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Abstract
This paper proposes a novel highly scalable sampling-based planning algorithm for multi-robot active information acquisition
tasks in complex environments. Active information gathering scenarios include target localization and tracking, active SLAM,
surveillance, environmental monitoring and others. The objective is to compute control policies for sensing robots which
minimize the accumulated uncertainty of a dynamic hidden state over an a priori unknown horizon. To address this problem,
we propose a new sampling-based algorithm that simultaneously explores both the robot motion space and the reachable
information space. Unlike relevant sampling-based approaches, we show that the proposed algorithm is probabilistically
complete, asymptotically optimal and is supported by convergence rate bounds.Moreover, we propose a novel biased sampling
strategy that biases exploration towards informative areas. This allows the proposedmethod to quickly compute sensor policies
that achieve desired levels of uncertainty in large-scale estimation tasks that may involve large sensor teams, workspaces, and
dimensions of the hidden state. Extensions of the proposed algorithm to account for hidden states with no prior information
are discussed. We provide extensive simulation results that corroborate the theoretical analysis and show that the proposed
algorithm can address large-scale estimation tasks that are computationally challenging for existing methods.

Keywords Information gathering · Multi-robot systems · Sensor-based planning

1 Introduction

The Active information acquisition (AIA) problem has
recently received considerable attention due to a wide range
of applications including target tracking Huang et al. (2015),
environmental monitoring Lu and Han (2018), active simul-
taneous localization and mapping (SLAM) Bowman et al.
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(2017); Li et al. (2020), area exploration Jadidi et al. (2018),
active source seeking Atanasov et al. (2015b), and search
and rescue missions Kumar et al. (2004). In each of these
scenarios, robots are deployed to collect information about a
physical phenomenon of interest; see e.g., Fig. 1.

In this paper, we consider the problem of designing con-
trol policies for a team of mobile sensors residing in complex
environments which minimize the accumulated uncertainty
of a dynamic hidden state over an a priori unknown horizon
while satisfying user-specified accuracy thresholds. First, we
formulate this AIA problem as a stochastic optimal control
problem which generates an optimal terminal horizon and
a sequence of optimal control policies given measurements
to be collected in the future. Under Gaussian and linearity
assumptions we can convert the problem into a determin-
istic optimal control problem, for which optimal control
policies can be designed offline. To design optimal sensor
policies, we propose a novel sampling-based approach that
simultaneously explores both the robot motion space and
the information space reachable by the sensors. To miti-
gate the challenge of exploring this large joint space, we
propose a biased sampling strategy that exploits prior infor-
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Fig. 1 Illustration of active information acquisition scenarios. 1a shows
twenty aerial robots with limited field-of-view (blue disks) navigating a
city to localize and track sixteen uncertain static landmarks (red spheres)
of interest while avoiding flying over certain residential areas. 1b shows
two aerial robots tracking five mobile uncertain ground targets. Red
arrows show the direction of the ground targets and UAVs. The red
ellipses depict the positional uncertainty of the mobile targets and static
landmarks (Color figure online)

mation about the hidden state and biases exploration towards
regions that are expected to be informative. We show that
the proposed sampling-based algorithm is probabilistically
complete, asymptotically optimal, and converges exponen-
tially fast to the optimal solution. We demonstrate scalability
of the proposed method in multi-robot multi-target tracking
scenarios using ground and aerial robots. Finally, we show
that the proposed algorithm can also be used to design sensor
policies when the linearity assumptions are relaxed or when
there is no prior information about the hidden state (e.g.,
number of targets or prior information about their location).

Literature reviewRelevant approaches to accomplish AIA
tasks are typically divided into greedy and nonmyopic.
Greedy approaches rely on computing controllers that incur
the maximum immediate decrease of an uncertainty mea-
sure as, e.g., in Martínez and Bullo (2006); Graham and
Cortés (2008); Dames et al. (2012); Charrow et al. (2014);
Meyer et al. (2015); Dames et al. (2017), while they are often
accompaniedwith suboptimality guarantees due to submodu-

