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Search-Based Motion Planning for Aggressive
Flight in SE(3)

Sikang Liu , Kartik Mohta , Nikolay Atanasov , and Vijay Kumar

Abstract—Quadrotors with large thrust-to-weight ratios are
able to track aggressive trajectories with sharp turns and high
accelerations. In this letter, we develop a search-based trajectory
planning algorithm that exploits the quadrotor maneuverability
to generate sequences of motion primitives in cluttered environ-
ments. We model the quadrotor body as an ellipsoid and compute
its flight attitude along trajectories in order to check for collisions
against obstacles. The ellipsoid model allows the quadrotor to pass
through gaps that are smaller than its diameter with nonzero pitch
or roll angles. Without any prior information about the location
of gaps and associated attitude constraints, our algorithm is able
to find a safe and optimal trajectory that guides the robot to its
goal as fast as possible. To accelerate planning, we first perform
a lower dimensional search and use it as a heuristic to guide the
generation of a final dynamically feasible trajectory. We analyze
critical discretization parameters of motion primitive planning and
demonstrate the feasibility of the generated trajectories in various
simulations and real-world experiments.

Index Terms—Motion and path planning, autonomous vehicle
navigation, aerial systems: applications.

I. INTRODUCTION

MOTION planning, the problem of generating dynam-
ically feasible trajectories that avoid obstacles in

unstructured environments, for Micro Aerial Vehicles (MAVs),
especially quadrotors, has attracted significant attention
recently [1]–[4]. When the MAV attitude and dynamics are
taken into account, the problem is challenging because there are
no simple geometric conditions for identifying collision-free
configurations [5]. Existing planning approaches usually model
the MAV as a sphere or prism, which allows obtaining a simple
configuration space (C-space) by inflating the obtacles with the
robot size. As a result, the robot can be treated as a single point
in C-space and the collision-checking even for trajectories that
take dynamics into account is simplified. Even though this
spherical model assumption is widely used in motion planing,
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Fig. 1. By taking the shape and dynamics of a quadrotor into account, our
planner is able to generate a trajectory that allows the quadrotor to pass through
a door, narrower than robot’s diameter. In contrast, existing methods that model
the quadrotor as a sphere (red circle) would not be able to find a feasible path
in this environment.

it is very conservative since it invalidates many trajectories
whose feasbility depends on the robot attitude (see Fig. 1).
Several prior works have demonstrated aggressive maneuvers
for quadrotors that pass through narrow gaps [6]–[8] but,
instead of solving the planning problem, those works focus
on trajectory generation with given attitude constraints. Those
constraints are often hand-picked beforehand or obtained using
gap detection algorithms which only works for specific cases.

We are interested in designing a planner that considers the
robot’s actual shape and dynamics in order to obtain aggres-
sive trajectories in cluttered environments. Since quadrotors
are under-actuated systems, they cannot translate and rotate
independently. this letter builds on our previous search-based
trajectory planning approach [9] that utilizes motion primi-
tives to discretize the control space and obtain a dynamically
feasible resolution-complete (i.e., optimal in the discretized
space) trajectory in cluttered environments. We extend our pre-
vious work by explicitly computing the robot attitude along
the motion primitives and using it to enforce collision con-
straints. Furthermore, to reduce computation time for searching
in high-dimensional (velocity, acceleration, jerk, etc.) space,
we propose a novel hierarchical planning process that re-
fines a dynamically feasible trajectory from a prior trajectory
in lower dimensional space. The paper makes the following
contributions:

1) A graph search algorithm that uses motion primitives
to take attitude constraints into account and compute a
dynamically feasible resolution-complete trajectory for a
quadrotor is developed.

2) A hierarchical refinement process that uses prior lower-
dimensional trajectories as heuristics to accelerate plan-
ning in higher dimensions is proposed.
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3) The effect of motion primitive discretization parameters
on the computation time, smoothness, and optimality of
the generated trajectories is analyzed.

The code used in this work is open-sourced at https://github.
com/sikang/mpl_ros. Users can easily test our planner and
benchmark the performance against other planning algorithms.
In addition, a video clip of the simulation and experimental
results is published on https://youtu.be/V4Mha-KPtwc.

