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Abstract
Safe autonomous navigation in unknown environments is an important problem for mobile robots.
This paper proposes techniques to learn the dynamics model of a mobile robot from trajectory data
and synthesize a tracking controller with safety and stability guarantees. The state of a rigid-body
robot usually contains its position, orientation, and generalized velocity and satisfies Hamilton’s
equations of motion. Instead of a hand-derived dynamics model, we use a dataset of state-control
trajectories to train a translation-equivariant nonlinear Hamiltonian model represented as a neural
ordinary differential equation (ODE) network. The learned Hamiltonian model is used to synthe-
size an energy-shaping passivity-based controller and derive conditions which guarantee safe reg-
ulation to a desired reference pose. We enable adaptive tracking of a desired path, subject to safety
constraints obtained from obstacle distance measurements. The trade-off between the robot’s en-
ergy and the distance to safety constraint violation is used to adaptively govern a reference pose
along the desired path. Our safe adaptive controller is demonstrated on a simulated hexarotor robot
navigating in an unknown environments.
Keywords: dynamics learning, neural ODE network, reference governor, safe tracking control

1. Introduction

Designing controllers that handle safety constraints and guarantee stability is an important problem
in safety-critical applications of robotics, such as autonomous driving (Ames et al., 2014b; Shalev-
Shwartz et al., 2016), locomotion (Ames et al., 2014a) or medical robotics (Yip and Camarillo,
2014). Safety depends on the system states, governed by the system dynamics, and the environment
constraints. This leads to two requirements for designing provably safe controllers: 1) the availabil-
ity of an accurate dynamics model and 2) the satisfaction of time-varying safety constraints that are
only known at runtime.

The first requirement has motivated machine learning techniques for system dynamics learning,
e.g. based on Gaussian processes (Deisenroth et al., 2015; Kabzan et al., 2019) or neural networks
(Raissi et al., 2018; Chua et al., 2018). For physical systems, recent works (Lutter et al., 2019; Zhong
et al., 2019; Duong and Atanasov, 2021b) design the model architecture to encode a Lagrangian or
Hamiltonian formulation of robot dynamics (Lurie, 2013; Holm, 2008), which a black-box model
might struggle to infer. Zhong et al. (2019) use a differentiable neural ODE solver (Chen et al.,
2018) to generate predicted state trajectories in a Hamiltonian formulation. A loss function is back-
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propagated through the ODE solver to update the model parameters. Duong and Atanasov (2021b)
extend this approach by imposing both Hamiltonian dynamics and SE(3) pose constraints on the
ODE structure. A Hamiltonian-based model architecture also simplifies the design of stable regula-
tion or tracking control by energy shaping (Zhong et al., 2019; Duong and Atanasov, 2021a,b). The
key idea of energy-based shaping, known as interconnection and damping assignment passivity-
based control (IDA-PBC) (Van Der Schaft and Jeltsema, 2014), is to inject additional energy via the
control input into the system to achieve a desired total energy, minimized at a desired set point.

The second requirement related to safety guarantees has gained significant attention in planning
and control. Model predictive control (MPC) methods (Borrelli et al., 2017; Grüne and Pannek,
2017; Bravo et al., 2006; Mayne et al., 2000) include safety constraints in an optimization problem,
which is typically solved by discretizing time with linearized dynamics. Reachability-based tech-
niques (Herbert et al., 2017; Majumdar and Tedrake, 2017; Kousik et al., 2020) work directly for
nonlinear systems and offer strong safety guarantees but have high computation cost and scalability
issues for high-dimensional systems. Control barrier functions (CBFs) with quadratic programming
(QP) (Ames et al., 2014b, 2017, 2019) offer an elegant and efficient framework for real-time safe
control synthesis. However, construct a valid CBF (Ames et al., 2019) that guarantees the feasibility
of the QP problem (Xu, 2018) at all times is challenging. Given a stabilizing regulation controller,
reference governor techniques (Bemporad, 1998; Kolmanovsky et al., 2014; Garone and Nicotra,
2016) maintain a virtual governor system to adaptively generate a regulation so that the system
follows reference commands safely. Recent work (Arslan and Koditschek, 2017; Li et al., 2020)
achieves safe navigation in unknown environments but is limited to feedback-linearizable systems.

