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ABSTRACT Stability and safety are critical properties for successful deployment of automatic control
systems. As a motivating example, consider autonomous mobile robot navigation in a complex environment.
A control design that generalizes to different operational conditions requires a model of the system
dynamics, robustness to modeling errors, and satisfaction of safety constraints, such as collision avoidance.
This paper develops a neural ordinary differential equation network to learn the dynamics of a Hamiltonian
system from trajectory data. The learned Hamiltonian model is used to synthesize an energy-shaping
passivity-based controller and analyze its robustness to uncertainty in the learned model and its safety
with respect to constraints imposed by the environment. Given a desired reference path for the system,
we extend our design using a virtual reference governor to achieve tracking control. The governor state
serves as a regulation point that moves along the reference path adaptively, balancing the system energy
level, model uncertainty bounds, and distance to safety violation to guarantee robustness and safety. Our
Hamiltonian dynamics learning and tracking control techniques are demonstrated on simulated hexarotor
and quadrotor robots navigating in cluttered 3D environments.

INDEX TERMS constrained control, physics-constrained learning, safe learning for control

I. Introduction
Designing controllers that guarantee system stability and
handle safety constraints is an important problem in safety-
critical applications of automatic control systems, including
autonomous transportation [1], [2], robot locomotion [3], and
medical robotics [4]. Safety depends on the system states,
governed by the system dynamics, and the environment
constraints. This leads to two requirements for designing
provably safe controllers: an accurate model of the system
dynamics and the satisfaction of safety constraints.

The first requirement has motivated data-driven dynamics
learning approaches, utilizing machine learning techniques,
such as Gaussian process (GP) regression [5], [6], [7] and
neural networks [8], [9]. For physical systems, recent works
[10], [11], [12] design the model architecture to impose
a Lagrangian or Hamiltonian formulation of the dynamics
[13], [14], which a black-box model might struggle to infer.
For Lagrangian dynamics, Lutter et al. [10] use neural
networks to represent the mass and potential energy in the

Euler-Lagrange equations of motion. Meanwhile, Zhong et
al. [11] use a differentiable neural ODE solver [15] to predict
state trajectories of a Hamiltonian dynamics model, encoding
Hamilton’s equations of motion. A trajectory loss function
is back-propagated through the ODE solver to update the
Hamiltonian model parameters. Our prior work [12] ex-
tends the neural ODE Hamiltonian formulation by imposing
SE(3) constraints to capture the kinematic evolution of
rigid-body systems, such as ground or aerial robots. A
Hamiltonian-based model architecture also allows the design
of stable regulation or tracking controllers by energy shaping
[11], [16], [12]. Interconnection and damping assignment
passivity-based control (IDA-PBC) [17], one of the main
approaches for energy shaping, injects additional energy
into the system via the control input to achieve a desired
total energy, which is minimized at a desired regulation
point. Instead of learning robot dynamics in continuous
time, Saemundsson et al. [18] design a variational integrator
network to learn discrete-time Lagrangian dynamics. Havens
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and Chowdhary [19] extend it by including control input in
the model and use model predictive control for stabilization.

The second requirement, ensuring satisfaction of safety
constraints, has gained significant attention in planning and
control. Model predictive control (MPC) methods [20], [21],
[22], [23] include safety constraints in an optimization
problem, which is typically solved by discretizing time
and linearizing the system dynamics. Reachability-based
techniques [24], [25], [26], [27] are directly applicable to
nonlinear systems and offer strong safety guarantees but
many require solving a Hamilton-Jacobi partial differential
equation (PDE) or sum-of-squares optimization program.
This is computationally challenging, especially for high-
dimensional systems, and may require system decomposition
techniques [28]. Control barrier functions (CBFs) [1], [29],
[30] offer an elegant approach to encode safety constraints.
For control-affine systems, a CBF constraint is affine in the
control input, allowing safe control synthesis with quadratic
programming (QP) [30]. However, constructing valid CBFs
that guarantee the feasibility of the QP problem is chal-
lenging [31], [32]. Given a stabilizing controller, reference
governor techniques [33], [34], [35] use a virtual governor
system to introduce safety constraints based on the Lyapunov
function of the closed-loop system. Recent work [36], [37]
achieves safe trajectory tracking in unknown environments,
but is limited to linear or feedback-linearizable systems.

Safe control synthesis with a learned model of the system
dynamics needs to account for the model estimation error
between the learned and the ground-truth dynamics [38].
Model uncertainty may be viewed as a disturbance, applied
to the learned system, and handled using robust or adaptive
control techniques [39], [40], [41], [42], [43], [44]. Safety
constraint satisfaction in the presence of model uncertainty
can be achieved using robust MPC [45], [46], [7], [47], L-1
adaptive control [40], or model reference adaptive control
[48] that tracks the trajectory of a reference model and
compensates for model uncertainty. For example, Hewing
et al. [7] propose an MPC technique that trains a Gaussian
Process (GP) model of the system dynamics and use the
GP uncertainty to introduce probabilistic safety constraints
in the MPC optimization. Robust controllers for Hamiltonian
systems may also be developed using the IDA-PBC approach
[43], [49], [50]. Most techniques have considered systems
with states defined in Euclidean space and cannot handle
manifold constraints, e.g., due to the orientation kinematics
of a mobile robot. For quadrotors, Lee et al. [41] estimate
disturbances from the tracking error and design a robust
geometric controller but do not consider safety constraints.

In this paper, we consider both dynamics model learning
and safe control synthesis for rigid-body systems, whose
states include position, orientation, and generalized velocity.
We assume that system has an unknown dynamics model
but, as a physical system, it satisfies Hamilton’s equations
of motion over the SE(3) manifold of positions and orienta-
tions. Given state-control trajectories, from past experiments

or collected by a human operator, we seek to learn the system
dynamics and design a tracking control law that handles
safety constraints, e.g., obtained from distance measurements
to obstacles in the environment. In our preliminary work
[51], we learn a translation-equivariant Hamiltonian model
of the system dynamics using a physics-guided neural ODE
network [12]. We use the Hamiltonian model to synthesize an
energy-shaping geometric tracking controller. The total en-
ergy of the system serves as a Lyapunov function and enables
us to enforce safety constraints during trajectory tracking
using a reference governor to regulate the difference between
the system energy and the distance to safety violation. How-
ever, our preliminary work [51] uses the learned Hamiltonian
model as the ground-truth dynamics and ignores the model
estimation error in the control design. In this paper, we
capture the estimation error as a bounded disturbance applied
to the learned system and develop a robust safe tracking
controller that takes the disturbance into account in the
design of the reference governor. Our Hamiltonian dynamics
learning and tracking control techniques are compared to
a GP MPC technique [7] and are demonstrated in a 3D
environment using a simulated hexarotor robot to achieve
collision-free autonomous navigation.

In summary, the contribution of this work is a tracking
control design for Hamiltonian systems with learned dynam-
ics, which achieves robustness to model estimation errors and
safety with respect to state constraints.

II. Problem Statement
Consider a rigid body with position p ∈ R3, orientation
R ∈ SO(3), body-frame linear velocity v ∈ R3, and body-
frame angular velocity ω ∈ R3. Let q = [p> r>1 r>2 r>3 ]>

∈ SE(3) denote the body’s generalized coordinates, where
r1, r2, r3 ∈ R3 are the rows of the rotation matrix R. Let
ζ = [v> ω>]> ∈ R6 denote the body’s generalized velocity.
The generalized momentum p of the body is defined as:

p = M(q)ζ ∈ R6, (1)

where M(q) � 0 is the positive-definite generalized mass
matrix. Let x = (q, p) ∈ T ∗SE(3) denote the state of
the rigid body system on the cotangent bundle T ∗SE(3) of
the SE(3) manifold. The Hamiltonian, H(q, p), captures the
total energy of the system as the sum of the kinetic energy
T (q, p) = 1

2p
>M−1(q)p and the potential energy U(q):

H(q, p) = T (q, p) + U(q). (2)

The evolution of the state x is governed by Hamilton’s
equations of motion [52]:

ẋ = f(x) + G(x)u, x(t0) = x0,

=

[
0 q×

−q×> p×

] [
∇qH(q, p)
∇pH(q, p)

]
+

[
0

B(q)

]
u

(3)

where u ∈ Rm is the control input, e.g., force and torque or
motor speeds for a UAV system, B(q) ∈ R6×m is an input
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gain matrix, and the operators q×, p× are defined as:

q× =

[
R> 0 0 0
0 r̂>1 r̂>2 r̂>3

]>
, p× =

[
pv
pω

]×
=

[
0 p̂v
p̂v p̂ω,

]
,

where the hat map ŵ for w ∈ R3 is:

ŵ =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 .
The Hamiltonian dynamics model in (3) can be extended to
include energy dissipation in a port-Hamiltonian formulation
[17] such as friction or drag forces [53]. However, for clarity
of the control design, we leave this for future work.