II. RELATED WORKS

Trajectories for MAVs or, more generally, differentially flat
systems are represented as piecewise polynomials whose deriva-
tives can be used to obtain explicit expressions for the system
states and control inputs [10]. When collision avoidance is taken
into account, more constraints need to be added to guarantee
safety either through anchoring waypoints as in [2], [11] or
building up a safe flight corridor as in [4], [12], [13]. These
approaches require planning in a C-space in which the robot’s
attitude does not affect collision checking. Conservative sym-
metrical approximations of the robot body may ignore trajec-
tories whose feasibility depends on the robot attitude. Hence,
planning in SE(3) is necessary in order to obtain agile trajecto-
ries in cluttered environments. Planning with 6 DOF has been
addressed in several works [14], [15] via sampling techniques
but these do not translate immediately to our problem, where
the rotation and translation are coupled and a smooth, determin-
istic trajectory is desired. Methods based on motion primitives
are a promising approach for planning dynamically feasible and
collision-free trajectories. For example, lattice search with pre-
defined primitives [16], [17] may be used to plan trajectories for
non-circular robots in obstacle cluttered environments. In our
previous work [9], we developed an approach for quadrotors
based on lattice search by using motion primitives generated via
optimal control [18]. In this work, we extend [9] to account for
attitude constraints by explicitly computing the robot attitude
along the motion primitives based on the desired acceleration
and gravity.

While randomized sampling approaches have been effective
at solving very high dimensional planning problems, they take a
long time to converge to an optimal solution [19] and intermedi-
ate solution quality might be unpredictable. Hence, randomized
approaches are not suitable for fast navigation in unknown envi-
ronments where frequent, predictable re-planning is necessary.
Traditional graph search techniques are considered inefficient in
high dimensional spaces but appropriate heuristic design [20]–
[22] may accelerate their speed. Using weighted heuristics, how-
ever, produces sub-optimal solutions and does not always reduce
planning time [23]. An interesting, alternative idea for acceler-
ating motion planning is based on adaptive dimensionality [24],
which exploits preliminary search results in lower dimensions
to accelerate the planning process in high dimensions. In this
work, we use a hierarchical planning procedure—plan a tra-
jectory in low dimensional space and use it as a heuristic to
guide the search in high dimensional space—to improve the
refinement step in [9] which can potentially lead to unsafe and
infeasible trajectories, while guaranteeing dynamical feasibility,
safety, and resolution completeness.

III. MOTION PLANNING WITH ATTITUDE CONSTRAINTS

In this section, we introduce our trajectory planning frame-
work based on motion primitives. While our previous work [9]
guarantees safety, dynamical feasibility and optimality, it as-
sumes a spherical robot body. Here, we introduce a way to ac-
count for the robot attitude during planning based on the desired
acceleration and gravity. Since the quadrotor yaw is decoupled
and does not affect system dynamics, we assume it remains
constant during planning.

A. System Dynamics in Planning

Before introducing the planning approach, we inspect the re-
lation between polynomial trajectories and system dynamics.
The position x = [x, y, z]T in R3 of the quadrotor can be de-
fined as a differentially flat output as described in [11]. The
associated velocity v, acceleration a and jerk j can be obtained
by taking derivatives with respect to time as ẋ, ẍ,

...
x respec-

tively. The desired trajectory for the geometric SE(3) controller
as described in [25] can be written as Φ(t) = [xT

d ,v
T
d ,a

T
d , j

T
d ]

T.
According to [26], we assume the force and angular velocity are
our control inputs to the quadrotor. Ignoring feedback control
errors, the desired mass-normalized force in the inertial frame
can be obtained as

fd = ad + gzw . (1)

where g is the gravitational acceleration and zw = [0, 0, 1]T is
the z-axis of the inertial world frame. Similar to [25], given a
specific yaw ψ, the desired orientation in SO(3) can be written
as Rd = [r1 , r2 , r3 ] where

r3 = fd/‖fd‖, r1 =
r2c × r3

‖r2c × r3‖ , r2 = r3 × r1 (2)

and

r2c = [− sinψ, cosψ, 0]T. (3)

which is assumed to be not parallel to r3 . The associated an-
gular velocity in the inertial frame, Ṙd = [ṙ1 , ṙ2 , ṙ3 ], can be
calculated as

