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Abstract— This paper develops iterative Covariance Regula-
tion (iCR), a novel method for active exploration and mapping
for a mobile robot equipped with on-board sensors. The
problem is posed as optimal control over the SE(3) pose
kinematics of the robot to minimize the differential entropy
of the map conditioned the potential sensor observations. We
introduce a differentiable field of view formulation, and derive
iCR via the gradient descent method to iteratively update an
open-loop control sequence in continuous space so that the
covariance of the map estimate is minimized. We demonstrate
autonomous exploration and uncertainty reduction in simulated
occupancy grid environments.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a key
research direction that has enabled robots to transition from
controlled, structured, and fully known environments to op-
eration in a priori unknown real-world conditions [1]. Many
current SLAM techniques, however, remain passive in their
utilization of sensor data. Active SLAM [2] is an extension
of the SLAM problem which couples perception and control,
aiming to acquire more information about the environment
and reduce the uncertainty in the localization and mapping
process. Active SLAM introduces unique challenges related
to keeping the map and location estimation process accurate,
and yet computing and propagating uncertainty over many
potential sensing trajectories efficiently to select an infor-
mative one. Most of the literature in active exploration and
mapping focuses on discrete [3], [4] or sampling-based [5]
planning techniques. However, the trajectories and informa-
tion collection process of the robot sensors evolve continu-
ously over the SE(3) space of sensor poses. As evidenced by
successful applications of continuous control to exploration
in reinforcement learning [6] and active target tracking [7],
developing active SLAM techniques for continuous control is
expected to reduce uncertainty more effectively and smoothly
compared to discrete control techniques.

This paper develops a new forward-backward gradient
computation technique to optimize multi-step control in-
put sequences over the SE(3) pose kinematics, leading
to maximum uncertainty reduction. The core problem is
formalized as SE(3) trajectory optimization to minimize
the differential entropy of the map state conditioned on the
sequence of measurements obtained by an on-board sensor
(e.g., Lidar or RGB-D camera). Assuming a Gaussian prior
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over the map state and its Bayesian evolution along a sensing
trajectory, the differential entropy of the map is proportional
to the log determinant of the covariance matrix at the
final time. To ensure that the covariance matrix evolution
is differentiable with respect to the control sequence, we
introduce a new differentiable field of view formulation
for the sensing model, providing a smooth transition from
unobserved to observed space in the environment. Finally, the
gradient of the objective function with respect to the multi-
step control input sequences is computed explicitly and the
control trajectory is updated via gradient descent.

Throughout this paper, we focus on occlusion-free plan-
ning by allowing the robot to pass through the occupied
space in the environment, which can be implemented for
2-D mapping using an aerial robot and have been studied
in literature [8]. While in [8] the gradient descent is applied
via perturbation method to obtain an approximated gradient,
our approach develops an explicit gradient formulation. We
emphasize that our formulation is different from gradient
descent methods that optimize the instantaneous sensing cost
[9] because it considers the sensing performance over a long-
horizon in an optimal control formulation.

Related Work: One of the earliest approaches for active
exploration and mapping [10] is based on detecting and
planning a shortest path to map frontiers (boundaries between
explored and unexplored space). Frontier-based exploration
is an efficient and effective method, prompting its widespread
use in robotics [11] . Its purely geometric nature, however,
is a limiting factor for considering sensing noise and map
uncertainty reduction from a probabilistic inference perspec-
tive [12]. Information-theoretic planning is an alternative
approach, which utilizes an information measure, such as
mutual information or conditional entropy, to quantify and
minimize the uncertainty in the map state. Information-
theoretic mapping was first introduced by Elfes [13], and
subsequently has been developed in many studies [14], [9],
including applications to active SLAM [15], [16]. Evaluating
information measures accompanies a high computational
effort in general, which makes online planning challenging.
Efficient computation methods have been proposed in [3] for
Causchy-Schwarz quadratic mutual information (CSQMI),
and in [4] for fast Shannon mutual information (FSMI). In-
stead of binary occupancy grid mapping, recent information-
based active mapping techniques have considered truncated
signed distance field (TSDF) maps [17] and multi-category
semantic maps [18]. Existing methods are, however, limited
to discrete control spaces, typically with a finite number of
possible control inputs [17], [3], [4], and have not considered



