of unknown robot systems operating in unknown en-
vironments. We showed that accounting for either Gaussian
or worst-case error bounds in the system dynamics and
safety constraints leads to a novel CLF-CBF-SOCP formu-
lation for control synthesis. We validated our formulations
in autonomous navigation tasks, simulating a ground robot
in several unknown environments. Some drawbacks of our
formulations include that large model error bounds may lead
to infeasibility of the robust SOCP, and that the assumption
that system dynamics and barrier functions are GPs may not
be true in practice. Future work will implement the proposed
formulations on a real robot, consider object category pre-
training of the SDF neural network, and explore adaptive
techniques for safe control synthesis given varying uncertainty
levels and robot objectives.
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