We consider the case that the parameters of the Hamil-
tonian dynamics model in (3), including the mass M(q),
the potential energy U(q), and the input matrix B(q), are
unknown. Instead, we are given a trajectory dataset D =

{t(i)0:N , q
(i)
0:N , ζ

(i)
0:N ,u

(i)
0:N−1}Di=1 consisting of D sequences of

generalized coordinates and velocities (q
(i)
0:N , ζ

(i)
0:N ) at times

t
(i)
0 < t

(i)
1 < . . . < t

(i)
N , collected by applying a constant con-

trol input u(i)
n to the system with initial condition (q

(i)
n , ζ(i)

n )
for t ∈ [tn, tn+1) and n = 0, . . . , N − 1. Our objective is to
learn the system dynamics from the data set D and design
a control policy u = π(x) such that the system follows a
desired reference path without violating safety constraints.
Let O ⊂ R3 and F := R3 \ O denote the unsafe (obstacle)
set and the safe (obstacle-free) set, respectively. Denote the
interior of F as int(F). We assume that O is not known a
priori but the distance d̄(p,O) from the system’s position p
to O can be sensed with a limited sensing range dmax > 0:

d̄(p,O) := min {d(p,O), dmax} , (4)

where d(p,O) := infa∈O‖p − a‖ denotes the Euclidean
distance from p to the set O. The safe tracking control
problem considered in this paper is summarized below.

Problem 1:
Let D = {t(i)0:N , q

(i)
0:N , ζ

(i)
0:N ,u

(i)
0:N−1}Di=1 be a training

dataset of state-control trajectories obtained from a rigid-
body system with unknown Hamiltonian dynamics in (3).
Let r : [0, 1] 7→ Int (F) be a continuous function specifying
a desired position reference path for the system. Assume that
the reference path starts at the initial position at time t0, i.e.,
r(0) = p(t0) ∈ Int (F). Using local distance observations
d̄(p(t),O) of the unsafe set O, design a control policy π :
T ∗SE(3) 7→ R6 so that the position p(t) of the closed-loop
system with control law u = π(x) converges asymptotically
to r(1), while remaining safe, i.e., p(t) ∈ F ,∀t ≥ t0.

III. Learning SE(3) Hamiltonian Dynamics from Data
In this section, we design a dynamics model that can be
learned from a previously collected trajectory dataset, e.g.,
obtained from manual control, and is sufficiently general to
represent different mobile robots, such as cars and drones.
We describe how to learn Hamiltonian dynamics from
the dataset D = {t(i)0:N , q

(i)
0:N , ζ

(i)
0:N ,u

(i)
0:N−1}Di=1, described

in Sec. II, using translation-equivariant Hamiltonian-based
neural ODE networks [12]. The mass M(q), the potential
energy U(q) and the input gain B(q) are approximated by
neural networks. We show that the model estimation errors
caused by the trained neural networks can be considered as
a disturbance applied on the learned system.

A. Translation-equivariant SE(3) Hamiltonian dynamics
learning
Since the system dynamics does not change if we shift the
position p to any points in the world frame, we offset the
trajectories in the dataset D so that they start from the
position 0 and learn the system dynamics well around the
origin. This is sufficient for stabilization task, e.g. using the
controller design in Sec. IV, because driving the system from
state x with position p to a desired state x∗ with position
p∗ is the same as driving the system from the state x with
position 0 to a desired state x∗ with offset position p∗ −p.

Since the momentum p is not directly available from the
dataset D, we use the time derivative of the generalized
velocity, derived from (1):

ζ̇ =

(
d

dt
M−1(q)

)
p + M−1(q)ṗ. (5)

Eq. (3) and (5) describe the Hamiltonian dynamics of the
generalized coordinates and velocities with unknown inverse
generalized mass matrix M−1(q), input matrix B(q), and
potential energy U(q), for which we aim to approximate by
three neural networks M−1

θ (q),Bθ(q) and Uθ(q), respec-
tively, with parameters θ.

To optimize for the parameters θ, we use the Hamiltonian-
based neural ODE framework that encodes the Hamiltonian
dynamics (3) and (5) with Mθ(q),Bθ(q) and Uθ(q) in the
network structure (Fig. 1). The forward pass rolls out the
dynamics f̄θ described by (3) and (5) with the neural net-
works Mθ(q),Bθ(q) and Uθ(q) using a neural ODE solver
([15]) with initial state (q

(i)
n , ζ(i)

n ). We obtain a predicted
state (q̄

(i)
n+1, ζ̄

(i)
n+1) at times t(i)n+1 for each n = 0, . . . , N − 1

and i = 1, . . . , D as:

(q̄
(i)
n+1, ζ̄

(i)
n+1) = ODESolver

(
(q(i)
n , ζ(i)

n ), f̄ , t
(i)
n+1 − t(i)n ;θ

)
.

The loss function is defined as L =∑D
i=1

∑N
n=1 c(q

(i)
n , ζ(i)

n , q̄
(i)
n , ζ̄

(i)
n ) where the distance

metric c is defined as the sum of position, orientation, and
velocity errors on the tangent bundle TSE(3):

c
(
q, ζ, q̄, ζ̄

)
= cp(p, p̄) + cR(R, R̄) + cζ(ζ, ζ̄), (6)

with the position error cp(p, p̄) = ‖p − p̄‖22, the velocity
error cζ(ζ, ζ̄) = ‖ζ−ζ̄‖22, and the rotation error cR(R, R̄) =

‖
(
log(R̄R>)

)∨ ‖22. The log-map log(·) : SE(3) 7→ so(3)
returns a skew-symmetric matrix in so(3) from a rotation
matrix in SE(3), and the ∨-map (·)∨ : so(3) 7→ R3 is the
inverse of the hat map (̂·) in Sec. II.

The network parameters θ are optimized using gradient
descent by back-propagating the gradient ∇θL of the loss
through the neural ODE solver efficiently using adjoint
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FIGURE 1. Architecture of SE(3) Hamiltonian neural ODE network.

method [15]. Specifically, let a = ∇q,ζL be the adjoint
state and s = ((q, ζ),a,∇θL) be the augmented state. The
augmented state dynamics are [15]:

ṡ = f̄s =
(
f̄θ,−a>∇q,ζ f̄θ,−a>∇θ f̄θ

)
. (7)

We obtain the gradient∇θL by a single call to a reverse-time
ODE solver starting from sn+1 = s(tn+1):

s0 = (x̄0,a0,∇θL) = ODESolver(sn+1, f̄s, tn+1−tn), (8)

for n = 0, . . . , N − 1, and update the parameters θ using
gradient descent. Please refer to [15] for more details.

B. Model estimation error as a disturbance
Via the training process described in Sec. A, we approximate
the ground truth mass M̃(q), potential energy Ũ(q) and input
gain matrix B̃(q) with the learned mass Mθ(q) = M̃(q) +
∆Mθ(q), potential energy U(q) = Ũ(q)+∆Uθ(q), and input
gain B(q) = B̃(q) + ∆Bθ(q) where ∆Mθ(q),∆Uθ(q), and
∆Bθ(q) are the estimation errors. We drop the subscript
θ to simplify the notations. The generalized coordinates q
and the ground-truth momentum p̃ := M̃(q)ζ, satisfy the
Hamiltonian dynamics (3):

q̇ = q×∇p̃H̃(q, p̃) = q×ζ
˙̃p = −q×>∇qH̃(q, p̃) + p̃×∇pH̃(q, p̃) + B̃(q)u

= −q×>∇qH̃(q, p̃) + p̃×ζ + B̃(q)u,

(9)

with the ground-truth Hamiltonian

H̃(q, p̃) =
1

2
p̃>M̃−1(q)p̃ + Ũ(q) =

1

2
ζ>M̃(q)ζ + Ũ(q).

(10)
Meanwhile, for the generalized coordinates q and the mo-
mentum p := M(q)ζ, the Hamiltonian dynamics is learned
from data and of the form:

q̇ = q×∇pH(q, p) = q×ζ

ṗ = −q×>∇qH(q, p) + p×∇pH(q, p) + B(q)u

= −q×>∇qH(q, p) + p×ζ + B(q)u,

(11)

with the learned Hamiltonian

H(q, p) =
1

2
ζ>M(q)ζ + U(q) = H̃(q, p̃) + ∆H(q, p),

and its estimation error ∆H(q, p) = 1
2ζ
>∆M(q)ζ+∆U(q).