ṙ3 = r3 × ḟd
‖fd‖ × r3 ,

ṙ1 = r1 × ṙ2c × r3 + r2c × ṙ3

‖r2c × r3‖ × r1 ,

ṙ2 = ṙ3 × r1 + r3 × ṙ1 (4)

where

ṙ2c = [− cosψ,− sinψ, 0]Tψ̇, ḟd = jT
d . (5)

Therefore, the desired angular velocity wd in body frame is
obtained as:

[wd ]× = RT
dṘd . (6)

Once the desired force fd , orientation Rd and angular velocity
wd are defined, it is straightforward to compute the desired con-
trol inputs for the quadrotor system. Notice that: 1) orientation
is algebraically related to the desired acceleration and gravity
and 2) angular velocity is algebraically related to the desired
jerk.
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B. Search-Based Planning Using Motion Primitives

As mentioned in the previous section, the desired trajectory
can be defined as

Φ(t) := [xT, ẋT, ẍT,
...
xT]T = [xT,vT,aT, jT]T (7)

and each component of Φ(t) can be represented by a polynomial
parameterized in time t. Position can be defined as

x(t) :=
K∑

k=0

dk
tk

k!
= dK

tK

K!
+ . . .+ d1t+ d0 (8)

where dk ∈ R3 are the coefficients. The corresponding velocity,
acceleration and jerk can be obtained by taking the derivative
of (8). A polynomial trajectory from one state to the other within
a specified time duration is called a motion primitive. Our ap-
proach uses primitives generated as the solutions to an optimal
control problem [9] to build a graph from an initial state to a
goal state and search for the optimal sequence of primitives.
Technical details and proof of optimality can be found in our
previous work [9]. In this letter, we give the explicit solution for
generating the optimal trajectory using jerk as the control input.

We define the state

s(t) := [x(t)T, ẋ(t)T, ẍ(t)T]T = [pT,vT,aT]T (9)

as a subset of the trajectory Φ(t) that excludes the jerk. From an
initial state s0 = [pT

0 ,v
T
0 ,a

T
0 ]T, we apply a constant jerk input

um from a pre-defined control setUM for a short duration τ > 0.
The resulting curve between s0 and the end state is a motion
primitive such that for t ∈ [0, τ ] the system state s(t) can be
written as

s(t) = F (um , s0 , t) :=

⎡

⎢⎣
um t3

6 + a0
t2

2 + v0t+ p0

um t2

2 + a0t+ v0

umt+ a0

⎤

⎥⎦. (10)

It has been shown in [18] and [9] thatF (·) provides the minimum
jerk trajectory between s0 and s(τ).

The finite control input set UM and duration τ define a graph
G(S, E), where S is the set of reachable states in R9 and E is the
set of edges connecting those states. The states inS are generated
by applying each element of UM at each state iteratively, and
each element in E is a primitive as defined in (10). A breadth-
first-search (BFS) of a finite horizon leads to the graphs shown
in Fig. 2.

We are interested in finding a trajectory from s0 to sg that is
optimal in terms of total control effort J and time T taken to
reach the goal. According to [9], a desired optimal trajectory is
obtained as

Φ∗(t) = arg min
Φ(t)

J + ρT = arg min
Φ(t)

∫ T

0
‖j‖2dt+ ρT

s.t. s0 ← Φ(0), sg ← Φ(T ) (11)

where ρ is the weight that decides the trade-off between effort
and time.

For the primitive defined in (10), J = ‖um‖2τ and T = τ .
Thus, the cost of a primitive of applying um from state sn ∈ S

Fig. 2. Graph G(S, E) generated by applying BFS for a finite planning hori-
zon over a set of motion primitives UM with 9 elements (a) and 25 elements
(b). Red dots represent states in S and magenta splines represent edges in E .
(a) τ = 0.5, |UM | = 9, (b) τ = 0.5, |UM | = 25.

is defined as

C(sn ,um ) = C(um ) = (‖um‖2 + ρ)τ. (12)

The cost of the individual primitive is independent of the current
state and only depends on the set Um and τ . In addition, it can
be shown by Pontryagin’ minimum principle that (10) is the op-
timal solution of (11). Details of the proof can be found in [9].
Therefore, search for an optimal trajectory of (11) is equiva-
lent to find the optimal solution to the following deterministic
shortest path problem:

Problem 1: Given an initial state s0 , a goal region X goal , a
free space X f ree and motion primitives based on a finite set of
control inputs UM with duration τ > 0, choose a sequence of
control inputs u0:N−1 of length N such that:

min
N,u0 :N −1

(
N−1∑

n=0

‖un‖2 + ρN

)
τ

s.t. Fn (t) := F (un , sn , t), un ∈ UM
sn+1 = Fn (τ) = Fn+1(0), sN ∈ X goal

Fn (t) ⊂ X f ree (13)

We are able to solve this problem through a graph search
algorithm like A*. The optimal trajectory Φ∗(t) can be recovered
by applying the optimal control solution u∗0:N−1 with (10) from
the start s0 as

Φ∗(t)← [s0
u∗0−→ s1 . . .

u∗N −1−→ sN ]. (14)

When planning dynamic trajectories, traditional distance-
based heuristics are not effective since short-distance trajec-
tories may require sudden changes in velocity, acceleration or
orientation. Instead, we use a heuristic, proposed in [9], which
is based on the solution of a Linear Quadratic Minimum Time
(LQMT) problem and takes trajectory smoothness into account.
Given the current state s and the goal state sg , the LQMT solu-
tion provides an explicit formula for the H(s, sg ) as described
in the appendix.

C. Feasibility Checking

When checking if a motion primitive is contained in the free
space X f ree in Problem 1, we need to consider both dynamical
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Fig. 3. A quadrotor can be modeled as an ellipsoid with radius r and height
h. Its position and attitude can be estimated from the desired trajectory. A point
cloud O is used to represent obstacles.

constraints that arise from system dynamics and geometric con-
straints due to physical obstacles.

1) Dynamically Feasible Primitives: The dynamical con-
straints on a quadrotor system are the min/max thrust and torques
that can be provided by the motors [18]. However, it is hard to
examine the true specification for each quadrotor and apply cor-
rect non-linear constraints. In fact, it is reasonable to utilize the
property of differential flatness and apply velocity, acceleration,
and jerk constraints on each axis independently. This leads to
componentwise inequalities of the form:

|ẋ(t)| � vmax , |ẍ(t)| � amax , |...x(t)| � jmax . (15)

Polynomial expressions for ẋ, ẍ,
...
x allow us to check (15)

in closed-form for each axis by finding the min/max value
on time interval [0, τ ]. The latter is equivalent to finding the
roots of the corresponding derivatives. Thus, we can guaran-
tee that the planned trajectories always stay within the bounds
vmax ,amax , jmax . More specifically, we define

vmax = vmax1, amax = amax1, jmax = jmax1 (16)

2) Collision Free Primitives: As indicated in Section I, tra-
ditional collision checking though inflating obstacles is too con-
servative and not suitable for planning agile trajectories in clut-
tered environments since it fails to take the actual robot shape
and attitude into account. In this letter, we model the quadrotor
as an ellipsoid ξ in R3 with radius r and height h and the obsta-
cle map as a point cloudO ⊂ R3 (see Fig. 3). Given a quadrotor
state s, its body configuration ξ at s can be obtained as

ξ(s) := {p = Ep̃ + d | ‖p̃‖ ≤ 1} (17)

where

d = x(t), E = R

⎡

⎢⎣
r 0 0

0 r 0

0 0 h

⎤

⎥⎦RT (18)

and the orientation R can be calculated from ẍ(t) and gravity
as shown in (2).

Checking whether the quadrotor hits obstacles while follow-
ing a trajectory is equivalent to checking if there is any obstacle
inside the ellipsoid along the trajectory. In other words, we need
to verify that the intersection between ξ and the point cloud O
is empty:

O ∩ ξ = {o | ‖E−1(o− d)‖ ≤ 1, ∀o ∈ O} = ∅ (19)

Instead of checking through every point inO, it is more efficient
to use KD-tree [27] to crop a subset Or,d of O at first and then
check the intersection between ξ and obstacles insideOr,d . The

subset Or,d is created by looking for neighbor points around d
within radius r, assuming r ≥ h.