lar functions that quantify the informativeness of paths Corah
andMichael (December 2018).Althoughmyopic approaches
are usually preferred in practice due to their computational
efficiency, they often get trapped in local optima. To mitigate
the latter issue, nonmyopic search-based approaches have
beenproposed that sacrifice computational efficiency in order
to design optimal paths. For instance, optimal controllers can
be designed by exhaustively searching the physical and the
information space Le Ny and Pappas (2009). More computa-
tionally efficient methods have also been proposed that rely
on A*-based solutions Schlotfeldt et al. (November 2019)
or on pruning the exploration process Singh et al. (2009);
Atanasov et al. (2015a); Schlotfeldt et al. (2018) while
sacrificing optimality. However, these approaches become
computationally intractable as the planning horizon or the
number of robots increases. Recently, promising learning-
based approaches to efficiently compute robot locations in
belief space have been proposed which, however, lack cor-
rectness guarantees Bai et al. (2017); Chen et al. (2019);
Reinhart et al. (2020). Nonmyopic sampling-based meth-
ods for similar information gathering tasks Levine et al.
(2010); Hollinger and Sukhatme (2014); Lan and Schwa-
ger (2016); Khodayi-mehr et al. (2018) or exploration and
inspection tasks Bircher et al. (2017) have also been pro-
posed due to their ability to find feasible solutions very
fast while building upon existing sampling-based methods
developed for point-to-point navigation tasks Karaman and
Frazzoli (2011); Srinivasa et al. (2020). Common in the
majority of these works is that, unlike our work, they typ-
ically explore only the robot motion space and they lack
formal guarantees in terms of completeness and/or optimal-
ity. Moreover, as the number of robots or the dimensions of
the hidden states increase, the state-space that needs to be
explored grows exponentially and, as result, sampling-based
approaches also fail to compute sensor policies because of
either excessive runtime or memory requirements. In this
paper, we propose a sampling-based AIA algorithm that is
computationally efficient, highly scalable, and supported by
completeness, optimality, and convergence rate guarantees.
A preliminary version of this workwas presented inKantaros
et al. (June 2019). In this paper, we extend Kantaros et al.
(June 2019) by (i) proposing a general biased sampling strat-
egy that goes beyond target tracking problems considered
in Kantaros et al. (June 2019); (ii) providing a formal proof
about the convergence rate of the sampling-based algorithm;
(iii) providing a complexity analysis; and (iv) showing that
the proposed AIA algorithm can be coupled with existing
exploration algorithms to account for hidden states with no
prior information.

Contributions The contribution of this paper can be
summarized as follows. First, we propose a nonmyopic
and asymptotically optimal sampling-based approach for
information-gathering tasks. Second, we develop the first
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biased sampling strategy to bias exploration to informative
regions. Third, we show through extensive simulation stud-
ies that the proposed method scales well with the number
of robots and dimensions of the hidden state due to the bias
introduced in the sampling strategy.

2 Problem definition

Consider N mobile robots that reside in an environmentΩ ⊂
R
d with obstacles of arbitrary shape located atO ⊂ Ω ,where

d is the dimension of the workspace. The dynamics of the
robots are described by p j (t + 1) = f j (p j (t),u j (t)), for
all j ∈ R := {1, . . . , N }, where p j (t) ∈ Ωfree := Ω\O
stands for the state (e.g., position and orientation) of robot j
in the obstacle-free spaceΩfree at discrete time t , and u j (t) ∈
U j stands for a control input in a finite space of admissible
controls U j . Hereafter, we compactly denote the dynamics
of all robots as

p(t + 1) = f(p(t),u(t)), (1)

where p(t) ∈ ΩN
free, ∀t ≥ 0, and u(t) ∈ U := U1×· · ·×UN .

The task of the robots is to collaboratively estimate a hid-
den state governed by the following dynamics:

x(t + 1) = Ax(t) + w(t), (2)

where x(t) ∈ R
n and w(t) ∈ R

n denote the hidden state
and the process noise at discrete time t , respectively. We
assume that the process noise w(t) is normally distributed
as w(t) ∼ N (d(t),Q(t)), where Q(t) is the covariance
matrix at time t . For instance, x(t) can model the position
of static or mobile targets Atanasov et al. (2014), the state
of spatio-temporal fields Lan and Schwager (2016) or gas
concentration Bennetts et al. (2013).