However, the learned dynamics (11) is only an approxima-
tion of the actual dynamics for (q, p). While the dynamics
of q does not change, the actual dynamics of the learned

momentum, p = M(q)ζ = p̃ + ∆p, where ∆p = ∆M(q)ζ,
is derived from (9) as follows:

ṗ = ˙̃p + ∆̇p

= −q×>∇qH(q, p) + p×ζ + B(q)u

+ q×>∇q (∆H(q, p))−∆p×ζ −∆B(q)u + ∆̇p.

= −q×>∇qH(q, p) + p×ζ + B(q)u + d1,
(12)

where the force

d1 := q×>∇q (∆H(q, p))−∆p×ζ−∆B(q)u+ ∆̇p (13)

represents the effect of the model errors ∆M(q),∆U(q),
and ∆B(q) and is considered as a disturbance applied to the
learned system (11). To improve the error d1 with respect
to the position p, we enforce translation-equivariance in the
neural ODE model, as described in Sec. III.A, and learn the
model well around the origin. This allows us to offset any
position p to the well-learned region around the origin. To
reduce the model error with respect to orientation, we collect
a training dataset that covers different regions of roll, pitch,
and yaw angles, e.g. by manually driving a UAV to different
desired positions and yaw angles. A promising approach to
estimate the disturbance magnitude is to employ a Bayesian
formulation of the neural ODE network used to learn the
dynamics model. A Bayesian model will provide a poste-
rior distribution, rather than point estimates, for the model
parameters (i.e. M−1(q), B(q), and U(q)), whose variance
can be used to obtain parameter error bounds and, in turn, a
disturbance bound. Bayesian neural network models that can
be used for dynamics learning include Bayesian neural ODE
networks [54], [55], neural stochastic differential equation
(SDE) networks [56], or Gaussian-process ODEs [57]. This
motivates analyzing the robustness of our control design in
Sec. IV to the disturbance d1 caused by the model errors.

IV. Stabilization of Hamiltonian Dynamics with Matched
Disturbances
As discussed in Sec. III.B, due to estimation errors in
the dynamics learning process, the learned system model
satisfies Hamilton’s equations of motion in (3) subject to a
matched disturbance signal d1 : R 7→ R6:[

q̇
ṗ

]
=

[
0 q×

−q×> p×

] [
∇qH(q, p)
∇pH(q, p)

]
+

[
0

B(q)

]
u +

[
0
d1

]
. (14)

We consider a passivity-based stabilizing controller for (14),
and analyze its robustness with respect to the disturbance
signal d1 and its safety with respect to the obstacle set O.

A. Passivity-based control
Consider a desired regulation point x∗ = (q∗, p∗) for the
system in (14) with generalized coordinates q∗ = (p∗,R∗)
and momentum p∗ = 0. Since the Hamiltonian H(x) may
not have a minimum at x∗, the control signal u in (14)
should be designed to inject additional energy Ha(x,x∗)
into system and achieve a desired Hamiltonian Hd(x,x∗) =
H(x)+Ha(x,x∗), which is minimized at x∗. This is the ap-
proach followed by interconnection and damping assignment
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passivity-based control (IDA-PBC) [58]. Let xe = (qe, pe)
denote the error in generalized coordinates and momentum:

Re = R∗>R =
[
re1 re2 re3

]>
pe = p− p∗

qe =
[
p>e r>e1 r>e2 r>e3

]>
pe = p− p∗.

(15)

A possible choice of Hd(x,x∗), minimized at x = x∗, is:

Hd(x,x∗) = T (qe, pe) + Ud(qe) (16)

=
1

2
p>e M

−1(qe)pe +
kp
2
‖pe‖2 +

kR
2

tr(I−Re),

where kp and kR are positive scalars.
The IDA-PBC method [12], [58] designs a controller u =

π(x,x∗) such that the closed-loop dynamics of the system
in (14) are governed by the desired Hamiltonian in (16) as:[
q̇e
ṗe

]
=

[
0 J(x,x∗)

−J(x,x∗)> −Kd

] [
∇qeHd(x,x∗)
∇peHd(x,x∗)

]
+

[
0
d

]
,

(17)
where the terms J(x,x∗), Kd, and d in the transformed
dynamics depend on the control design. To obtain the
controller, one uses the relationship between x and xe in
(15) to equate the dynamics in (14) and (17), leading to:

u = π(x,x∗) = B†(q)b(x,x∗), (18)

where B†(q) = (B>(q)B(q))−1B>(q) is the pseudo-inverse
of the input gain B(q) and:

b(x,x∗) =
(
q×>∇qH(x)− p×∇pH(x)

− J(x,x∗)>∇qeHd(x,x∗)−Kd∇peHd(x,x∗)
)

(19)

with J(x,x∗) :=

[
R> 0 0 0
0 r̂>e1 r̂>e2 r̂>e3

]>
. If the IDA-PBC

matching equations [59],

B⊥(q)b(x,x∗) = 0, (20)

are satisfied, where B⊥(q) is a maximal-rank left annihilator
of B(q), i.e., B⊥(q)B(q) = 0, then the controller in (18)
achieves the desired closed-loop dynamics in (17) with d =
d1, i.e., without introducing any extra disturbance.

If the matching equations (20) cannot be satisfied globally,
i.e., the IDA-PBC controller does not solve the system
B(q)u = b(x,x∗) exactly, then π(x∗,x) = B†(q)b(x,x∗)
is a least-squares solution. In this case, the residual,

d2 :=
(
B(q)B†(q)− I

)
b(x,x∗), (21)

is introduced as an additional matched disturbance:

d = d1 + d2 (22)

in the closed-loop dynamics in (17). Since the magnitude
of d2 is proportional to that of b(x,x∗), it depends on
the desired regulation point x∗. An underactuated quadrotor
system example is provided in Sec. VII.D.

In general, the matching equations (20) are nonlinear
PDEs and can be solved explicitly only for certain cases [59].
If B(q) is invertible, i.e., the system in (14) is fully-actuated,
then the solution in (18) exists and is unique. For systems
with underactuation degree 1, the matching equations may

be reduced to ODEs with closed-form solution [60] or solved
with certain desired kinetic energy [61]. Yuksel et al. [62]
solve the matching equations specifically for stabilizing a
quadrotor system, using Euler angles instead of a rotation
matrix. A survey on this topic is available in [59].

B. Robustness analysis
In this section, we analyze the stability and robustness
with respect to the disturbance signal d in (22) of the
IDA-PBC controller in (18). Although the techniques we
developed for dynamics learning in Sec. III and control
synthesis in Sec. IV.A did not make any assumptions about
the Hamiltonian system in (14), our robustness and safety
analysis that follows is developed under two assumptions.

Assumption 1:
The disturbance signal (22) is uniformly bounded, i.e.,
‖d‖ ≤ δd for some δd > 0.

Assumption 2:
The generalized mass matrix is constant, i.e., M(q) ≡M.

Without Assumption 1, it is not possible to provide any
performance guarantees for the control design because the
disturbance d can have an arbitrary effect on the evolution
of the closed-loop system dynamics. The disturbance magni-
tude bound δd exists if we assume bounded estimation errors,
bounded velocity and acceleration, bounded ∇q (∆H(q, p)),
and bounded control input u from the controller (18).

Our robustness analysis in Thm. 1 below constructs an
ISS-Lyapunov function [63] to handle the disturbance d.
Assumption 2 simplifies the proof that we have a valid ISS-
Lyapunov function. Extending the analysis to handle a state-
dependent mass M(q) is left for future work.

We simplify the error dynamics (17) by noting that:

e(x,x∗) := J(x,x∗)>∇qeHd(x,x∗) =

[
kpR

>pe
1
2kR

(
Re −R>e

)∨] ,
which leads to:

q̇e = J(x,x∗)M−1pe,

ṗe = −e(x,x∗)−KdM
−1pe + d.

