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Abstract— This paper addresses the challenge of safe naviga-
tion for rigid-body mobile robots in dynamic environments. We
introduce an analytic approach to compute the distance between
a polygon and an ellipse, and employ it to construct a control
barrier function (CBF) for safe control synthesis. Existing CBF
design methods for mobile robot obstacle avoidance usually
assume point or circular robots, preventing their applicability
to more realistic robot body geometries. Our work enables CBF
designs that capture complex robot and obstacle shapes. We
demonstrate the effectiveness of our approach in simulations
highlighting real-time obstacle avoidance in constrained and
dynamic environments for mobile robots and 2-D robot arms.

I. INTRODUCTION

Obstacle avoidance in static and dynamic environments is
a central challenge for safe mobile robot autonomy.

At the planning level, several motion planning algorithms
have been developed to provide a feasible path that en-
sures obstacle avoidance, including prominent approaches
like A* [1], RRT* [2], and their variants [3], [4]. These
algorithms typically assume that a low-level tracking con-
troller can execute the planned path. However, in dynamic
environments where obstacles and conditions change rapidly,
reliance on such a controller can be limiting. A significant
contribution to the field was made by Khatib [5], who intro-
duced artificial potential fields to enable collision avoidance
during not only the motion planning stage but also the real-
time control of a mobile robot. Later, Rimon and Koditschek
[6] developed navigation functions, a particular form of
artificial potential functions that guarantees simultaneous
collision avoidance and stabilization to a goal configura-
tion. In recent years, research has delved into the domain
of trajectory generation and optimization, with innovative
algorithms proposed for quadrotor safe navigation [7]-[9]. In
parallel, the rise of learning-based approaches [10]-[12] has
added a new direction to the field, utilizing machine learning
to facilitate both planning and real-time obstacle avoidance.
Despite their promise, these methods often face challenges
in dynamic environments and in providing safety guarantees.

In the field of safe control synthesis, integrating control
Lyapunov functions (CLFs) and control barrier functions
(CBFs) into a quadratic program (QP) has proven to be a
reliable and efficient strategy for formulating safe stabilizing
controls across a wide array of robotic tasks [13]-[15]. While
CBF-based methodologies have been deployed for obstacle
avoidance [16]-[19], such strategies typically simplify the
robot as a point or circle and assume static environments

The authors are with the Contextual Robotics Institute, University of
California San Diego, La Jolla, CA 92093, USA (e-mails: {k3 long,
k2tran,mleok,natanasov}@ucsd.edu).

Melvin Leok

Nikolay Atanasov

when constructing CBFs for control synthesis. Some recent
advances have also explored the use of time-varying CBFs
to facilitate safe control in dynamic environments [20]-[22].
However, this concept has yet to be thoroughly investigated
in the context of obstacle avoidance for robots with complex
shapes. For the safe autonomy of robot arms, Koptev et al.
[23] introduced a neural network approach to approximate
the signed distance function of a robot arm and use it for safe
reactive control in dynamic environments. In [24], a CBF
construction formula is proposed for a robot arm with a static
and circular obstacle. Thirugnanam et al. [25] introduced
a discrete CBF constraint between polytopes and further
incorporated the constraint in a model predictive control
to enable safe navigation. The authors also extended the
formulation for continuous-time systems in [26] but the CBF
computation between polytopes is numerical, requiring a
duality-based formulation with non-smooth CBFs.
Notations: The sets of non-negative real and natural
numbers are denoted R>¢ and N. For N € N, [N] =
{1,2,... N}. The orientation of a 2D body is denoted by