Since the contour of an ellipsoid following a primitive is not
convex, we sample I states in time along a primitive Fn and
consider the primitive Fn collision-free if

O ∩ ξ(si,n ) = ∅, ∀i = {0, 1, . . . , I − 1} (20)

where si,n is the i-th sampled state on Fn .
In sum, the explicit formulation of the feasibility constraints

Fn (t) ⊂ X f ree in Problem 1 is written as:

Fn (t) � [vT
max ,a

T
max , j

T
max]

T, (21)

O ∩ ξ(si,n ) = ∅, ∀i = {0, 1, . . . , I}.

IV. TRAJECTORY REFINEMENT

In the proposed planning approach, the dimension of the state
space increases with increasing requirements on the continuity
of the final trajectory. More precisely, if C2 continuity is required
for the final trajectory, jerk should be used as a control input
and the state space of the associated second order system would
be R9 (position, velocity acceleration). Generally, planning in
higher dimensional spaces (e.g., snap input) requires more time
and memory to explore and store lattices/states. In this section,
we introduce a hierarchical approach to planning a feasible
trajectory in high dimensional space by utilizing guidance from
a trajectory planned in lower dimensional space. We show that
the overall computation time of this hierarchical planning is
shorter than the total time it takes to plan a optimal trajectory
directly. Due to the fact that the final trajectory is calculated
from a trajectory in lower dimensional space, similar to the
refinement process in [9], we call this hierarchical planning
process as trajectory refinement.

A. Trajectories Planned in Different Control Spaces

Denote the trajectories planned using velocity, acceleration
or jerk inputs as Φj , j = 1, 2, 3 respectively. Given the same
start and goal, dynamics constraints and discretization, examples
of the optimal trajectories in each case are plotted in Fig. 4,
where the control effort Jj , j = 1, 2, 3 of the whole trajectory
is measured as

Jj =
∫ T

0
‖x(j )‖2dt. (22)

Denote the execution and computation time of the trajectory
as T j and tj , j = 1, 2, 3 accordingly. From the planning results
in Fig. 4, two conclusions can be drawn with increasing j:

1) The execution time increases, i.e., T 1 < T 2 < T 3 ;
2) The computation time increases, i.e., t1 < t2 < t3 .
Note that the computation time increases dramatically as j

increases.

B. Using Trajectories as Heuristics

The fact that searching a optimal trajectory in the lower di-
mensional space is much faster than in a higher dimensional
space leads to the approach described in this subsection to speed
up the planning speed for the actual MAV system.
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Fig. 4. Optimal trajectories planned using piecewise constant (a) veloc-
ity, (b) acceleration, (c) jerk from a start (blue dot) to a goal (red dot)
state. Grey dots indicates explored states. (a) Φ1 : T 1 = 32 s, J 1 = 42, t1 =
2 ms. (b) Φ2 : T 2 = 33 s, J 2 = 2.25, t2 = 60 ms. (c) Φ3 : T 3 = 34 s, J 3 =
3.75, t3 = 1646 ms.

Denote the prior trajectory in lower dimensional space as Φp ,
we are searching for a trajectory in higher dimensional space
Φq (q > p). Assume the duration of each primitive in Φq is τ ,
each lattice sqn in the graph is associated with a time Tn which
is the minimum time it takes from the start to the current lattice.
Tn is an integer multiplication of τ . Instead of calculating the
heuristic H(sqn ) from current state sqn to the goal sg directly
as described in [9], we propose to use the intermediate goal
spn = Φp(Tn ) evaluated from trajectory Φp at Tn such that the
heuristic value is calculated as below:

H(sqn ,Φ
p) = H1(sqn , s

p
n ) +H2(spn , sg ). (23)

The first term H1(·) on the RHS of (23) is proposed in the
appendix where sqn is fully defined but spn has undefined states.
The second term H2(·) is given directly as the cost from spn to
the goal by following Φp , to be more specific:

H2(spn , sg ) = Jq (spn , sg ) + ρ(Tp − Tn ) (24)

where Tp is execution time of Φp and Jq (spn , sg ) is the control
effort from spn to sg along Φp as expressed in (22). This formu-
lation is consistent with the cost function defined before in (11).
As the prior trajectory is in the lower dimensional space, Jq for
Φp is always zero (e.g., for planning a optimal trajectory Φ2 that
uses acceleration input, the corresponding control efforts of Φ1

is zero as there is no acceleration along Φ1). Thus H2(·) turns
out to be only the execution time between spn and goal:

H2(spn , sg ) = ρ(Tp − Tn ). (25)

Fig. 5 shows an example of applying (23) to search a trajec-
tory Φ2 using acceleration with a prior trajectory Φ1 planned
using velocity. The new trajectory Φ2 tends to stick with the
prior trajectory Φ1 due to the effect ofH1(·).H2(·) will push the
searching moving forward towards the goal. In fact, the heuristic
function defined in (23) is not admissible since it may not
necessarily be the under-estimation of the actual cost-to-goal.