(23)

Theorem 1:
Consider the Hamiltonian system in (14) with desired

regulation point x∗ = (q∗, 0) and control law spec-
ified in (18) with parameters kp, kR, Kd. Assume
that the initial state x(t0) lies in the domain A ={
x | tr(I−R∗>R) ≤ α < 4, ‖p‖ ≤ β

}
for some positive

constants α and β. Then, the function:

V(x,x∗) = Hd(x,x∗) + ρ
d

dt
Ud(qe) (24)

is an ISS-Lyapunov function [63] with respect to d in (22)
and satisfies:

k1‖z‖2 ≤ V(x,x∗) ≤ k2‖z‖2,
V̇(x,x∗) ≤ −k3‖z‖2 + kγδ

2
d,

(25)
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where z := [‖e(x,x∗)‖ ‖pe‖]> ∈ R2, kγ = 1
2λmin(Kd) +

ρλ2
2

2λ1
,

λ1 := λmin(M−1), λ2 := λmax(M−1), k1 = 1
2λmin(Q1),

k2 = 1
2λmax(Q2), k3 = 1

2λmin(Q3), and the associated
matrices Q1, Q2, Q3 are defined as:

Q1 =

[
min

{
k−1
p , k−1

R

}
−ρλ2

−ρλ2 λ1

]
,

Q2 =

[
max

{
k−1
p ,

4k−1
R

4−α

}
ρλ2

ρλ2 λ2

]
, Q3 =

[
q1 q2

q2 q3

]
,

(26)

where the elements of Q3 are:
q1 = ρλ1,

q2 = −ρ
[
λmax(M−1KdM

−1) + βλ2
2

]
,

q3 = λmin(Kd)λ2
1 − 2ρλ2

2 max {kp, kR} .
(27)

Denote the sub-level set of V(x,x∗) with respect to positive
scalar c as: Sc := {x | V(x,x∗) ≤ c}. Given constants c1,
c2 defined as:

c1 :=
k2kγ
k3

δ2
d, c2 := k1 min

{
k2
Rα(4− α)/4, β2

}
, (28)

Sc2 ⊆ A is an estimate of the region of attraction of the con-
trol law in (18). Any state x starting within Sc2 will converge
exponentially to Sc1 and remain within it. The position error
trajectory pe(t) is uniformly ultimately bounded as:

lim
t→∞
‖pe(t)‖2 ≤

c1
k1k2

p

=
k2kγ
k1k3k2

p

δ2
d. (29)

To ensure that c1 < c2, the disturbance bound δd should
satisfy δd <

√
c2k3
k2kγ

.

Proof:
See Appendix A.

The estimates of the region of attraction and the uniform
ultimate bound on the position error provided by Thm. 1 for
the IDA-PBC controller are conservative because our anal-
ysis considers the mass and inertia jointly as a generalized
mass M and does not differentiate the force and torque dis-
turbances. Besides considering separate disturbance bounds
for the force and torque inputs, less conservative bounds can
be achieved by introducing disturbance compensation [41].

C. Safety analysis
Sec. IV.B analyzed the stability and robustness properties
of the IDA-PBC controller for a given regulation point x∗.
Next, we use the Lyapunov function V(x,x∗) in (24) to
derive conditions under which the trajectory of the closed-
loop system remains outside the unsafe set O. We introduce
a barrier function, which takes the region of attraction Sc2
of the controller and the invariant set Sc1 associated with the
ultimate bound in Thm. 1 as well as the distance d̄(p∗,O)
to O into account to quantify the margin to safety violation:

∆E(x,x∗) := min
{
c2, k1k

2
pd̄

2 (p∗,O)
}
− V(x,x∗)

+ max {c1 − V(x,x∗), 0} , (30)

where k1, kp, c1, c2 are the constants specified in Thm. 1. If,
for a given regulation point x∗, the safety margin ∆E(x,x∗)

is positive initially, then any trajectory of the closed-loop
system remains safe as it converges to the invariant set Sc1 .

Proposition 1:
Consider the system in (14) with regulation point x∗ =

(q∗, 0) and control law in (18). Suppose that the desired
position p∗ has sufficient clearance from the unsafe set O
and the disturbance d is bounded as follows:

d̄ 2(p∗,O) ≥ k2kγ
k1k3k2

p

δ2
d, ‖d‖2 ≤ δ2

d <
c2k3

k2kγ
. (31)

If the initial state x(t0) = x0 satisfies:

∆E(x0,x
∗) ≥ 0, (32)

then the position error trajectory is uniformly ultimately
bounded as in (29) and the system remains safe, i.e.,
d(p(t),O) ≥ 0 for all t ≥ t0.

Proof:
By the definition in (30), ∆E(x,x∗) ≥ 0 implies that the
Lyapunov function V(x,x∗) satisfies one of three cases:

1) c1 < V , V ≤ min
{
c2, k1k

2
pd̄

2 (p∗,O)
}

,

2) c1 ≥ V , V ≤ min
{
c2, k1k

2
pd̄

2 (p∗,O)
}

,

3) c1 ≥ V , V > min
{
c2, k1k

2
pd̄

2 (p∗,O)
}

.

Case 3) can never happen because (31) implies that c1 ≤
k1k

2
pd̄

2 (p∗,O) and c1 < c2.
For Case 1), when c1 < V ≤ c2, we know from Thm. 1

that V̇ < 0 and every trajectory starting in Sc2 converges
exponentially to Sc1 . In this case, from (25):

k1k
2
pd̄

2 (p∗,O) ≥ V(x(t0),x∗) > V(x(t),x∗)

≥ k1‖z(t)‖2 ≥ k1k
2
p‖p(t)− p∗‖2. (33)

Therefore, ‖p(t) − p∗‖2 ≤ d̄ 2 (p∗,O) ≤ d2(p∗,O) and
d(p(t),O) ≥ 0 for all t ∈ [t0, t1], where t1 is the time when
the trajectory enters Sc1 , corresponding to Case 2) above.

For Case 2), we have V(x,x∗) ≤ c1 since (31) implies
that c1 < c2. From Thm. 1, Sc1 is forward invariant and:

‖p(t)− p∗‖2 ≤ V(x(t),x∗)
k1k2

p

≤ c1
k1k2

p

=
k2kγ
k1k3k2

p

δ2
d. (34)

Hence, (31) implies that d(p(t),O) ≥ 0.

V. Safe and Stable Tracking using a Reference Governor
In this section, we develop a safe tracking controller by
introducing a reference governor [33] to guide the reference
point x∗ for the stabilizing control law π(x,x∗) in (18) along
the desired reference path r introduced in Problem 1.

A reference governor is a virtual dynamical system whose
state g(t) moves along r(σ) for σ ∈ [0, 1]. In this paper, the
governor state g(t) ∈ R3 specifies a desired position p∗(t)
for the Hamiltonian system. We introduce a lifting function
x∗(t) = `(g(t)) to provide a desired orientation R∗(t) and
specify a reference state x∗(t) for the Hamiltonian system.

Given x∗(t), we compute the safety margin
∆E(x(t),x∗(t)) in (30) and use the leeway amount
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FIGURE 2. Structure of the reference-governor tracking controller (left). A governor with state g adaptively tracks desired path r and generates a
reference point x∗ = `(g) for the closed-loop Hamiltonian system (right). A local projected goal ḡ (purple dot) is generated as the farthest intersection
between the local safe set LS(x, g) (yellow sphere) and the path r (blue curve) to guide the governor motion.

by which the margin exceeds 0 to move the governor
state g(t) along r(σ). Intuitively, the reference point
x∗(t) = `(g(t)) speeds up when ∆E(x(t),x∗(t)) increases,
e.g., the distance to obstacles increases or the system energy
function decreases, and vice versa.

Given a point g = r(σ) on the reference path for some
σ ∈ [0, 1], we generate a reference state x∗ = (q∗, p∗) where
q∗ = (p∗,R∗) = (g, I) and p∗ = 0. The governor state g
represents the desired position p∗ on the path. For simplicity,
we set the desired rotation matrix R∗ = I. If, in addition
to r, a desired yaw angle reference is provided, one can
generate R∗ using the method described in [64] to achieve
better orientation tracking. We define a lifting function ` :
R3 7→ T ∗SE(3) that generates a reference state x∗ = `(g)
from the governor state g:

`(g) :=
[
g> e>1 e>2 e>3 0> 0>

]>
, (35)

where e1, e2, e3 are the rows of the identity matrix. Given
the reference state x∗ = `(g), we compute the safety margin
∆E(x,x∗) in (30) and describe how to update the governor
state to ensure that safety is preserved.

We update the governor state g(t) = r(σ(t)) along the
path by regulating the parameter σ:

g(t) = r(σ(t)), σ̇(t) = −kg(σ(t)− σ∗(t)), (36)

where kg > 0 is a control gain and σ∗(t) ∈ [0, 1] is a desired
time-varying parameter, which we construct using the safety
margin ∆E(x,x∗). We require σ∗(t) to satisfy two condi-
tions: 1) always stay ahead of the current σ(t): σ∗(t) ≥ σ(t),
∀t ≥ t0, and 2) have distance ‖σ∗(t) − σ(t)‖ proportional
to ∆E(x(t),x∗(t)). The first condition guarantees that the
governor state g(t) moves forward along the path towards
the goal r(1). The second condition allows the safety margin
∆E to adaptively regulate the governor state g(t) in order
to ensure safety for the Hamiltonian system. To construct
the desired path parameter σ∗, we define a local safe zone
as a ball around the governor state g with radius ∆E(x,x∗)
based on the state x and the reference state x∗ = `(g).