0 < 0 < 27 for counter-clockwise rotation. We denote the
cosf —sinf

sinf cosf |’
The configuration of a 2D rigid-body is described by position
and orientation, and the space of the positions and orienta-
tions in 2D is called the special Euclidean group, denoted as
SE(2). Also, we use ||x|| to denote the L norm for a vector
x and ® to denote the Kronecker product. The gradient of
a differentiable function V' is denoted by VV, and its Lie
derivative along a vector field f by LV = VV - f. A
continuous function « : [0,a) — [0,00) is of class K if
it is strictly increasing and «(0) = 0. A continuous function
a : R — Ris of extended class K, if it is strictly increasing,
a(0) = 0, and lim,_,» «(r) = oco. Lastly, consider the body-
fixed frame of the ellipse £’. The signed distance function
(SDF) of the ellipse ¥¢ : R? — R is defined as

corresponding rotation matrix as R(f) =

' e’ p’), itp'efs
va(P) :{ —d(&',p), ifp' ¢,
where d is the Euclidean distance. In addition, || Ve (p')|| =
1 for all p’ except on the boundary of the ellipse and its
center of mass, the origin.

Contributions: (i) We present an analytic distance formula
in SE(2) for elliptical and polygonal objects, enabling
closed-form calculations for distance and its gradient. (ii)
We introduce a novel time-varying control barrier function,
specifically for rigid-body robots described by one or mul-
tiple SE(2) configurations. Its efficacy of ensuring safe



autonomy is demonstrated in ground robot navigation and
multi-link robot arm problems.

II. PROBLEM FORMULATION

Consider a robot with dynamics governed by a non-linear
control-affine system,

x = f(x) + 9(x)u, (1)

where x € X C R"™ is the robot state and u € R™ is the
control input. Assume that f : R" — R” and g : R" —
R™>™ are continuously differentiable functions. We assume
the robot operates in a 2D workspace with a state-dependent
shape S(x) C R%

We assume the R? workspace is partitioned into a closed
safe (free) region F(t) and an open unsafe region O(t)
such that F(t) N O(t) = 0 and R? = F(t) U O(t). We
assume the unsafe set O(t) is characterized by a collection
of dynamical elliptical obstacles with known rigid-body
motions, denoted as {€(q;(t), R(0:(t)), a;, b;)} Y. Here, q;
denotes the center of mass and R; denotes the rotation matrix
of the ellipse. In its body-fixed frame, a; and b; are the
lengths of the semi-axes of the ellipse along the z-axis and
y-axis, respectively.

Problem. Given a robot with shape S(x) governed by
dynamics (1) that can perfectly determine its state, the
objective is to stabilize the robot safely within a goal region
G C F(t) Vt > 0 such that S(x(t))NO(t) = 0 for all t > 0.

III. PRELIMINARIES

In this section, we review preliminaries on control Lya-
punov and barrier functions and discuss their use in synthe-
sizing a safe stabilizing controller for dynamics in (1).

A. Control Lyapunov Function

The notion of a control Lyapunov function (CLF) was
introduced in [27], [28] to verify the stabilizability of control-
affine systems (1). Specifically, a (exponentially stabilizing)
CLF V : X — R is defined as follows,

Definition III.1. A function V € C!(X,R) is a control
Lyapunov function (CLF) on X for system (1) if V(x) >
0,vx € X\ {0},V(0) =0, and it satisfies:
inf CLC(x,u) <0,
uer™
where CLC(x, u) := L,V (x)+ L,V (x)utay (V(x)) is the
control Lyapunov condition (CLC) defined for some class K
function avy .

Vx € X, )

B. Control Barrier Function

To facilitate safe control synthesis, we consider a time-
varying set C(t¢) defined as the super zero-level set of a
continuously differentiable function i : X X R>q +— R:

C(t):={xe X CR": h(x,t) > 0}. 3)

Safety of the system (1) can then be ensured by keeping the
state x within the safe set C(t).