In this paper, we consider both requirements for rigid-body robot systems, whose states are
described by their SE(3) pose and generalized velocity. We assume that the robot dynamics are
unknown but, as a physical system, satisfy Hamilton’s equations of motion over the SE(3) mani-
fold. We consider a training set of state-control trajectories, from past experiments or collected by a
human operator, and seek to safely track a desired position path with safety constraints obtained on-
line from distance-to-obstacles measurements. We learn a SE(3) Hamiltonian model of the system
dynamics using a neural ODE network (Duong and Atanasov, 2021b). As the robot dynamics are
equivariant to translation, we offset the trajectories to start from the origin and train a translation-
equivariant Hamiltonian neural ODE model. The Hamiltonian structure of the learned model offers
an energy-based regulation controller with the total energy of the system viewed as a Lyapunov
function. This, in turn, enables us to enforce safety constraints using reference governor techniques
without the need to linearize the system dynamics. Inspired by constraint embedding techniques
(Garone and Nicotra, 2016), we impose safety constraints, based on the sensor measurements, on
the Lyapunov function. We use the trade-off between the distance from constraint violation and the
system energy level to regulate a reference governor and achieve safe and stable position tracking
in an unknown environment.

Contributions. In summary, the contributions of this paper are 1) a translation-equivariant
SE(3) Hamiltonian dynamics learning approach and 2) a tracking control design for SE(3) Hamil-
tonian systems with stability and safety guarantees. Our dynamics learning and tracking control
techniques are demonstrated on a simulated hexarotor robot using a depth sensor to navigate in
unknown environments.
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2. Problem Statement

Consider a robot modeled as a rigid body with position p ∈ R3, orientation R ∈ SO(3), body-
frame linear velocity v ∈ R3, and body-frame angular velocity ω ∈ R3. Let q = [p⊤ r⊤1 r⊤2 r⊤3 ]

⊤

∈ R12 denote the robot’s generalized coordinates, where r1, r2, r3 ∈ R3 are the rows of the rotation
matrix R. Let ζ = [v⊤ ω⊤]⊤ ∈ R6 denote the robot’s generalized velocity. The generalized
momentum p of the system is defined as:

p = M(q)ζ ∈ R6, (1)

where M(q) ≻ 0 denotes a positive-definite 6 × 6 generalized mass matrix. Let x = (q, p) ∈ R18

be the robot state. The Hamiltonian, H(q, p), captures the total energy of the system as the sum of
the kinetic energy T (q, p) = 1

2p
⊤M(q)−1p and the potential energy U(q):

H(q, p) = T (q, p) + U(q) = 1

2
p⊤M(q)−1p+ U(q). (2)

As a mechanical system, the time evolution of the state x is governed by Hamilton’s equations of
motion (Lee et al., 2017; Duong and Atanasov, 2021b):

ẋ = f(x) +G(x)u, x(t0) = x0, (3)

where u ∈ Rp is the control input, f(x) =
[

0 q×

−q×⊤ p×

] [
∇qH
∇pH

]
, G(x) =

[
0

B(q)

]
, and B(q) ∈

R6×p is an input gain matrix. The operators q×, p×, and the hat map ŵ for w ∈ R3 are defined as:

q× =

[
R⊤ 0 0 0
0 r̂⊤1 r̂⊤2 r̂⊤3

]⊤
, p× =

[
pv
pω

]×
=

[
0 p̂v
p̂v p̂ω

]
, ŵ =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 .

We consider the case that the parameters of the Hamiltonian dynamics model in (3), including
the mass M(q), potential energy U(q), and input matrix B(q), are unknown. Instead, we are given
a trajectory dataset D = {t(i)0:N , q