Definition 1:
A local safe zone is a subset of R3 that depends on the

system state x and the governor state g:

LS(x,g) :=
{
q ∈ R3 |‖q− g‖2 ≤ ∆E(x, `(g))

}
, (37)

where ` is the lifting function in (35) and ∆E is the safety
margin in (30).

We determine σ∗ as the farthest intersection between the
local safe zone LS(x,g) and the path r by solving the scalar
optimization problem in Def. 2.

Definition 2:
A local projected goal for system-governor state (x,g) is

a point ḡ ∈ LS(x,g) that is farthest along the path r:

ḡ = r(σ∗), σ∗ = argmax
σ∈[0,1]

{σ | r(σ) ∈ LS(x,g)} . (38)

The construction of the local projected goal ḡ is shown in
Fig. 2 (right), showing a reference path r, the local safe zone
LS(x,g) and the local projected goal ḡ. This constructing
of σ∗ and ḡ completes the governor update law (36).

Our safe tracking controller consists of the reference
governor system in (36), adaptively updating the reference
point x∗ = `(g) via the lifting function in (35), and the
passivity-based controller in (18) that drives the Hamiltonian
system towards x∗. The stability, safety, and robustness of
the proposed tracking controller are analyzed in Thm. 2.

Theorem 2:
Suppose that the desired path r(σ) has sufficient clearance

from the unsafe set O and the disturbance d is bounded as:

min
σ∈[0,1]

d̄ 2(r(σ),O) ≥ k2kγ
k1k3k2

p

δ2
d, ‖d‖2 ≤ δ2

d <
c2k3

k2kγ
.

Consider the Hamiltonian system in (14), the governor
system in (36) with σ∗ constructed in Def. 2 and the control
law u = π(x, `(g)) in (18). Suppose that the initial state
(x0,g0) satisfies:

∆E (x0, `(g0)) > 0, g0 = r(0) = p(t0), (39)

where ∆E(x,x∗) is the safety margin in (30). The position
p(t) of (14) converges to a ball of radius

√
k2kγ
k1k3k2p

δd around
r(1) and remains safe, i.e. p(t) ∈ F , for all t ≥ t0

Proof:
To simplify notation, let ∆E(t) = ∆E (x(t), `(g(t))).
Initially, g0 = p(t0) = r(0) ∈ LS(x0,g0) and ∆E(t0) > 0.
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The local projected goal ḡ and the associated σ∗ are well
defined in Def. 2. By the governor update law (36), the path
parameter σ increases, the governor state g(σ) moves along
r towards the goal r(1). The desired state x∗ = `(g) is
updated via the lifting function (35). As g tracks ḡ on the
path r via the path parameter update in (36), the system state
x tracks x∗ = `(g). During this process, the safety margin
∆E(t) fluctuates and regulates the rate of change of σ. Since
σ∗(t) is bounded in (38), σ(t) is updated continuously [65]
in (36), leading to a continuous governor state g(t). By
construction, the lifting function `(g) is continuous in g.
Therefore, the reference point x∗(t) = `(g(t)) is continuous
in time, leading to a continuous Lyapunov function V(x,x∗)
and a continuous safety margin ∆E(t). As a result, the safety
margin ∆E(t) cannot become negative without crossing 0
from above at some time T0. As ∆E(t) ↓ 0, the local safe
zone shrinks to a point, i.e., LS(x,g) ↓ {g}. This immedi-
ately stops the the governor because ḡ = g(T0) = r(σ(T0))
and σ̇(T0) = 0. As a result, Proposition 1 states that x(t)
stays within the invariant set Sc2 (x∗(T0)) for t ≥ T0 and
converges to Sc1 (x∗(T0)) without leaving F . Eq. (30) shows
that ∆E(t) = 0 implies c1 ≤ V(t) ≤ c2. By Thm. 1, as x(t)
approaches x∗(T0), we have V̇(T0) < 0, i.e., the Lyapunov
function V is decreasing. There exists h > 0 such that
∆E(T0+h) becomes strictly positive. Hence, the governor is
able to move again towards a new ḡ generated by the positive
∆E(T0 +h). This process continues until the governor state
g(t) converges to r(1), the closed-loop system converges to
the region Sc1 (`(r(1))) and the position p(t) satisfies the
uniform ultimate bound in (29) around r(1).

Note that while our control design does not account for
state estimation errors, e.g. from an odometry algorithm with
a sensor setup (e.g. stereo camera, LiDAR, or visual-inertial),
we can conservatively handle the errors by reducing the
obstacle distance d̄ in the safety margin specification in (31).

VI. Application to Hamiltonian Dynamics in Rn

In this section, we show that our control design can be
easily modified and applied to a Hamiltonian system with
configuration q in Rn and dynamics:[

q̇
ṗ

]
=

[
0 In
−In 0

] [
∇qH(q, p)
∇pH(q, p)

]
+

[
0

B(q)

]
u +

[
0
d1

]
(40)

where the Hamiltonian H(q, p) is defined as:

H(q, p) =
1

2
p>M−1(q)p + U(q). (41)

Given a desired regulation point x∗ = (q∗, p∗) with
momentum p∗ = 0, define the error state xe = (qe, pe) as:

qe = q− q∗, pe = p− p∗. (42)

A desired Hamiltonian, minimized at x = x∗, is:

Hd(x,x∗) =
1

2
p>e M

−1(qe)pe +
kp
2
‖qe‖2. (43)

The IDA-PBC controller:

u = π(x,x∗) = B†(q)b(x,x∗) (44)

with b(x,x∗) = ∇qH(x)−∇qeHd(x,x∗)−Kd∇peHd(x,x∗)
achieves the closed-loop dynamics:[

q̇e
ṗe

]
=

[
0 In
−In −Kd

] [
∇qeHd(x,x∗)
∇peHd(x,x∗)

]
+

[
0
d

]
, (45)

where d = d1 + d2 as in (22) and d2 is as in (21).

Theorem 3:
Consider the Hamiltonian system in (40) with desired

regulation point x∗ = (q∗,0) and control law in (44) with
parameters kp, Kd. Under Assumptions 1 & 2, the function:

V(x,x∗) = Hd(x,x∗) + ρ
d

dt
Ud(qe) (46)

with Ud(qe) =
kp
2 ‖qe‖2 is an ISS-Lyapunov function [63]

with respect to d and satisfies:

k1‖z‖2 ≤ V(x,x∗) ≤ k2‖z‖2,
V̇(x,x∗) ≤ −k3‖z‖2 + kγδ

2
d,

(47)

where z := [kp‖qe‖ ‖pe‖]> ∈ R2, kγ = 1
2λmin(Kd) +

ρλ2
2

2λ1
,

λ1 := λmin(M−1), λ2 := λmax(M−1), k1 = 1
2λmin(Q1),

k2 = 1
2λmax(Q2), k3 = 1

2λmin(Q3), and the associated
matrices Q1, Q2, Q3 are defined as:

Q1 =

[
k−1
p , −ρλ2

−ρλ2 λ1

]
, Q2 =

[
k−1
p , ρλ2

ρλ2 λ2

]
,

Q3 =

[
ρλ1 −ργdλ2

2

−ργdλ2
2 γdλ

2
1 − 2ρλ2

2kp

]
.

(48)

Any initial state x converges exponentially to Sc1 =
{x|V(x,x∗) ≤ c1} with c1 :=

k2kγ
k3

δ2
d and remains within.

The error trajectory qe(t) is uniformly ultimately bounded:

lim
t→∞
‖qe(t)‖2 ≤

c1
k1k2

p

=
k2kγ
k1k3k2

p

δ2
d. (49)

The proof of Thm. 3 follows the same steps as that of
Thm. 1, and is omitted due to space limitations. In contrast
to Thm. 1, the result in Thm. 3 for Rn holds globally, i.e., the
region of attraction is A = Rn × Rn. Thus, the disturbance
magnitude bound δd can be arbitrarily large.

The safety analysis in Sec. IV.C can be modified with a
new safety margin:

∆E(x,x∗) := k1k
2
pd̄

2(q∗,O)− V(x,x∗)

+ max {c1 − V(x,x∗), 0} , (50)

as Thm. 3 holds globally. The reference governor lifting
function can be chosen as `(g) = [g> 0>]>. The governor
state update remains the same as in (36). The robustness
analysis extends the safe tracking results in [66] and [36].