optimal control formulations of the active mapping problem.
Optimal control has been intensively studied since the

work of Bellman [19], which developed the well-known dy-
namic programming algorithm. Applying dynamic program-
ming to continuous control spaces requires finite-dimensional
approximations of the value function. Instead of a globally
optimal control policy, a locally optimal state-control trajec-
tory may be obtained via Pontryagin’s Maximum Principle
(PMP) [20]. As a second-order convergent algorithm, Dif-
ferential Dynamic Programming (DDP) has been proposed
to solve the value function and the control input via iter-
ation of forward and backward path [21]. To mitigate the
computational burden in DDP caused by a tensor calculus,
an “iterative LQR” (iLQR) method has been proposed in
[22], which successfully eliminates the heavy computation
by invoking the linearization only at the backward path.

Among the many optimization methods, gradient descent
is perhaps one of the most recognized approaches. The
gradient-based methods for optimizing an instantaneous cost
have been applied to planning tasks of the mobile robots,
such as in [23] for active target tracking, in [24] for localizing
3-D features in an environment. For enabling the gradient
calculus, a differentiable formulation of a field of view has
been proposed in [25]. However, when applying the gradient
descent to the optimal control with dynamical systems, the
gradient with respect to multi-step control input sequences
is needed, unlike optimizations of a static function or an
instantaneous cost. The adjoint method has been widely
utilized as an implicit gradient descent method for solv-
ing such an optimal control under multi-step control input
sequences. However, the dynamical system in the adjoint
method is supposed to belong to a vector field, which is
not directly applicable to the SE(3) pose kinematics we
consider. In addition to it, an optimal control approach for an
information-based active exploration and mapping remains
an open problem.

Contributions: We develop iterative Covariance Reg-
ulation (iCR), a new forward-backward gradient descent
algorithm for finite-horizon optimal control of the covariance
matrix of an active estimation process. To ensure that the
Riccati equation governing the covariance evolution can
be differentiated with respect to a control sequence, we
introduce a new differentiable field of view formulation of
the sensing model.

II. PROBLEM STATEMENT

This section formalizes active exploration and mapping
as an optimal control problem. The set SO(3) denotes
the special orthogonal group defined by SO(3) := {R ∈
R3×3|R>R = I, detR = 1}, and SE(3) denotes a set of
matrix in the special Euclidian group defined by SE(3) :={
T :=

[
R p
0> 1

] ∣∣∣∣R ∈ SO(3),p ∈ R3

}
⊂ R4×4.

A. Motion and Sensor Models
Consider a robot with pose Tk ∈ SE(3) at time t = tk ∈

R+, where {tk}Kk=0 for some K ∈ N is an increasing se-
quence. The definition of pose and its discrete-time kinematic

model are:

Tk :=

[
Rk pk
0>3×1 1

]
, Tk+1 = Tk exp (τ ûk) , (1)

where pk ∈ R3 is position, Rk ∈ SO(3) is orientation,
and uk = [v>k ,ω

>
k ]> ∈ R6 is a control input, consisting of

linear velocity vk ∈ R3 and angular velocity ωk ∈ R3. The
hat operator (̂·) : R6 → se(3) maps vectors in R6 to the
Lie algebra se(3) associated with the SE(3) Lie group [26].
The discrete-time kinematic model in (1) is derived from the
solution to continuous-time kinematic model Ṫ = T û.