Moreover, the robots are equipped with sensors to collect
measurements associated with x(t) as per the observation
model: y j (t) = M j (p j (t))x(t) + v j (t), where y j (t) ∈ R

m

is the measurement signal at discrete time t taken by robot
j ∈ R. Also, v j (t) ∼ N (0,R j (t)) is sensor-state-dependent
Gaussian noise with covariance R j (t). Linear observation
models have been used, e.g., in Bennetts et al. (2013) to
estimate a gas concentration field and in Freundlich et al.
(2018) to localize targets using stereo vision. Hereafter, we
compactly denote the observation models of all robots as

y(t) = M(p(t))x(t) + v(t), v(t) ∼ N (0,R(t)). (3)

The quality of measurements taken by all robots up to a
time instant t , collected in a vector denoted by y0:t , can be
evaluated using information measures, such as the mutual

information between y0:t and x(t) or the conditional entropy
of x(t) given y0:t . Assuming a Gaussian distribution for
x(t), i.e., x(t) ∼ N (µ(t |y0:t ),�(t |y0:t )), where µ(t |y0:t )
and �(t |y0:t ) denote the mean and covariance matrix of
x(t), respectively, after fusing measurements y0:t , alterna-
tive uncertainty measures can also be used such as the trace,
determinant, or maximum eigenvalue of �(t |y0:t ). Note that
µ(t |y0:t ) and �(t |y0:t ) can be computed using probabilistic
inference methods, e.g., Kalman filter.

Given the initial robot configuration p(0) and the hidden
state x(t) that evolves as per (2), our goal is to select a finite
horizon F ≥ 0 and compute control inputs u(t), for all time
instants t ∈ {0, . . . , F}, that solve the following stochastic
optimal control problem

min
F,u0:F

[
J (F,u0:F , y0:F ) =

F∑
t=0

det�(t |y0:t )
]

(4a)

subject to (4b)

det�(F |y0:F ) ≤ δ, (4c)

p(t) ∈ ΩN
free, (4d)

p(t + 1) = f(p(t),u(t)), (4e)

x(t + 1) = Ax(t) + w(t), (4f)

y(t) = M(p(t))x(t) + v(t), (4g)

where the constraints hold for all time instants t ∈ {0, . . . , F}.
In (4a), u0:F stands for the sequence of control inputs applied
from t = 0 until t = F . Also, assuming a Gaussian distri-
bution for x(t), det�(t |y0:t ) denotes the determinant of the
covariance matrix of x(t) given the measurements y0:t . In
words, the objective function (4a) captures the cumulative
uncertainty in the estimation of x(t) after fusing information
collected by all robots from t = 0 up to time F . The first
constraint (4c) requires the terminal uncertainty of x(F) to
be below a user-specified threshold δ; see also Remark 1. The
second constraint (4d) requires that the robots should never
collide with obstacles. The last three constraints capture the
robot and hidden state dynamics and the sensor model.

Remark 1 (Optimal control problem (4)) In (4a), any other
summand, not necessarily information-based, can be used in
place of the determinant of the covariance matrix, as long as
it is always positive. If non-positive summands are selected,
e.g., the entropy of x(t), then (4) is not well-defined, since
the optimal terminal horizon F is infinite. On the other hand,
in the first constraint (4c), any uncertainty measure can be
used without any restrictions, e.g., scalar functions of the
covariance matrix, or mutual information. Moreover, note
that without the terminal constraint (4c), the optimal solution
of (4) is all robots to stay put, i.e., F = 0. Additional terminal
constraints can be added to (4), such as, p(F) ∈ Pgoal ⊆
ΩN

free, to model joint task planning and estimation scenarios,

123



Autonomous Robots

where, e.g., the robots should eventually visit a base station
to upload an estimate of the hidden state with user-specified
accuracy determined by δ.

The Active Information Acquisition problem in (4) is a
stochastic optimal control problem for which, in general,
closed-loop control policies are optimal. Nevertheless, given
the linear dynamics for the hidden state in (1), and the linear
observationmodels (3), we can apply the separation principle
presented in Atanasov et al. (2014) to convert (4) to a deter-
ministic optimal control problem. Note that the employed
separation principle Atanasov et al. (2014) holds regardless
of the environmental structure.

min
F,u0:F

[
J (F,u0:F ) =

F∑
t=0

det�(t)

]
(5a)

subject to (5b)

det�(F) ≤ δ, (5c)

p(t) ∈ ΩN
free, (5d)

p(t + 1) = f(p(t),u(t)), (5e)

�(t + 1) = ρ(p(t),�(t)), (5f)

where ρ(·) stands for the Kalman Filter Ricatti map. Observe
that open loop (offline) policies are optimal solutions to (5).
The problem addressed in this paper can be summarized as
follows.

Problem 1 (Active information acquisition) Given an initial
robot configuration p(0) and a Gaussian prior distribution
N (µ(0),�(0)) for the hidden state x(0) that evolves as per
(2), select a horizon F and compute control inputs u(t) for
all time instants t ∈ {0, . . . , F} as per (5).