Fig. 5. Search Φ2 (magenta) using Φ1 (blue) as the heurisric. Left figure plots
the trajectories in x − y plane, the black arrows indicate the H1 . Right figure
shows the corresponding x position with respect to time t along each trajectory,
for states with the same subscript, they are at the same time Tn . (a) x − y plot.
(b)t − x plot.

Fig. 6. Trajectories (magenta) planned using Φ1 (black) as the heuristic. The
computation time tq and the number of expanded nodes are much less than
the searching results in Fig. 4. (a) Φ2 : T 2 = 35 s, J 2 = 3.0, t2 = 11 ms.
(b) Φ3 : T 3 = 36 s, J 3 = 4.25, t3 = 98 ms.

However, we are able to search for trajectories in higher dimen-
sional space in a much faster speed by searching the neighboring
regions of the given trajectory instead of exploring the whole
state space with the same priority.

The results of applying (23) for the same planning tasks in
Fig. 4 are shown in Fig. 6, in which Φ1 is used to plan for
both trajectory Φ2 and Φ3 . Comparing Figs. 6 to 4, the total
cost of control effort and execution time, namely Jq + ρT q ,
of the new trajectories Φq in Fig. 6 are greater than the optimal
trajectories in Fig. 4, but the computation time tq and the number
of expanded nodes are much less.

V. EVALUATION

A. 2-D Planning

2-D planning is efficient and useful in 2.5-D environments
where the obstacles are vertical to the floor. We start by showing
2-D planning tasks of flying though gaps with different widths.
In Fig. 7 shows how planned trajectories Φ3 using jerk as a
control input vary as the gap in a wall is shrinking (left wall
moves closer to the right wall from (a) to (f)). Accordingly,
the angle of the desired roll at the gap φgap increases. Assume
the robot has radius r = 0.35 m, height h = 0.1 m, and the
maximum acceleration in each axis is amax = g. Denoting the
roll along trajectory as φ, according to (1) and (2), we have

− arctan
amax

g
≤ φ ≤ arctan

amax

g
(26)
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Fig. 7. Trajectories through gaps with different widths: 0.75, 0.65, 0.55 m
from (a) to (c) (2-D planning) and 0.55, 0.45, 0.35 m from (d) to (f) (3-D
planning). φgap indicates the maximum roll at the gap. Red dots show the start
and goal. (a) φgap = 0◦. (b) φgap = 27◦. (c) φgap = 45◦. (d) φgap = 46◦.
(e) φgap = 73◦. (f) φgap = 90◦.

since the desired acceleration in z-axis is zero. In other words,
the smallest gap that the robot can pass through using 2-D plan-
ning is approximately equal to 2r cos θ (which is approximately
equal to 0.525 m).

B. 3-D Planning

By adding control in the z-axis, we are able to plan in 3-D
space and relax the constraint in (26) as follows:

− arctan
amax

g − amax
≤ φ ≤ arctan

amax

g − amax
. (27)

When amax ≥ g, φ ∈ (− π
2 ,

π
2 ] can be arbitrary. Letting amax =

g, we are able to reduce the gap width even more as shown in
the following Fig. 7.

Another example of 3-D planning using a window with a
rectangular hole in the middle is considered. By modifying the
window’s inclination φwin , we are able to verify the planner’s
capability to generate trajectories as shown in Fig. 8.