The robot evolves in a 3-D environment described by a
set Ω ⊂ R3. A map m ∈ Rn of the environment is defined
by discretizing Ω into n ∈ N tiles, such as voxels or octants
[27], and associating each tile j ∈ 1, . . . , n with a position
p(j) ∈ R3 and a mapped value m(j) ∈ R, such as occupancy
or signed distance [28].

Let zk ∈ Rn be a measurement of the environment
obtained by the robot at time tk, according to the following
sensor model:

zk = h(Tk,m) + ηk, ηk ∼ N (0, V (T,m)), (2)

where h : SE(3) × Rn → Rn is the measurement function
which depends on both the pose and map states, and ηk
is Gaussian sensing noise with zero mean and covariance
matrix V : SE(3)×Rn → Rn×n. We present a differentiable
formulation of the noise covariance matrix, which allows
capturing field of view constraints, in Sec. III.

B. Active Exploration and Mapping

Assuming a Gaussian prior on the map state m, we
construct its posterior conditioned on a sequence of measure-
ments z1:k by means of the Extended Kalman Filter (EKF):

m|z1:k ∼ N (µk,Σk) , (3)

where the mean µk ∈ Rn and covariance Σk ∈ Sn×n�0 satisfy:

µk+1 = µk + ΣkH
>
k+1R

−1
k+1(zk+1 − h(Tk+1,µk)),

Σk+1 = (Σ−1k +Mk+1)−1,

Rk = HkΣk−1H
>
k + Vk, Mk := H>k V

−1
k Hk,

Hk+1 =
∂h(Tk+1,m)

∂m

∣∣∣∣
m=µk

, Vk+1 = V (Tk+1,µk).

(4)

The Extended Information Filter (EIF) is an equivalent
Bayesian filtering approach to the EKF, which parameterizes
the Gaussian distributions in terms of an information matrix
Yk ∈ Sn×n�0 and information mean ξk ∈ Rn as follows:

m|z1:k ∼N
(
Y −1k ξk, Y

−1
k

)
. (5)

The update equations for ξk and Yk are given by:

ξk+1 = ξk +H>k+1R
−1
k+1(νk+1 +Hk+1Y

−1
k ξk),

νk+1 = zk+1 − h(Tk+1, Y
−1
k ξk),

Yk+1 = Yk +Mk+1.

(6)



We formulate active exploration and mapping as a mo-
tion planning problem aiming to minimize the differential
entropy1 in the map state m:

min
u0,...,uK−1

H(m|z1:K , T1:K), (7)

subject to the motion model in (1) and the EIF update in (6).
While, in general, the active mapping problem above is a

stochastic optimal control problem, owing to the Gaussian
distribution of m|z1:k, it can be reduced to a deterministic
optimal control problem, in which open-loop control policies
are optimal [29]. In particular, the differential entropy in (7)
is proportional to log det(Y −1K ) for a Gaussian distribution,
and thus the problem can be reformulated as maximizing the
following terminal reward function:

rU = log det
(
Y U
K

)
, (8)

where U = [u>0 ,u
>
1 , . . . ,u

>
K−1]> ∈ R6K is a control se-

quence. With the help of the EIF, computing the information
matrix in (6) recursively, the terminal reward function can
be expressed with respect to the trajectory of the pose state
T1:K . However, since the equations in (4) are evaluated at
each updated mean both in the EKF and the EIF, which
depend on the stochastic measurements, offline computation
of the motion planning is not possible. Instead, we evaluate
them at an initial estimate of the map µ0 ∈ Rn, by which H
and V can be fixed offline. The problem is stated as follows.

Problem Given a prior Gaussian distribution over the
map state m ∼ N (µ0,Σ0) with a mean µ0 ∈ Rn and
the covariance matrix Σ0 ∈ Sn×n�0 , obtain an open-loop
control sequence U = [u>0 , . . . ,u

>
K−1]> ∈ R6K to solve

the following deterministic optimal control problem:

max
U

log det(Y U
K ), (9)

subject to

Tk+1 = Tk exp (τ ûk) , k = 0, . . . ,K − 1, (10)

YK = Σ−10 +

K∑
k=1

M(Tk), (11)

M(T ) = H(T )>V (T,µ0)−1H(T ), (12)

H(T ) =
∂h(T,m)

∂m

∣∣∣∣
m=µ0

. (13)

III. PLANNING METHOD

This section develops “iterative Covariance Regulation
(iCR)”, a new SE(3) trajectory optimization method to solve
the active mapping optimal control problem.