VII. Evaluation
We evaluate our robust and safe tracking controller us-
ing simulated hexarotor and quadrotor robots in 2D and
3D environments with ground-truth mass m = 6.77 kg,
and inertia matrix J = diag([1.05, 1.05, 2.05]) kg ·m2 ,
inspired by the solar-powered UAV in [67]. The robot’s
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ground-truth dynamics satisfy Hamilton’s equations (3) with
generalized mass M(q) = diag(mI,J), potential energy
U(q) = mg

[
0 0 1

]
p, where p is the position and

g ≈ 9.8ms−2 is the gravitational acceleration. The input
matrices for the hexarotor and the quadrotor are B(q) = I

and B(q) =
[
04×2 I4×4

]>
, respectively. The control input

u of the hexarotor includes a 3D force and a 3D torque while
that of the quadrotor includes a scalar force and a 3D torque.

For all experiments, the following control gains are used
for our controller in Sec. IV.A: kp = 20, kR = 50, Kd =
15I in (16). The parameters shown in Thm. 1 are: α = 2,
β = 20, c1 = 2.2050, c2 = 8.8200, ρ = 3.5822 × 10−5.
The control gain for the governor in (36) is kg = 0.5. The
control loop frequency for all experiments is at 120 Hz.

While, our evaluation focuses on rotorcraft aerial robots,
the methodology for system identification and control syn-
thesis proposed in this paper is general. The exact same
approach is applied to hexarotor, quadrotor and other ground
and marine vehicles. This is in contrast with other system
identification and control synthesis methods, which require
knowledge of the dynamics structure, careful experiment
design, and domain expertise for the particular system.

A. Evaluation of SE(3) Hamiltonian dynamics learning
We consider a simulated hexarotor unmanned aerial vehicle
(UAV) (Fig. 3) with fixed-tilt rotors pointing in different
directions [68] and a simulated quadrotor UAV. Since the
mass m of the UAVs can be easily measured, we assume
the mass m is known, leading to a known potential energy
U(q) = mg

[
0 0 1

]
p. We approximate the inverse gener-

alized mass matrix by M−1
θ (q) = diag(m−1I,J−1

θ (q)) and
learn Jθ(q)−1 and Bθ(q) from data.

We mimic manual flights in an area free of obstacles using
a PID controller and drive the UAVs from a random initial
pose to 18 desired poses, generating 18 1-second trajectories.
We shift the trajectories to start from the origin and create
a dataset D = {t(i)0:N , q

(i)
0:N , ζ

(i)
0:N ,u

(i)
0:N−1)}Di=1 with N = 24

and D = 18. The Hamiltonian-based neural ODE network
is trained with the dataset D, as described in Sec. III, for
5000 iterations and learning rate 10−4. For the hexarotor,
Fig. 3(c) shows the loss function during training. Note that
if we scale Mθ(q) and the input matrix B(q) by a constant
γ, the dynamics of (q, ζ) in (3) and (5) does not change. Fig.
3(d) and 3(e) plot the scaled version of the learned inverse
mass Jθ(q)−1 and the input matrix Bθ(q), converging to the
constant ground truth values. We achieve similar results for
the quadrotor using the same training process.

B. Evaluation of robust safe tracking control of a learned
2D hexarotor Hamiltonian model
Next, we compare our approach with a GP-MPC technique
[7] using a simulated 2D fully-actuated hexarotor UAV,
moving on the xz-plane with position p =

[
x, 0, z

]
and

orientation R = Rψ determined by the pitch angle ψ. The
control input is a 3D wrench, including a 2D force and
a 1D torque. As we only consider the pitch angle ψ, we
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are interested in the inertia value Jyy and ignore Jxx and
Jzz . We assume that the generalized mass m and Jyy are
unknown for the 2D hexarotor and approximated by mθ and
Jyyθ , respectively. The input gain B(q) is assumed known.

Let m0 = 1.5m and Jyy0 = 1.5Jyy be initial guesses of
the mass m and the inertia Jyy. We model the approximated
mass inverse m−1

θ and inertia inverse Jyyθ
−1 as:

m−1
θ =

(√
m−1

0 + L1(q;θ)

)2

, Jyyθ
−1

=

(√
Jyy0
−1

+ L2(q;θ)

)2

,

where L1(q;θ) and L2(q;θ) are two neural networks, rep-
resenting the residual mass inverse and inertia inverse to be
learned. In GP-MPC [7], the dynamics (3) are split into a
prior nominal model with the prior mass m0 and inertia Jyy0 ,
and residual dynamics, modeled by a GP regression model.

To collect training data, we place the simulated hexarotor
at an initial location (x, z) = (−1, 0) and apply random
control inputs to obtain D = {t(i)0:1, q

(i)
0:1, ζ

(i)
0:1,u

(i)
0 }150

i=1. Our
Hamiltonian neural ODE network is trained with the dataset
D, as described in Sec. III. For GP-MPC, the same dataset
D is used to train a GP regression model of the residual
dynamics as described in [7] and implemented in [38].

We assume there are two walls in the environments,
generating two safety constraints on the robot position:
−x + z < 1.1, 0.8x + z < 0.4. The task is to track a
predefined piecewise linear path r, shown in Fig. 5, while
safely avoiding collision with the walls. We adapt the GP-
MPC implementation by [38] for the 2D hexarotor and
enforce the safety constraints probabilistically with 95%
confidence interval using the GP model uncertainty. To
propagate the model uncertainty through a horizon of 10 time
steps, we linearize the dynamics model around the hovering
state and propagate the state mean and covariance using the
mean equivalence technique [7], [38] with a time step of
1/120 s. Meanwhile, our learned Hamiltonian neural ODE
model is used with the safe tracking controller described in
Sec. V to perform the task and enforce safety constraints.

Fig. 4 compares the prediction errors of our learned neural
ODE network and the GP model. We collect the robot states
and control inputs, generated by our controller while tracking
the path, and predict the next state. Fig. 4 (left) plots the
prediction error over time, showing that we achieve better
prediction than the trained GP model. This reflects the
difference between our model, which encodes the Hamil-
tonian structure and translation equivariance in the network
architecture, and the GP model, which incurs higher model
uncertainty in locations far from the data points.

Fig. 4 and 5 show tracking performance of our approach
and GP-MPC. We compare the tracking error of both
methods, calculated as the distance from the robot position
to the reference point, specified by the governor in our
approach and by time parameterization of the path in GP-
MPC: p∗(t) = r(min(t, 10)/10), i.e., the GP-MPC method
finishes the task in about 10 seconds, similar to the tracking
time of our approach. Our controller is able to track the
path more accurately than GP-MPC, illustrated qualitatively

in Fig. 5 and quantitatively in Fig. 4 (middle). This can be
explained by the higher predictions errors shown in Fig. 4
(left), which grow quickly after multiple time steps due to
uncertainty propagation. Both our safe tracking controller
with learned Hamiltonian dynamics and the GP-MPC safe
controller keep the hexarotor in the safe region, i.e., the
distance to the obstacles is always positive in Fig. 4 (right).

C. Evaluation of robust safe tracking control of a learned
3D fully-actuated hexarotor Hamiltonian model
This section evaluates our Hamiltonian dynamics learning
and safe tracking control techniques using a simulated
hexarotor UAV in a 3D environment. The task is to navigate
from a start position to a goal in a cluttered warehouse
environment without colliding with the obstacles O. The
same control gains are used for this 3D navigation task as in
the previous section. A simulated LiDAR scanner provides
point cloud measurements P(t) of the surface of the unsafe
set O, depending on the system pose at time t, with a
maximum sensing range of dmax = 30 m. The distance from
the governor g(t) to the unsafe set O is approximated via
d̄(g(t);O) ≈ miny∈P(t)‖g(t)− y‖. The reference path r is
pre-computed using an A* planner and tracked in ∼ 80 s.

Fig. 6 shows the behavior of the closed-loop hexarotor
system in the warehouse environment. The safety margin
∆E(x,x∗) fluctuates during the tracking process but, as
can be seen in Fig. 6, it never becomes negative. The
augmented system (x,g) is controlled adaptively, slowing
down when the dynamic safety margin decreases (e.g., when
the hexarotor is close to an obstacle or has large Lyapunov
value V) and speeding up otherwise (e.g., when the robot is
far away from the obstacles or has small total energy V). The
simulations show that our control policy successfully drives
the system from the start to the end of the reference path
while avoiding sensed obstacles online, i.e., d(p,O) remains
positive throughout the tracking task. Fig. 7 plots the tracking
errors between the robot state x and the reference state
x∗ generated by the governor, showing that our controller
tracks the path well. The tracking errors for the Euler angles
and angular velocity, are close to 0. The position and linear
velocity errors in the x and z directions are close to zero as
well while the errors in y direction fluctuates around −0.5
m and 0.8 m/s, respectively, and converges to 0 at the end.
This is expected as the robot stays behind the reference point,
mostly in y direction, and converges to the end of the path.