C. Parameters

There are a few parameters that significantly affect the plan-
ning performance including computation time, resolution com-
pleteness, continuity and dynamics constraints. In this section,
we analyze these relationships and provide a rough guidance on
how to set the parameters in our planner. In the above examples
of 2-D and 3-D planning, we used the following settings (here
the control input is defined as jerk such that umax = jmax ):

ρ τ vm ax am ax um ax du

10000 0.2 s 7 m/s 10 m/s2 50 m/s3 12.5 m/s3

Fig. 8. Trajectories generated through a rectangular hole of size 0.4 × 0.8 m
oriented at different angles. A robot with radius r = 0.35 m needs to fly through
the hole with certain non-zero roll and pitch angles. The colored dots repre-
sent walls in the map that invalidate trajectories that go around the window.
(a) φw in = 30◦. (b) φw in = 45◦. (c) φw in = 60◦.

Fig. 9. Generated trajectories in two different environments. The robot radius
is r = 0.5 m, making its diameter much larger than the door width in (a). If
the obstacles in these environments are inflated by r, no feasible paths exist.
(a) Office environment. (b) Unstructured environment.

A larger ρ results in faster trajectories. The scale of ρ should
be comparable to the scale of the associated control effort. Here
we use ρ ≈ 4u2

max . The motion primitive duration τ decided the
density of the lattices and computation time, for moderate flight
speed (<10 m/s), we find τ = 0.2 s to be a reasonable choice. A
small τ makes the graph dense and requires more explorations
to reach the goal, while a large τ may easily result in searching
failure since the graph may be too sparse to cover the feasible
region. The discretization in the control space UM also affects
the density of the graph as shown in Fig. 2. Its effect is similar
to τ – finer discretization in UM leads to a slower but more
complete search and smoother trajectories and vice versa. The
maximum velocity and acceleration are limited by the system’s
dynamics including thrust-to-weight ratio, max angular speed
and air drag etc, but in many cases, we also want to limit the
agility due to the space, state estimation and control limitations.

VI. EXPERIMENTS

A. Simulation Results

The proposed planner is used to generate trajectories in com-
plicated environments as shown in Fig. 9. A geometric model
of the environment is converted into a point cloud and used to
construct an obstacle KD-tree with 5 cm resolution.

In general, finding the optimal trajectories in complicated en-
vironments like Fig. 9 is slow (Table I gives the computation
time of trajectory planning on a moderate fast computer with an
Intel i7 processor with clock rate of 3.4 GHz.). As proposed in
Section IV, we plan trajectories Φ2 using acceleration control at
first, based on which we plan the trajectory Φ3

∗ using jerk con-
trol. As shown in Table I, the computation time for hierarchical
planning is much less than that for planning in the original 9
dimensional space with jerk input. We can also see in Fig. 10
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TABLE I
EVALUATION: t REFERS TO THE COMPUTATION TIME, J IS THE TOTAL CONTROL

(JERK) EFFORT AND T IS THE TOTAL TRAJECTORY EXECUTION TIME

Office Unstructured 3-D

t(s) J (×103 ) T (s) t(s) J (×103 ) T (s)

Φ3 89.42 8.9 4.6 129.58 5.6 3.0
Φ2 9.34 0 4.4 21.64 0 3.6
Φ3∗ 2.03 11.1 5.0 24.02 15.1 4.8

Fig. 10. Comparison between the optimal method (left) and refinement (right).
The prior trajectory Φ2 is plotted in blue, while the white dots indicate explored
states. It is clear that the refinement explores fewer irrelevant regions but the
generated trajectory is suboptimal.

Fig. 11. Quadrotor tracks the planned trajectory to fly through a narrow gap.
Top figures are the snapshots of the video, bottom figures are corresponding
visualizations in ROS. Maximum roll angle at the gap is 40◦ as drawn in the
top right figure.

that the refinement process tends to explore fewer states. As
expected, the refined trajectory Φ3

∗ has a higher cost compared
to the optimal trajectory Φ3 .

B. Real World Experiments

The experiments is aiming to demonstrate the feasibility of
planned trajectories on a real robot. We use AscTec Humming-
bird as our quadrotor platform, we also use VICON motion
capture system to localize the quadrotor and the obstacle map
is obtained by depth sensor in advance to generate trajectories.
The robot is able to avoid hitting obstacles by following the the
control commands from extracting from the planned trajectory
through wireless. Fig. 11 shows the flight when the quadro-
tor needs to roll aggressively in order to pass through the gap
between white boards.