A. Differentiable Field of View

For a given robot pose state T and the position p(j) of the
j-th map cell, we consider the robot body-frame coordinates
of p(j):

q(T,p(j)) = QT−1p(j), (14)

1The differential entropy of a continuous random variable Y with
probability density function p is defined as H(Y ) := −

∫
p(y) log p(y)dy.

where the projection matrix Q and the homogeneous coor-
dinates p(j) are defined as:

Q =
[
I3 03×1

]
∈ R3×4, p(j) =

[
p(j)

1

]
∈ R4. (15)

Let the field of view of the robot be described as a fixed
region F ⊂ R3 in the body frame. We formulate the sensor
noise matrix V so that the magnitude of the noise in the
unobserved domain Ω/F is approximately infinite. Hence,
we formulate the measurement matrices as

V (T,m) = diag({Vjj(T,m)}nj=1) ∈ Rn×n, (16)

where an approximate expression of Vjj(T,m) for j ∈
1, . . . , n is

Vjj(T,m) ≈
{
σ2, if q(T,p(j)) ∈ F ,
∞, if q(T,p(j)) /∈ F , (17)

where σ ∈ R+ is a standard deviation of the sensor
noise in the observed domain. For the sake of enabling the
gradient descent in the next section, we need the approximate
expression in (17) by a continuous and differential function
with respect to T . For that reason, we introduce a Signed
Distance Function (SDF) defined below for further analysis.

Definition 1. The signed distance function d : R3 → R
associated with a set F ⊂ R3 is:

d(q,F) =

{
−minq∗∈∂F ||q− q∗||, if q ∈ F ,

minq∗∈∂F ||q− q∗||, if q /∈ F , (18)

where ∂F is the boundary of F .

The conditions q(T,p(j)) ∈ F and q(T,p(j)) /∈ F in
(17) are then replaced by inequality conditions in terms of
the SDF of F . Incorporating this idea, the inverse of (17) is
described as:

V −1jj (T,m) ≈ 1

σ2

{
1, if d(q(T,p(j)),F) ≤ 0,

0, if d(q(T,p(j)),F) > 0.
(19)

In order to approximate the right-hand side of (19) by a
continuously differentiable function, we rely on a probit
function [30], defined by the Gaussian CDF Φ : R→ [0, 1]:

Φ(x) =
1

2

[
1 + erf

(
x√
2κ
− 2

)]
, (20)

where erf(y) := 2√
π

∫ y
0
e−t

2

dt. Then, (20) satisfies Φ(x) ≈ 0

for all x < 0 (indeed, Φ(0) = 0.002... ), for all tuning
parameter κ > 0 which gives the smoothness of the function.
Namely, we have limκ→+0 Φ(x) = He(x), where He(x) is
the Heaviside function. Using (20), we formulate (19) as:

V −1jj (T,m) =
1

σ2

(
1− Φ(d(q(T,p(j)),F))

)
, (21)

by which a differentiable field of view is obtained and we
can apply the gradient descent method next. The visualization
of the differentiable field of view is given in Fig. 1 which
depicts 2-D plot of (21) with respect to p(j). Here, the field
of view is set as a cone projected onto 2-D space.
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Fig. 1: 2-D plot of a differentiable field of view (21) specified
by SDF of a 2-D cone with parameters σ = 1 and κ = 0.5.
The closed lines depict the level sets of V −1jj = 0.98 for
different choices of κ. As κ gets larger, V −1jj varies smoothly.