(i)
0:N , ζ

(i)
0:N ,u(i)}Di=1 consisting of D sequences of generalized coor-

dinates and velocities (q(i)0:N , ζ
(i)
0:N ) at times t(i)0 < t

(i)
1 < . . . < t

(i)
N , collected by applying a constant

control input u(i) to the system with initial condition (q
(i)
0 , ζ

(i)
0 ). We aim to learn the dynamics

from the data set D and design a control policy u = π(x) such that the robot follows a desired
reference path without violating safety constraints in an unknown environment. Let O ⊂ R3 and
F := R3 \ O denote the unsafe (e.g., obstacle) set and the safe (obstacle-free) set, respectively.
Denote the interior of F as int(F). We assume that O is not known a priori but the robot can sense
the distance d̄(p,O) from its position p to O locally with a limited sensing range β > 0:

d̄(p,O) := min {d(p,O), β} , (4)

where d(p,O) := infa∈O∥p − a∥ denotes the Euclidean distance from p to the set O. The safe
autonomous navigation problem considered in this paper is summarized below.

Problem 1 Let D = {t(i)0:N , q
(i)
0:N , ζ

(i)
0:N ,u(i)}Di=1 be a training dataset of state-control trajectories

obtained from a robot with unknown Hamiltonian dynamics in (3). Let r : [0, 1] 7→ Int (F) be
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a continuous function specifying a desired position reference path for the robot. Assume that the
reference path starts at the initial robot position at time t0, i.e., r(0) = p(t0) ∈ Int (F). Using local
distance observations d̄(p(t),O) of the unsafe set O in an unknown environment, design a control
policy π(x) so that the position p(t) of the closed-loop system converges asymptotically to r(1),
while remaining safe, i.e., p(t) ∈ F for all t ≥ t0.

3. Learning Hamiltonian Dynamics on the SE(3) Manifold

3.1. Training a translation-equivariant SE(3) Hamiltonian dynamics model

The training dataset D = {t(i)0:N , q
(i)
0:N , ζ

(i)
0:N ,u(i)}Di=1 can be obatined by measuring the generalized

coordinates and velocities of the system at times t
(i)
0 < t

(i)
1 < . . . < t

(i)
N using an odometry

algorithm (Delmerico and Scaramuzza, 2018; Mohamed et al., 2019) or a motion capture system.
The control input u(i) can be generated by manually driving the robot or using an existing controller.
Since the system dynamics do not change if we shift the position p to any points in the world frame,
we offset the trajectories in the dataset D so that they start from the position 0 and learn the system
dynamics around the origin. This is sufficient for control purposes, e.g. using the control design in
Sec. 4.1, the input driving the system from state x with position p to desired state x∗ with position
p∗ is the same as the one driving the system from state x with position 0 to the desired state x∗ with
the offset position p∗ − p.

Since the momentum p is not directly available from the dataset D, we use the time derivative
of the generalized velocity, derived from (1):

ζ̇ =

(
d

dt
M−1(q)

)
p+M−1(q)ṗ. (5)

Eq. (3) and (5) describe the Hamiltonian dynamics with unknown inverse generalized mass matrix
M(q)−1, input matrix B(q), and potential energy U(q), which we aim to approximate by three
neural networks Mθ(q)

−1,Bθ(q) and Uθ(q), respectively, with parameters θ.
To optimize the parameters θ, we use a neural ODE framework that encodes the Hamiltonian

dynamics (3) and (5) with Mθ(q),Bθ(q) and Uθ(q) in the network structure (Fig. 1(a)). The
forward pass rolls out the Hamiltonian dynamics (3) and (5) with the neural networks Mθ(q),Bθ(q)

and Uθ(q) using a neural ODE solver (Chen et al., 2018) to obtain a predicted sequence (q̄(i)0:N , ζ̄
(i)
0:N )

at times t
(i)
0 < t

(i)
1 < . . . < t

(i)
N for each i = 1, . . . , D. The loss function is defined as L =∑D

i=1

∑N
n=1 c(q

(i)
0:N , ζ

(i)
0:N , q̄

(i)
0:N , ζ̄

(i)
0:N ), where the distance metric c is defined as the sum of position,

orientation, and velocity errors:

c
(
q
(i)
0:N , ζ

(i)
0:N , q̄

(i)
0:N , ζ̄

(i)
0:N

)
= cp(p, p̄) + cR(R, R̄) + cζ(ζ, ζ̄), (6)

where cp(p, p̄) = ∥p − p̄∥22, cζ(ζ, ζ̄) = ∥ζ − ζ̄∥22, and cR(R, R̄) = ∥
(
log(R̄R⊤)