Definition IIL.2. A function h : R® x R>¢ — R is a valid
time-varying control barrier function (CBF) on X C R" for
(1) if there exists an extended class K, function «j, with:

sup CBC(x,u,t) >0, V (x,t) € X X R>q, )
uel

where the control barrier condition (CBC) is:

CBC(x,u,t) := h(x,t) + ap (h(x,1))

h (5)
& g;’ t) + ah(h(xv t))

Suppose we are given a baseline feedback controller u =
k(x) for the control-affine systems (1), and we aim to ensure
the safety and stability of the system. By observing that both
the CLC and CBC constraints are affine in the control input
u, a quadratic program (QP) can be formulated for online
synthesis of a safe stabilizing controller for (1):

= Lsh(x,t) + Loh(x,t)u+

u(x) = argmin |ju— k(x)||* + \6?,
ueR™,5€R (6)

s.t. CLC(x,u) < 6,CBC(x,u,t) > 0,

where § > 0 denotes a slack variable that relaxes the CLF
constraints to ensure the feasibility of the QP, controlled by
the scaling factor A > 0.

IV. ANALYTIC DISTANCE BETWEEN ELLIPSE AND
POLYGON

In this section, we derive an analytic formula for comput-
ing the distance between a polygon and an ellipse, which
enables the formulation of CBFs to ensure safe autonomy.

We consider the mobile robot’s body S(x) to be described
as a polygon, denoted by P(q, R(0), {p:}M;"). Here, q
denotes the center of mass and R denotes the orientation in
the inertial frame. In its fixed-body frame, {p;} denotes the
vertices of the robot with line segments d; = pj;y1),, — Pi
fori=0,1,..., M — 1 where [-] is the M-modulus.

For convenience, denote £ and P as the bodies in the
inertial frame, and we assume their intersection is empty.
Now, denote £’ and P’ as the respective bodies in the body-
fixed frame of the elliptical obstacle. As a result, d(€,P) =
d(&’',P") by isometric transformation.

Furthermore, let p; be a vertex in the robot’s frame. Then
in the inertial frame, it becomes p; = q + Rf)i. In the
obstacle’s frame, it is

p;=R'(pi-q)=R'Rp;+R"(@G—q), (7

In short, {p;} are vertices in the robot’s frame, {p;} are
vertices in the inertial frame, and {p]} are vertices in the
obstacle’s frame. The distance function is

I L . r g
A&, P = ier[?v}ril] (&', dy), (8)

which computes the distance between the ellipse £’ and each
line segment d;. We write each segment as

() = (1= 7)P; + TP 1),,» ©)
for 7 € [0,1]. This further simplifies the function to

d(&',d}) = min d(&,1(7)). (10)
7€[0,1]



Now, there are essentially two groups of computations for
the distance in (10): one is the distance between the ellipse &’
and the endpoints of d;; the other is the distance between the
ellipse £ and the infinite line () for arbitrary 7 with the
caveat that the minimizing argument occurs at 7* € (0, 1).
The two computations are detailed in the procedures which
follow our next proposition.

Proposition IV.1. Ler £ be an ellipse and I be a line
segment in the frame of the ellipse. Denote T* as the
argument of the minimum in (10). Then, the distance

Ip; — pill, if T =0,
d((c,‘/,d;) - ||pfi+1]M - pfi+1]M”7 lfT* = 11
17(r) = LI i e (0,1),
1D
where pi’ and pli + 1]M’ are the points on the ellipse

closest to pi’ and pli + 1|M !, respectively. These points are
determined using Procedure 1. The terms l;(7*) and I;(7*)
(on the ellipse) are determined using Procedure 2.

Procedure 1. Let p’ = (p;,p,) be one of the endpoints
for the line segment d;. Recall that the ellipse is defined by
its semi-axes along z-axis and y-axis, denoted by a and b,
respectively. The points on the ellipse are parameterized by

y(t) = bsin(t),

for 0 < t < 2m. The goal is to determine the point
(z(t),y(t)) on the ellipse that is closest to the point p’, so it
is a minimization problem of the squared Euclidean distance:

d*(t) = (pl, — acos(t))® + (p}, — bsin(t))*. (13)

To find the minimum distance, we determine the critical
point(s) by solving for 0 = %dQ(t), which simplified to

z(t) = acos(t), (12)