B. Iterative Covariance Regulation

Let u(i)k ∈ R be the i-th element of the control vector
uk ∈ R6 at time t = tk. Our proposed method for active
exploration and mapping is presented in Alg. 1. Its derivation
is based on gradient descent in the space of control sequences
U with respect to the terminal reward rU.

Proposition 1. The gradient-descent update for solving
active exploration (9)–(13) with differentiable field of view
(16), (21) is given by

U← U + Γ
∂rU

∂U
, (22)

where Γ ∈ R6K×6K is a step size matrix given as Γ :=

diag({{γ(i)k }6i=1}K−1k=0 ) with a positive constant γ(i)k ∈ R+,
and each element in the gradient ∂r

U

∂U := [{{ ∂rU
∂u

(i)
k

}6i=1}K−1k=0 ]

is

∂rU

∂u
(i)
k

=

K∑
s=k+1

tr

(
(Y U
K )−1

∂M(Ts)

∂u
(i)
k

)
, (23)

∂M(Ts)

∂u
(i)
k

= diag

{w(q(Ts,p
(j)),

∂q(Ts,p
(j))

∂u
(i)
k

)}n
j=1

 ,

w

(
q,
∂q

∂u

)
= − 1

σ2
Φ′(d(q,F))

∂d(q,F)

∂q

∂q

∂u
, (24)

∂q(Ts,p
(j))

∂u
(i)
k

= −QT−1s Λ(i)
s T−1s p(j), (25)

and Λ
(i)
s := ∂Ts

∂u
(i)
k

is obtained for s ∈ {k + 1, . . . ,K} via:

Λ(i)
s =

{
Tk

∂ exp(τ ûk)

∂u
(i)
k

, if s = k + 1

Λ
(i)
s−1 exp (τ ûs−1) , if s ∈ {k + 2, . . . ,K}.

(26)

Proof. Taking the gradient of the reward in (8) with the help
of (11) yields (23). Substituting (12), (16), (21) and using

Algorithm 1: iterative Covariance Regulation (iCR)
Data: Initial robot pose T0 ∈ SE(3), initial map

covariance Σ0 ∈ Sn×n�0 , map cell positions p(j)

for j ∈ {1, . . . , n}, and initial control
sequence u0:K−1

Initialize M ← 0n×n, ∂M∂u ← 0n×n.
repeat

Set Y ← Σ−10 .
for k ← 0 to K − 1 do

Tk+1 ← Tk exp (τ ûk).
for j ← 1 to n do

Mjj ← H(T )>V −1(T )H(T ) by RHS of
(21) using [p(j), Tk+1].

end
Update Y ← Y +M .

end
for k ← K − 1 to 0 do

Initialize ∂r
∂u(i) ← 0 for all i ∈ {1, . . . , 6}.

for s← k + 1 to K do
for i← 1 to 6 do

if s = k + 1 then
Set Λ← Tk

∂ exp(τ ûk)

∂u
(i)
k

by [Tk,uk].

else
Update Λ← Λ exp(τ ûs−1).

end
for j ← 1 to n do

[q, ∂q∂u ]←(14), (25) by [p(j), Tk,Λ]
∂M
∂u jj

← RHS of (24) by [q, ∂q∂u ].
end
∂r
∂u(i) ← ∂r

∂u(i) + tr
(
Y −1 ∂M∂u

)
.

end
end
u
(i)
k ← u

(i)
k + α(i) ∂r

∂u(i) for all i ∈ {1, . . . , 6}.
end

the chain rule, we get (24). In (24), Φ′(d(q,F)) and ∂d(q,F)
∂q

can be obtained by the derivative of (20) and the gradient
of the SDF for a given field of view, and thus it remains
to compute the gradient ∂q

∂u
(i)
k

. Taking the gradient of (14)

with respect to u(i)k yields (25). The initial condition and the
update law for Λ

(i)
s can be derived by taking the gradient of

the pose kinematics in (1), which leads to (26), and hence
Proposition 1 is deduced.