)∨ ∥22. The
log-map log(·) : SE(3) 7→ so(3) is the inverse of the exponential map, returning a skew-symmetric
matrix in so(3) from a rotation matrix in SE(3), and the ∨-map (·)∨ : so(3) 7→ R3 is the inverse of
the hat map (̂·) in Sec. 2. The parameters θ are optimized via gradient descent by back-propagating
the loss through the neural ODE solver. This is done using the adjoint method, where the gradient
∂L/∂θ is calculated by a single call to a reverse-time ODE starting from t = tN at (q(i)N , ζ

(i)
N ).
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Figure 1: SE(3) Hamiltonian neural ODE network: (a) network architecture, (b) simulated hexaro-
tor for evaluation, (c) training loss, (d) learned inverse inertia Jθ(q)

−1, and (e) learned
input matrix Bθ(q) along a test trajectory, evaluated on the simulated hexarotor.

3.2. Evaluation of the Hamiltonian dynamics model of a simulated hexarotor

We consider a simulated hexarotor unmanned aerial vehicle (UAV) (Fig. 1(b)) with fixed-tilt rotors
pointing in different directions (Rajappa et al. (2015)) modeled as a fully-actuated rigid body with
mass m = 0.027 and inertia matrix J = 10−5diag([2.4, 2.4, 3.2]). The robot’s ground-truth dynam-
ics satisfy Hamilton’s equations in (3) with generalized mass M(q) = diag(mI,J), potential en-
ergy U(q) = mgz, and the input matrix B(q) = I. The control input u is a 6-dimensional wrench,
including a 3-dimensional force and a 3-dimensional torque. Since the mass m of the hexarotor
can be easily measured, we assume the mass m is known, leading to a known potential energy
U(q) = mg

[
0 0 1

]
p, where p is the UAV position and g ≈ 9.8ms−2 is the gravitational accel-

eration. We approximate the inverse generalized mass matrix by Mθ(q)
−1 = diag(m−1I,J−1

θ (q))
and learn the inverse inertia matrix Jθ(q)

−1 and the input matrix Bθ(q) from data.
As the dynamics model is translation-invariant, we mimic manual flights in an area free of

obstacles using a PID controller and drive the hexarotor from a random initial pose near the origin
to a desired pose, generating 18 one-second trajectories. We shift the trajectories to start from the
origin and create a dataset D = {t(i)0:N , q

(i)
0:N , ζ

(i)
0:N ,u(i))}Di=1 with N = 5 and D = 432. The

Hamiltonian-based neural ODE network1 is trained with the dataset D, as described in Sec. 3, for
5000 iterations and learning rate 10−3. Fig. 1(c) shows the loss function during training. Note that
if we scale Mθ(q) and the input matrix B(q) by a constant γ, the dynamics of (q, ζ) in (3) and (5)
do not change. Fig. 1(d) and 1(e) plot the scaled version of the learned inverse mass Jθ(q)

−1 and
the input matrix Bθ(q), converging to the constant ground truth values.

1. Code: https://thaipduong.github.io/SE3HamDL/
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4. Safe Tracking using a Reference Governor

In this section, we first describe a passivity-based regulation controller for arbitrary pose stabiliza-
tion in Sec. 4.1. We derive sufficient conditions for safety based on an invariant level set of the
closed-loop system’s Hamiltonian. In Sec. 4.2, we propose a reference governor control policy to
adaptively generate a regulation pose along the desired path and achieve safe navigation.

4.1. Passivity-based control for learned Hamiltonian dynamics

Given the learned model of the system dynamics:

ẋ = fθ(x) +Gθ(x)u, x(t0) = x0, (7)

we want to find a control policy that stabilizes the system to a desired equilibrium x∗ := (q∗,0)
with desired generalized coordinates q∗ = (p∗,R∗) and zero momentum p∗ = 0. We design a
control policy u = π(x,x∗) to shape the total energy (Hamiltonian) of the closed-loop system so
that it achieves a minimum at the desired state x∗ = (q∗,0). By injecting energy into the system
through the controller u = π(x,x∗), we aim to achieve the following desired Hamiltonian:

Hd(x,x
∗) =

1

2
kp(p− p∗)⊤(p− p∗) +

1

2
kR tr(I−R∗⊤R) +

1

2
(p− p∗)⊤M−1

θ (q)(p− p∗), (8)

where kp and kR are positive gains. We use interconnection and damping assignment passivity-
based control (IDA-PBC) (Van Der Schaft and Jeltsema, 2014):

u = B†
θ(q)

(
q×⊤∇qUθ(q)− p×M−1

θ (q)p− e(q, q∗)
)
+
(
−B†

θ(q)KdM
−1
θ (q)p

)
, (9)

where B†
θ(q) =

(
B⊤

θ (q)Bθ(q)
)−1

B⊤
θ (q) is the pseudo-inverse of Bθ(q), Kd = diag(kvI, kωI) is

a damping gain with positive terms kv, kω, and e(q, q∗) is the error between q and q∗:

e(q, q∗) =
[
ep(q, q

∗)
eR(q, q

∗)

]
=

[
kpR

⊤(p− p∗)
1
2kR

(
R∗⊤R−R⊤R∗)∨] . (10)

Lemma 1 If the input gain matrix Bθ(q) of the system in (7) is invertible, the control policy
u = π(x,x∗) in (9) always exists and asymptotically stabilizes the system to an arbitrary reference
x∗ = (q∗,0) with Lyapunov function given by the desired Hamiltonian Hd(x,x

∗) in (8).

Proof Since Ḣd(x,x
∗) = −p⊤M−1

θ (q)KdM
−1
θ (q)p ≤ 0, the proof is obtained by LaSalle’s

invariance principle (Khalil, 2002). See Appendix A in the extended version (Li et al., 2021).

Next, given the closed-loop system:

ẋ = fθ(x) +Gθ(x)π (x,x∗) , x(t0) = x0, (11)

we derive conditions on the initial state x0 under which the position p converges to p∗ safely,
remaining in the safe set F . We first define a dynamic safety margin (DSM) ∆E(x,x∗) for the
Hamiltonian dynamics (11):

∆E(x,x∗) := d̄ 2(p∗,O)− 2Hd (x,x
∗) /kp, (12)
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where d̄ 2(p∗,O) is the truncated distance to the unsafe set O in (4). Given a fixed desired point x∗,
the DSM function measures the the trade-off between safety, measured by d̄ 2(p∗,O), and system
energy, measured by Hd (x,x

∗) and allows us to find a positively forward invariant set S(x,x∗)
such that for any x0 ∈ S(x,x∗), the position p converges to p∗ while remaining in the safe set F .

Proposition 2 Controller (9) renders S(x,x∗) := {x | ∆E(x,x∗) ≥ 0} a positively forward in-
variant set for system (11). Furthermore, if x0 ∈ S(x,x∗), then the state p(t) converges to p∗

asymptotically without collisions, i.e., d(p(t),O) ≥ 0 for all t ≥ t0.

Proof From Lemma 1, we see that S(x,x∗) = {x | ∆E(x,x∗) ≥ 0} is a forward invariant set
induced by H(x,x∗). Note that 2

kp
Hd (x,x

∗) ≥ ∥(p − p∗)∥2, hence, d2(p∗,O) ≥ d̄ 2(p∗,O) ≥
2
kp
Hd (x0,x

∗) ≥ 2
kp
Hd (x(t),x

∗) ≥ d2 (p∗,p(t)) . See Appendix B (Li et al., 2021) for details.

Using the results for a fixed x∗ in this section, we develop a reference governor system to
adaptive change x∗ over time in Sec. 4.2 so that the robot can safely track a desired path.