0 = (b* —a?)costsint + apl, sint — bpy, cost.  (14)
Using single-variable optimization, we substitute
cost =, sint=+v1-—)}, (15)

and this yields bpj, A = V1 — X2((b* —a®) A+ ap),), which is
a quartic equation in . Furthermore, a monic quartic can be
derived, which gives the following simplified coefficients:

0= M +2mA% + (m? +n> —1)A2 —2mA —m?, (16)

where
b

2/ a !
m_pbe_CLQ? _pbe_ 2 (17)
From this point, the real root(s) of the equation can be solved
analytically following Cardano’s and Ferrari’s solution for
the quartic equations [29]. Let ¢ be the solution so that g’ =
(z(t),y(t)) is a point on the ellipse and is closest to p’.
Hence,

d(€',d;) = [lp’ — p'l| (18)
where p’ is either p; or p{i F]ar

Procedure 2. We compute the distance between the ellipse
&’ and the infinite line I;(7) whose minimizing point occurs

at 7* € (0,1). First, define the unit normal of the infinite

line as 1
f\/. d/ d/

i,y Yi,x

=

19)

Denote I(7*) as the point on the ellipse that is closest to the
I2(7*). In fact, this point [;(7*) must have a tangent line at
the ellipse which is parallel to I}; which means the normal
at (7*) is +n}. Therefore, we compute the point on the
ellipse up to a sign:

12/

U(r* + = 20
() = @0

where I. = diag(a, b). The correct sign is chosen when we
are looking at the sign of the constant C' in the line equation
Ax + By + C = 0 of I}. In particular,

C = —a]'p;. @1

If C >0, then I}(7*) = ”fn 7+ otherwise, if ¢ < 0, then

lr*) = Hfirr:’ll\ Finally, we determine [/(7*) on the line
segment d using projection:

1i(77) = pj + proja, (Li (") — py)- (22)

Here, we are done with Procedure 2.

Next, we compute the partial derivatives of d(£’,P’) with
respect to either (q, R), the configuration of the obstacle, or
(q,R), the configuration of the polygonal robot.

In general, both procedures above compute the distance
using the Euclidean norm between two unique points: one
point p’ on a line segment of the robot, and the other p’
on the ellipse. This is, in fact, equivalent to the SDF of the
ellipse evaluated at p’ by the uniqueness of these two points.
Therefore, let p’ = [;(7*) for some 0 < i < M, then

d(&',P") = pe(p) = e (li(17)).

Then, its gradient with respect to p’ is Ve (p’

(23)
p'—p’
) = oo
However, note that p’ is a point transformed from the
polygonal robot’s frame using (7), which depends on the
configurations of the elliptical obstacle and the robot. Hence
the partial derivatives can be computed as follows.

Proposition IV.2. Let &' and P’ be the elliptical obstacle
and polygonal robot, respectively, in the obstacle’s frame.
Let p’ and p' be determined from Proposition IV.1, then

od _ 8d od )

ad N
R VZZJE(P/) ® (Rp+(q—q)), (25)
ad od  ad

== (==, 22 ) =RVee(p), 26
- (aqz 8%) e (D) 6)
ad

TR N ®Pp). 27
£y (Vie(p') ® D) (27)

Furthermore, (25) and (27) are derivatives with respect to
the rotation matrices; one may compute the derivatives with



respect to the rotation angle as

ad [oRT -
= Vipe(p') " 20 (Rp+(q— q))]
I (28)
_ | 9d R
- ’[aR ae]’
r - - T
ad R ad OR.
==V NTIRT=p|l=tr|—=— |. (@9
o5~ Ve aep] r[aRao] @)

Following both propositions above, we compute the dis-
tance function

P(q,R,q,R) =d(E,P) =d(E",P) (30)

for the elliptical obstacle £(q,R,a,b) and the polygonal
robot P(q, R, {p:}).

V. POLYGON-SHAPED ROBOT SAFE NAVIGATION IN
DyYNAMIC ELLIPSE ENVIRONMENTS

In this section, using the distance formula in (30) and
assuming the known motion of the ellipse obstacles, we
derive TV-CBFs to ensure safety for polygon-shaped robots
operating in dynamic elliptical environments.