To evaluate the robustness of our controller, we repeat the
warehouse experiment using the ground-truth dynamics, sub-
ject to a artificially generated disturbances d ∈ R6 with dif-
ferent upper bounds δd. Each component of the disturbance
d ∈ R6 is uniformly generated in [−0.5δd, 0.5δd]. If ‖d‖ >
δd, we normalize the disturbance as δdd/‖d‖. Our robust
tracking controller successfully finishes the tracking task
across a wide range of δd: [0.001, 0.01, 0.1, 1, 10, 20, 30].
Larger δd are not reported due to violation of the positiveness
requirement on ∆E. Fig. 8 shows the average position
errors and the minimum distance to obstacle during the
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FIGURE 6. Safe navigation of a hexarotor system using learned model in a warehouse (left). The hexarotor (red body) navigates from a start (red star)
to a goal location (green star) while avoiding obstacles. The obstacles are sensed by a simulated LiDAR sensor. The reference path, the robot path are
shown in blue and green, respectively. Local safe set is shown in yellow sphere. The right plots show the dynamic safety margin ∆E, the Lyapunov
function V , and the distance to the obstacles d̄(p(t),O), indicating that the safety constraints are never violated.
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FIGURE 8. Tracking controller performance for hexarotor in warehouse
simulation with the ground truth model subject to a disturbance d with
different magnitudes: the average position tracking error (top) and the
minimum distance to obstacle (bottom).

tracking task versus the disturbance upper bound δd. The
average position tracking errors remain similar against δd.
The minimum distance to obstacle d(p,O) is always posi-
tive, illustrating the safety guarantees of our controller. This

number starts decreasing when δd > 1 as larger disturbances
can suddenly move the robot towards the obstacles.

D. Evaluation of robust safe tracking control of a learned
3D underactuated quadrotor Hamiltonian model
In this section, we repeat the task of safely navigating
from a start position to a goal in the same cluttered ware-
house environment in Sec. VII.C with a quadrotor, whose
model is learned from data as described in Sec. VII.A.
As mentioned in Sec. IV, the control input in (18) would
not introduce additional disturbance d2 when the matching
condition (20) is satisfied. For quadrotor, a maximal-rank
left annihilator of the ground-truth B(q) =

[
04×2 I4×4

]>
is B†(q) =

[
I2×2 02×4

]
. The matching condition (20) is

satisfied if and only if the first two elements of b(x,x∗) =[
b>v b>ω

]>
,bv ∈ R3,bω ∈ R3 in (19) equal to 0, i.e.

the force component bv coincides with the z-axis of the
body frame. As guaranteeing this condition is hard, we
instead use the force component in the world frame Rbv

and a desired yaw angle ψ∗ to determine the desired rotation
matrix, similar to [64]. The vector Rbv is set as the z-axis
of the desired frame, i.e., the third column b∗3 of the rotation
matrix R∗, to minimize the disturbance d2 in (21) from the
matching condition. We calculate the second column b∗2 by
projecting the second column of the yaw’s rotation matrix
bψ2 = [− cosψ, sinψ, 0] onto the plane perpendicular to b∗3.
We use the controller (18) with R∗ = [b∗1 b∗2 b∗3] where:

b∗3 =
Rbv

‖Rbv‖
,b∗1 =

bψ2 × b∗3
‖bψ2 × b∗3‖

,b∗2 = b∗3 × b∗1, (51)

and ω̂∗ = R∗>Ṙ∗ for our tracking task.
We successfully finish the task with the quadrotor while

remaining safe for the entire experiment, as shown in Fig. 9,
with similar behavior of the closed-loop quadrotor system in
terms of the safety margin, Lyapunov function and distance
to obstacle compared to Sec. VII.C. However, the orientation
tracking error of quadrotor (Fig. 10) is larger than that of
hexarotor, as expected since the quadrotor is underactuated.
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FIGURE 9. Safe navigation of quadrotor system (learned model) in a
warehouse: the dynamic safety margin ∆E, the Lyapunov function V
(top) and the distance to the obstacles d̄(p(t),O) (bottom), indicating
that the safety constraints are never violated.
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FIGURE 10. Tracking error of a quadrotor system (top to bottom):
position, velocity, angle and angular velocity errors.

E. Evaluation of our approach against unmodeled noise
In this section, we verify the robustness of our controller
against unmodeled noise on a simulated hexarotor by in-
jecting high frequency noise (e.g., propeller vibration) into
control inputs and simulating state estimation errors. In
particular, a 4.8 kHz 6D sinusoidal signal with amplitude 5
is generated for high frequency noise. Meanwhile, state es-
timation errors in positions, Euler angles, linear and angular
velocity are randomly generated with zero mean and standard
deviation, chosen from [69] (position: 0.01 m, Euler angle:
0.01 degree, linear velocity: 0.02 m/s and angular velocity:
0.14 degree/s). We consider the task of stabilizing to a static
governor, i.e. the governor is not moving, with the learned
dynamics model: without any unmodeled noise (base), with
high-frequency noise, and with state estimation error. Fig.
11 plots the Lyapunov function V and the safety margin ∆E
over time. Our controller is not affected significantly from
the high-frequency noise, potentially because the noise’s
effect is canceled out due to its zero mean. Our controller
is safe against the state estimation errors from [69], i.e.
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FIGURE 11. The Lyapunov function V and safety margin ∆E in the
presence of: high-frequency noise (top), state estimation error with
standard deviation from [69] (middle) and 3x larger (bottom), respectively).

∆E > 0 over time, but fails to remains safe, i.e. ∆E < 0
at some times, if we triple the noise deviation.

VIII. Conclusion
This paper developed a tracking controller for Hamiltonian
systems with learned dynamics. We employed a neural ODE
network to learn translation-invariant Hamiltonian dynamics
on the SE(3) manifold from trajectory data. The Hamilto-
nian of the learned system was used to synthesize an energy-
shaping controller and quantify its robustness to modeling
errors. A reference governor was employed to guide the
system along a desired reference path using the trade-off
between system energy, disturbance bounds, and distance to
obstacles to guarantee safe tracking. Our results demonstrate
that encoding SE(3) kinematics and Hamiltonian dynam-
ics in the model learning process achieves more accurate
prediction than Gaussian Process regression. Utilizing the
system energy in the control design offers a general approach
for guaranteeing robustness and safety for physical systems
and generalizes well to desired trajectories which are signifi-
cantly different from the training data. Future work will focus
on disturbance compensation and real robot experiments. We
also plan to verify our control design with systems in Rn that
involve more unknown parameters than just inertia and input
gain.
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Appendix A
Proof of Thm. 1
We do not write function arguments explicitly to simplify
the notation. We also introduce the following notation for
the components of e and pe in (23):

e =

[
ep
eR

]
=

[
kpR

>pe
1
2kR

(
Re −R>e

)∨] ,
pe = M

[
ev
eω

]
= M

[
v −R>e v

∗

ω −R>e ω
∗

]
.

(52)
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Consider the Lyapunov function candidate in (24):

V =
1

2
p>e M

−1pe + Ud + ρ
d

dt
Ud, (53)

where Ud =
kp
2 ‖pe‖2 + kR

2 tr(I − Re). In the domain A,
we have [70, Prop. 1]:

k−2
R ‖eR‖22 ≤ tr(I−Re) ≤

4k−2
R

4− α‖eR‖
2
2. (54)

By the chain rule and (23), we have:
d

dt
Ud = ∇qeH>d q̇e = ∇qeH>d JM−1pe = e>M−1pe (55)

Using (54) and (55), together with the Cauchy-Schwartz in-
equality and the sub-multiplicative property of the Euclidean
norm, the Lyapunov function candidate is bounded as:

V ≤ λ2

2
‖pe‖2 +

k−1
p

2
‖ep‖2 +

2k−1
R

4− α‖eR‖
2 + ρλ2‖e‖‖pe‖.

V ≥ λ1

2
‖pe‖2 +

k−1
p

2
‖ep‖2 +

k−1
R

2
‖eR‖2 − ρλ2‖e‖‖pe‖.