4.2. Reference governor design

We introduce a virtual system, called a reference governor (Bemporad, 1998) to adaptively track
the path r defined in Sec. 2 and provide a time-varying reference x∗(t) for the actual system in (11).
The motion of the governor system needs to be regulated to balance the energy of the Hamiltonian
system with the distance to the unsafe set O, keeping the safety margin in (12) positive. We define
the governor as a first-order linear time-invariant system with state g(t) ∈ R3 and dynamics:

ġ = −kg (g − ug) , kg > 0. (13)

The governor input ug will be chosen to move the governor system along the reference path without
violating the safety condition ∆E(x,x∗) ≥ 0 obtained in Proposition 2. Define a local safe set
LS(x,g) as a region around the governor state g that does not violate safety:

LS(x,g) :=
{
q ∈ Rm | ∥q− g∥2 ≤ (1 + ϵ)−1∆E(x,x∗)

}
,

where ϵ > 0 is arbitrarily, ensuring that LS(x,g) ⊆ int(F). The size of the local safe set determines
how fast the governor can move along the reference path without endangering safety.

Definition 3 A local projected goal at system-governor state (x,g) is a point ḡ ∈ LS(x,g) that is
furthest along the reference path r:

ḡ = r(σ∗), σ∗ = argmax
σ∈[0,1]

{σ | r(σ) ∈ LS(x,g)} . (14)

Choosing the governor input as ug = ḡ forces the governor to track the reference path adap-
tively, taking the safety condition ∆E(x,x∗) ≥ 0 into account. Given the local projected goal
ḡ(t) ∈ R3 and the governor state g(t) ∈ R3, we also generate a desired reference state x∗(t) for
the system in (11) by lifting g(t) to R18. We may choose g(t) as the desired position with zero
desired velocity but, to provide guidance on the SE(3) manifold, we need to also generate a desired
orientation R∗(t). We construct a lifting function ℓ : F × int(F) 7→ R18 to obtain x∗ = ℓ(g, ḡ) as:

ℓ(g, ḡ) =
[
p∗⊤ r∗⊤1 r∗⊤2 r∗⊤3 ,0⊤,0⊤

]⊤
, (15)

7
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Figure 2: (a) Structure of the reference-governor tracking controller: a reference governor with
state g adaptively tracks a point ḡ along the desired path r and generates a time-varying
equilibrium x∗ = ℓ(g, ḡ) for the closed-loop Hamiltonian system; (b) A local projected
goal ḡ (purple dot) is generated as the furthest intersection between the local safe set
LS(x,g) (yellow sphere) and the path r (blue curve). Given g and ḡ, a desired equilib-
rium x∗ = ℓ(g, ḡ) is generated for the Hamiltonian system with orientation indicated by
the red, green, and blue arrows, respectively.

where p∗ = g and r∗1, r∗2, r∗3 are the rows of the matrix:

R∗(g, ḡ) =

{
I if e3 × c1 = 0

[c1 c2 c3] otherwise,
(16)

with e3 = [0, 0, 1]⊤, c1 = (ḡ−g)/∥ḡ−g∥, c2 = (e3×c1)/∥e3×c1∥ and c3 = (c1×c2)/∥c1×c2∥.
If g = ḡ, the most recent backup of R∗ or I may be used.

Our safe tracking control design is visualized in Fig. 2. It consists of two parts: 1) a first-order
reference governor system with state g adaptively following the local projected goal ḡ along the
path r and 2) a closed-loop Hamiltonian system tracking the reference signal x∗ = ℓ(g, ḡ). Our
main result is summarized in the following theorem.

Theorem 4 Given a reference path r, consider the closed-loop Hamiltonian system in (11) and the
closed-loop reference governor system, ġ = −kg (g − ḡ), with local projected goal ḡ provided in
Definition 3. Suppose that the initial state (x0,g0) satisfies:

∆E (x0, ℓ(g0, ḡ0)) > 0, g0 = r(0) = p(t0) ∈ int(F), (17)

where ∆E(x,x∗) is a dynamic safety margin defined in (12). Then, the joint system state (x,g)
converges to (ℓ(r(1), r(1)), r(1)) without violating the constraints, i.e., p(t) ∈ F , ∀t ≥ t0.