A. Time-Varying Control Barrier Function Constraints

We assume that there are a total of N elliptical obstacles
in the environment, each having a rigid-body motion with
linear velocity v; and angular velocity w; around its center
of mass. We define each time-varying CBF as

hi(X, t) = (I)(Qi(t)a Ri(t)a (iv R),

where @ is the collision function and q;(t) and R;(¢) denotes
the position and orientation of the i-th ellipse at time ¢.

Now, by utilizing the known motion of the ellipses with
linear and angular velocity v; and w;, we can express the
CBC condition as:

€2V

0%(q;, Ry, x) T
ax} Flxju+

IR, 00;

B. Ground-Robot Navigation

aq)(qiv Rl)
dq;

9

CBC;(x,u,t) := {

Suppose the robot has a polygonal shape with {p;}
denoting the vertices, and governed by unicycle kinematics,

v

w )
where v, w represent the robot linear and angular velocity,
respectively. The state and input are x := [z,y,0] T € R? x
[~7,7), u:= [v,w] " € R2 The CLF for the unicycle model
is defined as a quadratic form V(x) = (x —x*) T Q(x —x*),
where x* denotes the desired equilibrium and Q) is a positive-
definite matrix [30]. We define the goal region G as a disk

centered at the 2D position of the desired state x*, with a
radius 7.

x cos(@) 0
y| = |sin(0) O
0 0 1

(32)

w; + ap(®(q;, Ri,x)) > 0.

By writing the robot’s position as q = [z,y]" and its
orientation via the rotation matrix R(6), we write the shape

S(x) of the robot in terms of its state:
S(x) := conv{q + R(0)p;}

where P, denotes the vertices of the polygon and conv{-}
denotes the convex hull of points. With this definition, we
can derive the CBF for the polygon-shaped unicycle model,
as in (31).

(33)

C. K-joint Robot Arm Safe Stabilizing Control

In this section, we discuss methods for controlling a
2D K-joint robot arm in a dynamical ellipse environment
by utilizing our proposed CBF construction approach. For
such robots, the links are intrinsically interconnected due to
kinematic chaining. This means that controlling any one link
will influence the pose of all subsequent links.

The dynamics of the robot arm are captured by:

(34)
JT

0=uw,
where 8 = [01,0,,...,0k]" and w = [w1,ws, ..., wk
For the robot arm, each link has an associated 2D shape,
denoted as 5;(@), which depends on the state of the arm.
The overall shape of the robot arm, is given by the union of
these shapes S(0) = Ufil S;(0). For simplicity, we assume
each S; is a line segment.
For each link 4, its state in SE(2) consists of a posi-

tion q; = [xi,yi]Ti r; = xij_1 + L;cos (Z;—:l Hj) and

Yi = Yi—1 + Lisin (Z;Zl éj), and a rotation matrix f{i
corresponding to 0; := 22:1 9}. For simplicity, we suppose
r1 = 0 and y3 = 0O, and L; represents the length of
the i-th link. The robot state can also be represented as
multiple SFE(2) configurations corresponding to each link,
from (q1,Rq) to (qx, Rx). Additionally, we denote qx 1
as the end effector.

We define the CLF for the K-joint robot arm as V() =
(0—-60")TQ(0 — 6%), where Q is a positive-definite matrix,
and 0 is the desired joint states. The goal region G is
specified as a disk centered at the position of the end effector
corresponding to state 8, with a defined radius 7.

For safety assurance, the CBF is constructed using the
distance between the robot arm and elliptical obstacles:

hi(6) = min ®(qi, R, Gy, Ry). (35)

VI. EVALUATION

In this section, we show the efficacy of our proposed CBF
construction techniques using simulation examples, focusing
on ground-robot navigation and 2-D robot arm control.