The bounds can be stated compactly in quadratic form using
z = [‖e‖ ‖pe‖]> and Q1, Q2 in (26):

1

2
z>Q1z ≤ V ≤

1

2
z>Q2z. (56)

The time derivative of the Lyapunov candidate satisfies:
d

dt
V = p>e M

−1ṗe+e>M−1pe+ρe>M−1ṗe+ρė>M−1pe.

The term ṗe is from (23). The term ė is obtained from (52):

ė =

[
ėp
ėR

]
=

[
−ω̂ep + kpev
kREReω

]
= −

[
ω̂ 0
0 0

]
e +

[
kpI 0
0 kRER

]
M−1pe,

(57)

where ER = 1
2

[
tr(R>e )I−R>e

]
satisfies ‖ER‖2 ≤ 1 [64,

Prop. 1]. Hence, we have:
d

dt
V = −p>e M−1KdM

−1pe + p>e M
−1d

− ρe>M−1e− ρe>M−1KdM
−1pe + ρe>M−1d

− ρp>e M−1

[
ω̂ 0
0 0

]
e + ρp>e M

−1

[
kpI 0
0 kRER

]
M−1pe.

To find an upper bound on d
dtV , we need a few intermediate

steps. First, on the domain A, we have:∥∥∥∥[ω̂ 0
0 0

]∥∥∥∥
2

= ‖ω̂‖2 = ‖ω‖ ≤ ‖M−1p‖ ≤ λ2β. (58)

Second, an upper bound on

ξ1 := −λmin(Kd)‖M−1pe‖2 + ‖M−1pe‖‖d‖ (59)

can be found using Young’s inequality [43]:

− ε‖a‖2 + η‖a‖‖b‖ ≤ − ε
2
‖a‖2 +

η2

2ε
‖b‖2 (60)

with ε = λmin(Kd), η = 1, a = M−1pe, b = d:

ξ1 ≤ −
λmin(Kd)

2
‖M−1pe‖2 +

1

2λmin(Kd)
‖d‖2. (61)

Similarly, we have:

ξ2 := −λ1‖e‖2 +λ2‖e‖‖d‖ ≤ −
λ1

2
‖e‖2 +

λ2
2

2λ1
‖d‖2. (62)

Using (58), (61), and (62), d
dtV is bounded by:

d

dt
V ≤ −1

2
z>Q3z + kγ‖d‖2, (63)

where the elements of Q3 are provided in (27) and kγ =
1

2λmin(Kd) +
ρλ2

2

2λ1
. Since the parameters ρ, kp, kR, Kd can be

chosen arbitrarily, there exists some choice that ensures the
matrices Q1, Q2, Q3 are positive definite as shown below.
The inequalities in (25) are obtained from (56) and (63) using
the Rayleigh-Ritz inequality.

Region of Attraction
We use the invariant sets Sc = {x | V(x,x∗) ≤ c} induced
by the Lyapunov function to restrict the error dynamics
inside the domain A and estimate the region of attraction.

We determine c1 ≥ 0 such that V̇ is positive on Sc1 .
From (25), V̇ is positive when kγδ

2
d − k3‖z‖2 ≥ 0, which

happens when Vk2 ≤
kγ
k3
δ2
d. Hence, with c1 = k2kγδ

2
d/k3, we

have V̇ ≥ 0 on Sc1 . Then, we determine c2 ≥ 0 such that
Sc2 ⊆ A. From (54) and (56), we have:

4− α
4

k2
R tr(I−Re) ≤ ‖eR‖2 ≤ ‖z‖2 ≤

V
k1
. (64)

Hence, if V ≤ 1
4k1k

2
Rα (4− α), then tr(I − Re) ≤ α.

Similarly, if V ≤ k1β
2, then ‖pe‖2 ≤ ‖z‖2 ≤ V

k1
≤ β2.

Hence, to ensure that Sc2 ⊆ A, we define c2 as:

c2 := k1 min
{
k2
Rα(4− α)/4, β2

}
. (65)

To ensure that c1 < c2, the disturbance bound δd must satisfy
δd <

√
c2k3
k2kγ

. Then, any closed-loop system trajectory that
starts in Sc2 converges exponentially to Sc1 and remains
within it. Recall that ep = kpR

>pe and from (56):

k2
p‖pe‖2 = ‖ep‖2 ≤ ‖e‖2 ≤ ‖z‖2 ≤

V
k1
. (66)

Hence, on Sc1 , ‖pe‖2 ≤ c1/(k1k
2
p) and the uniform ultimate

bound on the position error trajectory in (29) is satisfied.

Design Parameter Choice
We propose a systematic way to select parameters ρ, kp,
kR, Kd, ensuring that the matrices Q1, Q2, Q3 are positive
definite. Suppose kp < 4−α

4 kR and Kd = γdI for some
γd > 0, then we have

Q1 =

[
k−1
R −ρλ2

−ρλ2 λ1

]
Q2 =

[
k−1
p ρλ2

ρλ2 λ2

]
q2 = −ρλ2

2 (γd + β) q3 = γdλ
2
1 − 2ρλ2

2kR.

(67)

To guarantee the positive definiteness of Q1, Q2, Q3, the
following requirements must be satisfied:
λ1

kR
− ρ2λ2

2 > 0,
λ2

kp
− ρ2λ2

2 > 0, γdλ
2
1 − 2ρλ2

2kR > 0

ρλ1

(
γdλ

2
1 − 2ρλ2

2kR
)
− ρ2λ4

2 (γd + β)
2
> 0.
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All these constraints put upper bounds on ρ:

ρ ≤ min

{√
λ1

kRλ2
2

,

√
1

kpλ2
,
γdλ

2
1

2kRλ2
2

, ρ̄Q3

}
, (68)

where ρ̄Q3
=

γdλ
3
1

λ2
2[2λ1kR+λ2

2(γd+β)2]
.
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[69] M. L. Hoang, M. Carratù, V. Paciello, and A. Pietrosanto, “Noise
Attenuation on IMU Measurement For Drone Balance by Sensor
Fusion,” in IEEE International Instrumentation and Measurement
Technology Conference (I2MTC), 2021, pp. 1–6.

[70] T. Lee, “Robust Adaptive Attitude Tracking on SO(3) with an Appli-
cation to a Quadrotor UAV,” IEEE Transactions on Control Systems
Technology, vol. 21, no. 5, pp. 1924–1930, 2013.

Zhichao Li is a PhD student in Electrical and
Computer Engineering at the University of Cali-
fornia San Diego, La Jolla, CA, USA. He received
a B.Eng. degree from the School of Astronau-
tics, Northwestern Polytechnical University, Xi’an,
Shaanxi, China in 2013 and an M.S. degree in
Electrical Engineering from the School of Elec-
trical, Computer and Energy Engineering, Arizona
State University, Tempe, AZ, in 2016. His research
interests include control theory and motion plan-

ning with applications to mobile robots.

Thai Duong is a PhD student in Electrical and
Computer Engineering at the University of Cali-
fornia San Diego, CA, USA. He received a B.S.
degree in Electronics and Telecommunications
from Hanoi University of Science and Technology,
Hanoi, Vietnam in 2011 and an M.S. degree in
Electrical and Computer Engineering from Ore-
gon State University, Corvallis, OR, in 2013. His
research interests include machine learning with
applications to robotics, mapping and active explo-

ration using mobile robots, robot dynamics learning, and decision making
under uncertainty.

Nikolay Atanasov is an Assistant Professor of
Electrical and Computer Engineering at the Uni-
versity of California San Diego, La Jolla, CA,
USA. He obtained a B.S. degree in Electrical
Engineering from Trinity College, Hartford, CT,
USA in 2008 and M.S. and Ph.D. degrees in
Electrical and Systems Engineering from the Uni-
versity of Pennsylvania, Philadelphia, PA, USA in
2012 and 2015, respectively. His research focuses
on robotics, control theory, and machine learning,

applied to active perception problems for ground and aerial robots. He works
on probabilistic models that unify geometry and semantics in simultaneous
localization and mapping (SLAM), as well as optimal control and rein-
forcement learning techniques for minimizing uncertainty in these models.
Dr. Atanasov’s work has been recognized by the Joseph and Rosaline Wolf
award for the best Ph.D. dissertation in Electrical and Systems Engineering
at the University of Pennsylvania in 2015, the best conference paper award
at the 2017 IEEE International Conference on Robotics and Automation
(ICRA), and a 2021 NSF CAREER award.

VOLUME 00 2021 15

This article has been accepted for publication in IEEE Open Journal of Control Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJCSYS.2022.3201554

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