∂ exp(τ ûk)

∂u
(i)
k

in (26) is computed by using the following
lemma (see [26] for a proof).

Lemma 1. For uk = [u
(1)
k , . . . , u

(6)
k ]> ∈ R6, it holds that

∂ exp(τ ûk)

∂u
(i)
k

= τ(JL(τuk)ei)
∧ exp(τ ûk), (27)

where ei ∈ R6 is the i-th unit vector, and JL(·) is the left
Jacobian of SE(3).



IV. EVALUATION

We examine the efficacy of the proposed method in various
simulated scenarios using 2-D occupancy maps of real-world
environments. The robot moves according to the motion
model in (1) as SE(2) dynamics, and its on-board sensor
measures the occupancy of neighboring map cells inside its
field of view. The field of view F is set as an isosceles
triangle with height 3 [m] the angle between the two legs
equal to 60◦ (see Fig. 1 for visualization). The mapping
process is performed as follows. First, we define the initial
distribution of m as a multivariate Gaussian N (µ0,Σ0),
where µ0 = 0 ∈ Rn and Σ0 = diag(100) ∈ Rn×n.
We encode measurements as z(j) = −1 for free cells and
z(j) = 1 for occupied cells, both of which are for all
j-th cells inside the field of view. Next, we construct a
measurement vector zk ∈ Rn, the j-th element of which
has the measured occupancy value z(j) for all j-th cells
inside the field of view. All other elements have a prior
mean µ(j)

k−1 for all the j-th cells outside the field of view.
The constructed measurement vector zk is passed to EKF to
get the updated mean µk and the information matrix Yk. In
order to visualize the occupancy map, we apply a threshold
function g : R → {−1, 1} which returns g(x) = 1 for all
x > 0 and g(x) = −1 for all x < 0, to each element in the
updated mean µk. We set the smoothing factor κ in (20) to
0.5. We choose K = 5, which based on our experiments can
reach to an informative trajectory in less than 10 iterations.
In each planning phase, we start by initializing a trajectory
with constant linear velocity vk = 1.5, and random angular
velocity wk ∼ U [−π/10, π/10] for k = 0, . . . ,K − 1 and
use iCR at each planning in order to optimize the trajectory.

Fig. 2 shows snapshots of the robot’s exploration and
mapping via iCR for two environments. Environment A
has dimensions 14.46[m] × 20.04[m]. Environment B has
dimensions 17.37[m]× 17.43[m]. The robot tries to explore
the center of both environments initially, where there is an
abundance of unobserved map cells. Then, approximately
after k = 300, the optimal trajectories move towards the
edges of the environment, in which there remain some
patches of unexplored regions. It is worth mentioning that
iCR does not explicitly plan to visit unexplored regions;
the observed behavior is only a result of minimizing the
uncertainty, which leads to either refining the visited regions
or discovering unexplored areas of the map.

Fig. 3 illustrates the final occupancy map of Environment
A at k = 925 and a heat map showing the diagonal
elements in the information matrix obtained via four different
exploration strategies: (a) iCR, (b) iCR + frontier, (c) frontier,
and (d) random. Fig. 4 shows analogous plots performed
in Environment B. As shown in Fig. 3 (a) and 4 (a), via
iCR, the center of the information map becomes brighter
than the edges, meaning that the cells closer to the center
receive more robot observations. Throughout multiple times
of planning, we observe that the initial random path (green)
brings insignificant uncertainty reduction since the trajectory
overlaps the observed region highly. On the other hand, the

Fig. 2: Snapshots of the robot’s exploration and mapping
using iCR in two environments, Environment A (top) and
Environment B (bottom), at times k = 51 (left), k = 126
(center), and k = 476 (right), respectively. The occupancy
maps are obtained by applying a binary threshold to the
mean of the EKF. Green and red paths represent the initial
trajectory and the optimal trajectory from iCR, respectively.
The map data is available from C. Stachniss’s lab [31].