Proof (sketch) Let ∆E(t) := ∆E (x(t), ℓ(g(t), ḡ(t))). Whenever ∆E(t) > 0, the reference gov-
ernor system proceeds along the reference path and updates the regulation point x∗ = ℓ(g, ḡ).
Then, controller π(x,x∗) regulates the closed-loop system (11) towards x∗. During this process,
the convergence speed is determined adaptively by the dynamic safety margin ∆E(t), fast when it
is large and slow when small. By continuity, ∆E(t) cannot become negative without crossing 0
from above, at which point the governor system stops. Hence, by Prop. 2, safety is always enforced.
This process continues until the augmented system is stabilized at (ℓ (r(1), r(1)) , r(1)) where ḡ
stops changing. The complete proof can be found in the extended version (Li et al., 2021).
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Figure 3: Safe tracking control for a hexarotor aerial robot in an unknown cluttered environment.
The hexarotor (green dot) navigates from a start location (red star) to a goal location
(green star) while avoiding obstacles. The obstacles are sensed by a simulated LiDAR
sensor (red points). On the left are snapshots of the environment showing the robot (green
dot), lidar scans (red dots), and the unsafe set O (black surfaces) at different times. The
reference path (blue curve) is re-planned online from the governor position (blue dot)
to the goal (green star) using an A∗ algorithm. The local projected goal ḡ (purple dot)
is computed based on the obstacle distance (gray ball) and the local safe set (yellow
ball). On the upper right, the robot’s heading (purple arrow) are plotted along the path.
The middle right figure shows the dynamic safety margin ∆E in (12) and the scaled
desired Hamiltonian 2Hd(x,x

∗)/kp while the lower right figure plots the distance to the
obstacles d(p(t),O) (green curve), showing that the safety constraints are never violated.

5. Evaluation

This section evaluates our safe tracking controller on a simulated hexarotor UAV using the learned
Hamiltonian dynamics in Sec. 3.2. The task is to navigate from a start position to a goal in an
environment without colliding with the obstacles. To guarantee stability and safety, all control gains
must be positive. The following control gains were used with the regulation controller in Sec. 4.1:
kp = 0.25, kR = 125J, kv = 0.125, kω = 10J in (8) and kg = 1.0 with the governor control in
(13). We test the controller in a challenging unknown 3D environment with complex obstacles O. A
simulated LiDAR scanner provides point cloud measurements P(t) := {yi(t)} of the surface of the
unsafe set O, depending on the system pose, with a maximum sensing range of β = 30. The distance
from the governor g(t) to the unsafe set O is approximated via d̄(g(t);O) ≈ miny∈P(t)∥g(t)−y∥.
The point clouds P(t) are used to construct an occupancy grid map online and a reference path r
is replanned periodically using the A* algorithm to ensure that r(σ) ∈ int(F). In this paper, we
assume the learned system dynamics are accurate and simulated a noise-free environment. We leave
model uncertainty, measurement noise, and external disturbances for future work.
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Figure 4: Safe navigation of a hexarotor robot in a forest is demonstrated in (a) and (b). The bottom
plots (c) and (d) show the dynamic safety margin ∆E, the scaled desired Hamiltonian
2Hd(x,x

∗)/kp, and the distance to the obstacles d(p(t),O), indicating that the safety
constraints are never violated.

Fig. 3 and Fig. 4 show the behavior of the closed-loop hexarotor system in two different en-
vironments. The reference governor follows the projected goal ḡ and generates a time-varying
equilibrium x∗ = ℓ(g, ḡ) for the hexarotor. The dynamic safety margin ∆E(x,x∗) fluctuates dur-
ing this process but it never becomes negative as seen in the figures. The augmented system (x,g)
is controlled adaptively, slowing down when the dynamic safety margin decreases (e.g., when the
robot is close to an obstacle and has large total energy Hd) and speeding up otherwise (e.g., when
the robot is far away from the obstacles or has small total energy Hd). The simulations show that
our control policy successfully drives the system from the start to the end of the reference path while
avoiding sensed obstacle online, i.e., d(p,O) remains positive throughout the motion.

6. Conclusion

This paper developed a tracking controller for fully-actuated Hamiltonian systems which enables
safe autonomous navigation in unknown environments. Given only a training set of system state-
control trajectories, our approach estimates the system dynamics accurately using a neural ODE
network and synthesizes a controller that avoids obstacles based on run-time distance measurements.
Our method was demonstrated on a simulated hexarotor aerial robot navigating in complex 3D
environments. Future work will focus on capturing model uncertainty and external disturbances in
the design and deploying it on a hardware platform.
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