The control errors in velocity and roll are plotted in Fig. 12.
The commanded roll includes the feedback attitude errors such
that it is not as smooth as the desired roll from the planned
trajectory. The existed lag in the attitude is due to the fact that
the actual robot is not able to achieve specified angular velocity
instantly, however for a moderate angular speed, this assump-
tion still holds valid. A more accurate model for the quadrotor
should be using snap as the control input instead of the jerk. The

Fig. 12. Plots of control errors, the blue curve is the command value while
the green curve shows the actual robot state. Top figure shows vx − t, bottom
figure shows φ − t. The red verticle line indicates the time when the robot pass
through the gap.

trajectory planned using the snap as the control input is straight-
forward to solve following the same pipeline as proposed in this
letter, which has also been implemented in our open-sourced
planner.

VII. CONCLUSION

In this work, we extend our previous motion-primitive-based
planning algorithm [9] to enable aggressive flight with atti-
tude constraints in cluttered environments for an under-actuated
quadrotor system. We also presented a hierarchical refinement
process that uses prior lower-dimensional trajectories to accel-
erate planning in higher dimensions. We believe that the pro-
posed algorithm can be a foundation for future study of fast
autonomous navigation of UAVs in cluttered environments.

APPENDIX

LINEAR QUADRATIC MINIMUM TIME FOR JERK CONTROL

The heuristic function H(s, sg ) for graph search is an under-
estimation of actual cost from the state s to the goal sg by
relaxing the dynamics and obstacles constraints. We try to find a
state-to-state optimal trajectory of Problem 2, whose cost serves
as the heuristic H . The explicit solution for the optimal cost for
velocity, acceleration control has been shown in [9], here we
show the explicit solution for jerk control.

Problem 2: Given a current state s, the goal state sg , find the
optimal trajectory according to the cost function

cmin
j,T

∫ T

0
‖j‖2dt+ ρT (28)

Assume the initial state is given as s = [pT
0 ,v

T
0 ,a

T
0 ]T, the

formulation of position of the optimal trajectory for (28) is
given from the Pontryagin’s minimum principle [18] as

p =
d5

120
t5 +

d4

24
t4 +

d3

6
t3 +

a0

2
t2 + v0t+ p0 (29)



2446 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 3, JULY 2018

The coefficients {d5 ,d4 ,d3} are defined in [18] by s, sg and
T . As a result, the total cost of (28) can be written as a function
of time T as

C(T ) =
∫ T

0

(
d5

2
t2 + d4t+ d3

)2

dt+ ρT

=
d2

5

20
T 5 +

dT
4d5

4
T 4 +

(
dT

4d4

3
+

dT
3d5

3

)
T 3

+ dT
3d4T

2 + d2
3T + ρT (30)

The minimum of C(T ) can be derived by taking the derivative
with respect to T and finding the root T ∗ of

dC
dT

= c0 + . . .+ c6T
−6 = 0, T ∈ [0,∞) (31)

Therefore, H(s, sg ) = C(T ∗). The coefficients in (31) are de-
rived as follows:

(1) Fully Defined sg = [pT
1 ,v

T
1 ,a

T
1 ]T

c0 = ρ, c1 = 0, c2 = −9a2
0 + 6aT

0a1 − 9a2
1 ,

c3 = − 144aT
0v0 − 96aT

0v1 + 96aT
1v0 + 144aT

1v1 ,

c4 = 360(a0 − a1)T(p0 − p1)− 576v2
0

− 1008vT
0v1 − 576v2

1 ,

c5 = 2880(v0 + v1)T(p0 − p1),

c6 = − 3600(p0 − p1)2 . (32)

(2) Partially Defined sg = [pT
1 ,v

T
1 ]T

c0 = ρ, c1 = 0, c2 = −8a2
0 ,

c3 = − 112aT
0v0 − 48aT

0v1 ,

c4 = 240aT
0 (p0 − p1)− 384v2

0 − 432vT
0v1 − 144v2

1 ,

c5 = (1600v0 + 960v1)T(p0 − p1),

c6 = − 1600(p0 − p1)2 . (33)

(3) Partially Defined sg = p1

c0 = ρ, c1 = 0, c2 = −5a2
0 ,

c3 = − 40aT
0v0 ,

c4 = 60aT
0 (p0 − p1)− 60v2

0 ,

c5 = 160vT
0 (p0 − p1),

c6 = − 100(p0 − p1)2 . (34)
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