optimal path from iCR (red) tends to visit unexplored areas,
by which the information quantity from EKF becomes larger.
This shows the advantage of iCR-based path planning which
finds the informative trajectory over the continuous control
space even by starting from a random control sequence
without using any high-level heuristics, such as biasing the
trajectory to visit frontiers as in [10], [18], [3]. Furthermore,
our simulations show that adding heuristics to the trajectory
initialization in iCR can lead to more efficient exploration.
For the demonstration, we set the initial trajectory during
each planning step to face the boundary between observed
map cells and the largest unexplored region. In this case,
iCR can be considered as an augmentation over the path
from frontier-based exploration [10]. As illustrated in both
Fig. 3 (b) and Fig. 4 (b), the exploration via iCR with
frontier receives relatively more observations in the edge
map cells, compared to the exploration via iCR with random
initialization does as shown in Fig. 3 (a) and Fig. 4 (a), by
which we can deduce that providing a frontier location to the
initial trajectory can enhance the map certainty by enabling
more homogeneous exploration.

We test two baseline exploration strategies to compare
with iCR. The first baseline is the same as frontier-based
exploration [10], where we plan a trajectory facing the
frontier between the explored area and the largest unexplored
region. As shown in Fig. 3 (c) and Fig. 4 (c), frontier-
based exploration leaves most of edge pixels unexplored.
By investigating through frontier-based exploration episodes,
we observe that the robot shortly starts to oscillate between
edges of the map since the largest unexplored patch per-



(a) iCR (b) iCR + frontier

(c) frontier (d) random

Fig. 3: Final map of Environment A at k = 925 for four
different exploration strategies (a)–(d). For each pair in (a)–
(d), the left image shows the occupancy map obtained by
applying a threshold function to the mean of the EKF-based
mapping, and the right image depicts the information heat
map, obtained from the inverse covariance of the EKF.

(a) iCR (b) iCR + frontier

(c) frontier (d) random

Fig. 4: Analogous demonstrations to Fig. 3 conducted for
Environment B.

petually changes among different corners of the simulation
environment, and hence the robot fails to utilize time steps
in order to efficiently explore the environment. The second
baseline is a random policy under constant linear velocity
vk = 1.5 and random angular velocity wk ∼ U [−π/3, π/3].
Similar to the frontier-based policy, the resulting final map
under the random policy leaves a large part of the environ-
ment unexplored, which is expected since the random policy
does not aim to minimize the uncertainty of the map m.

Fig. 5 shows the reward function log |Yk|, the certainty in
the map m, over time for the experiments shown in Fig. 3
(left) and 4 (right). In both plots in Fig. 5, we observe that
both iCR (blue) and iCR + frontier (green) have a larger
increase of the information than the information acquired
by frontiers (cyan) and random policy (red) for all time.
As mentioned earlier, the robot tends to start exploration by
visiting information-rich regions, such as the center of the
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Fig. 5: Evolution of the log-determinant of the information
matrix over time steps. The left and right plots correspond
to the exploration episodes of Fig. 3 and Fig. 4, respectively.

map. This results in a steep climb in the reward function
during the initial phase of exploration (k ≤ 300). As the
robot makes more observations, the slope of the reward curve
decreases, which corresponds to the refining phase where
there are only a few unexplored map cells and the rest of
the map has been discovered with high certainty.

V. CONCLUSION

This paper developed iterative Covariance Regulation
(iCR), a new forward-backward gradient descent algorithm
for active exploration and mapping over continuous SE(3)
trajectories. Our approach utilizes a differentiable field of
view for the robot sensing model and developed a trajectory
optimization approach by computing the gradient of the ter-
minal reward function with respect to the multi-step control
sequence over the SE(3) manifold. The paper considered
occlusion-free and obstacle-free planning, which is clearly
a limitation for real-world deployment. Future work will
focus on accounting for occlusion in the differntiable field
of view formulation and for obstacles in the iCR trajectory
optimization to achieve safe active exploration and mapping.
Comparison to other more recently developed exploration
methods, such as CSQMI [3] and FSMI [4], and experimental
demonstration will be studied in future work as well.