Fig. 1 contrasts the SE(2) distance function with the
R? counterpart by visualizing their level sets. Our proposed
SE(2) approach incorporates the orientation of the rigid-
body robot, yielding notably improved results, particularly
when the robot is close to obstacles.

To highlight the significance of accurate robot shape
representation, we draw a comparison with a baseline cir-
cular robot CBF formulation. In Fig. 2, we compare safe
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Fig. 1: Comparative analysis of the SE(2) and R? signed distance functions for elliptical obstacles. The cyan triangle represents the rigid-body robot, with
its orientation varying across the sequence. The importance of considering robot orientation in distance computations becomes evident: while the SE(2)
function accounts for this orientation, the R? approximation treats the robot as an encapsulating circle with radius 1. Level sets at distances 0.2 and 2 are

depicted for both functions.
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Fig. 2: Safe navigation in a dynamical elliptical environment. (a) shows the initial pose of the triangular robot and the environment. (b) shows the triangular
robot passing through the narrow space between two moving ellipses. (c) shows the robot adjusts its pose to avoid the moving obstacle. (d) shows the final
pose of the robot that reaches the goal region. In (e), we plot the trajectory of navigating a circular robot in the same environment.
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Fig. 3: Safe stabilization of a 3-joint robot arm. The green circle denotes the goal region, and the gray box denotes the base of the arm. The arm is shown
in blue and the trajectory of its end-effector is shown in red. The trajectories of the moving elliptical obstacles are shown in purple.

navigation using our proposed SE(2) CBF approach with
a regular R? CBF approach. For both methods, we set
k(X) = [Umax,0]" where vy = 3.0 is the maximum
linear velocity. The remaining parameters were A = 100,
ay(V(x)) = 2V (x), and ap(h(x,t)) = 3h(x,1t).

We demonstrate safe navigation to a goal state. In Fig. 2a,
the triangular robot starts the navigation with position cen-
tered at (0,0) and orientation § = 7/4. In Fig. 2b, the robot
adeptly navigates the narrow passage between two dynamic
obstacles. In Fig. 2d, we see that the robot is able to reach
the goal region without collision. In Fig. 2e, when the robot
is conservatively modeled as a circle navigating the identical
environment, it is evident that the robot has to opt for a more
circuitous route to circumvent obstacles. This is due to its
inability to traverse certain constricted spaces, as illustrated
in Fig. 2b. These outcomes underscore the superior perfor-
mance of our SE(2) CBF methodology. Another advantage
of the SE(2) formulation lies in its assurance of a uniformly

relative degree of 1 for the constructed CBF, obviating the
need to model a point off the wheel axis [31].

In the following set of experiments, we consider safe
stabilization of a 3-joint robot arm in a dynamical elliptical
environment. We set k(x) = [0,0,0]" and restrict the joint
control bounds with |w;| < 3. In Fig. 3, the robot arm is able
to elude the mobile ellipses by nimbly adjusting its pose. In
Fig. 4, we show the control inputs of each joint over time.
We see that when the robot arm is close to the obstacles,
it is able to take large control inputs in adjusting its pose.
In Fig. 5, we show the CLF and CBF values over time.
A consistently positive CBF value throughout the trajectory
signifies safety assurance, while the decreasing CLF values
indicates the convergence to the desired state. Moreover, the
CLF value may increase when the arm is close to obstacles
(i.e. CBF value is low), this comes from the relaxation of
the CLF-CBF QP to ensure the feasibility of the program.
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Fig. 4: Control input of the 3-joint robot arm.
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Fig. 5: Lyapunov function and barrier function values over time.

VII. CONCLUSION

We present an analytic distance formula between elliptical
and polygonal objects. Leveraging this formula, we con-
struct a time-varying control barrier function that ensures

the

safe autonomy of a polygon-shaped robot operating

in dynamical elliptical environments. The efficacy of the
proposed approach is demonstrated in rigid-body navigation
and multi-link robot arm problems. Future work will consider
extending the formulation to 3-D robot arm manipulation and
estimating the geometry and dynamics of the environment
with on-board sensing.
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