APPENDIX
SIGNED DISTANCE FUNCTION OF A 2-D CONE

Suppose that the field of view is a cone which has a
vertex at the origin, the circular base at x = h, and the
angles [−ψ,ψ] from the vertex at x − y plane. Then, the
field Fc ⊂ R3 is given by Fc = {(x, y, z) ∈ Ω|y2 + z2 ≤
(tan(ψ)x)2, x ∈ [0, h]}. Let Fc,z=ζ be the cone region
projected onto 2-D space of z = ζ for a value ζ ∈ R.
Then, the Signed Distance Function for Fc,z=0 is given in
the following lemma.

Lemma 2. Signed Distance Function d : R2 ×Fc,z=0 → R
of the cone projected onto 2-D space z = 0 is given by

d(q,Fc,z=0) =

{
a>i q+bi
||ai|| , if q ∈ Di,
||q− qi||, if q ∈ Pi.

(28)

where p∗x = h
1+sin(ψ) , D1 = {(x, y) ∈ Ω|y ∈

(l1(x), l̄1(x)),∀x ∈ (−∞, h]}, D2 = {(x, y) ∈ Ω|y ∈
(−l̄1(x),−l1(x)),∀x ∈ (−∞, h]}, D3 = {(x, y) ∈
Ω|y ∈ (−l1(x), l1(x)),∀x ∈ [p∗x,∞)}, P1 = {(x, y) ∈



Ω|y ∈ (l̄1(x),+∞),∀x ∈ R}, P2 = {(x, y) ∈ Ω|y ∈
(−∞,−l̄1(x)),∀x ∈ R}, P3 = {(x, y) ∈ Ω|y ∈
(−l1(x), l1(x)),∀x ∈ R≤0} ,

l1(x) =


− 1

tan(ψ)x, ∀x ∈ (−∞, 0],

0, ∀x ∈ [0, p∗x],

tan(π/4 + ψ/2)x− h
cos(ψ) , ∀x ∈ [p∗x, h],

h tan(ψ), ∀x ∈ [h,∞),

l̄1(x) =

{
− x−h

tan(ψ) + h tan(ψ), ∀x ∈ (−∞, h],

h tan(ψ), ∀x ∈ [h,∞),

a1 =

[ −1
1

tan(ψ)

]
, a2 =

[ −1
− 1

tan(ψ)

]
, a3 =

[
1
0

]
, (29)

b1 =0, b2 = 0, b3 = −h, (30)

q1 =

[
h

h tan(ψ)

]
, q2 =

[
h

−h tan(ψ)

]
, q3 =

[
0
0

]
.

Proof. The separated domains Di and Pi for i ∈ {1, 2, 3}
are defined so that if q ∈ Di then the closest point in ∂F
lies in a line {p ∈ R2|a>i p + bi = 0}, and if q ∈ Pi then
the closest point in ∂F is a point qi which is an edge of
the projected cone. The normed distance d+ : R2 → R+

between a point q and a line L := {p ∈ R2|a>p + b = 0}
is known as d+(q,L) = |a>q+b|

||a|| . There are two choices for
a pair of (a, b) for any given line, in which the other pair
has opposite sign to one. By setting the pairs (ai, bi) for
i ∈ {1, 2, 3} as (29)–(30), one can deduce that if q ∈ Fc

then a>i q+ bi ≤ 0 and if q /∈ Fc then a>i q+ bi > 0, which
leads to the first line in (28). Indeed, all the other domains
Pi is outside the cone Fc, thus if q ∈ Pi then the SDF has
a positive distance between the two points q and qi, which
yields the second line of (28).
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