Finally, throughout the paper we make the following
assumption.

Assumption 1 The dynamics of the state x(t) in (2), the
observation model (3), and process and measurement noise
covariances Q(t) and R(t) are known.

Assumption 1 allows for offline computation of optimal
policies, since the solution to (5) does not depend on the robot
measurements.Nevertheless, inSect. 6,wepresent numerical
experiments where this assumption is relaxed.

3 Sampling-based active information
acquisition

We propose a sampling-based algorithm to solve Problem
1, which is summarized in Algorithm 1. The proposed algo-
rithm relies on incrementally constructing a directed tree that
explores both the information space and the robot motion

Algorithm 1: Sampling-based active information acqui-
sition
Input: (i) maximum number of iterations nmax, (ii) dynamics

(1), (2), observation model (3), (iii) prior Gaussian
N (x̂(0),�(0)), (iv) initial robot configuration p(0)

Output: Terminal horizon F , and control inputs u0:F
1 Initialize V = {q(0)}, E = ∅, V1 = {q(0)}, K1 = 1, and Xg = ∅;
for n = 1, . . . , nmax do

2 Sample a subset Vkrand from fV ;
3 Sample a control input unew ∈ U from fU and compute pnew;
4 if pnew ∈ ΩN

free then
5 for qrand(t) = [prand(t),�rand(t)] ∈ Vkrand do
6 Compute �new(t + 1) = ρ(prand(t),�rand(t));
7 Construct qnew(t + 1) = [pnew(t + 1),�new(t + 1)];
8 Update set of nodes: V = V ∪ {qnew};
9 Update set of edges: E = E ∪ {(qrand,qnew)};

10 Compute cost of new state:
JG(qnew) = JG(qrand) + det�new(t + 1); see (6);

11 if ∃k ∈ {1, . . . , Kn}
associated with same position as in qnew then

12 Vk = Vk ∪ {qnew};
13 else
14 Kn = Kn + 1, VKn = {qnew};
15 if qnew satisfies (5c) then
16 Xg = Xg ∪ {qnew};
17 Among all nodes in Xg , find qend(tend) ;
18 F = tend and recover u0:F by computing the path

q0:tend = q(0), . . . ,q(tend);

space. In what follows, we denote the constructed tree by
G = {V, E, JG}, where V is the set of nodes and E ⊆ V × V
denotes the set of edges. The set of nodes V contains states of
the form q(t) = [p(t),�(t)].1 The function JG : V → R+
assigns the cost of reaching node q ∈ V from the root of the
tree. The root of the tree, denoted by q(0), is constructed so
that it matches the initial states of the robots p(0) and the
prior covariance �(0), i.e., q(0) = [p(0),�(0)]. The cost
of the root q(0) is JG(q(0)) = det�(0), while the cost of a
node q(t + 1) = [p(t + 1),�(t + 1)] ∈ V , given its parent
node q(t) = [p(t),�(t)] ∈ V , is computed as

JG(q(t + 1)) = JG(q(t)) + det�(t + 1). (6)

Observe that by applying (6) recursively,we get that JG(q(t+
1)) = J (t,u0:t+1) which is the objective function in (5).

The tree G is initialized so that V = {q(0)}, E = ∅, and
JG(q(0)) = det�(0) [line 1, Alg. 1]. Also, the tree is built
incrementally by addingnewstatesqnew toV and correspond-
ing edges to E , at every iteration n of Algorithm 1, based on a
sampling [lines 2-3, Alg. 1] and extending-the-tree operation
[lines 4-16, Alg. 1]. After taking nmax ≥ 0 samples, where
nmax is user-specified, Algorithm 1 terminates and returns
a solution to Problem 1, i.e., a terminal horizon F and a
sequence of control inputs u0:F .

1 Throughout the paper, when it is clear from the context, we drop the
dependence of q(t) on t .
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To extract such a solution, we need first to define the set
Xg ⊆ V that collects all states q(t) = [p(t),�(t)] ∈ V of
the tree that satisfy det�(F) ≤ δ, which is the constraint
(5c) [lines 15-16, Alg. 1]. Then, among all nodes Xg , we
select the node q(t) ∈ Xg , with the smallest cost JG(q(t)),
denoted by q(tend) [line 17, Alg. 1]. Then, the terminal hori-
zon is F = tend, and the control inputs u0:F are recovered by
computing the path q0:tend in G that connects q(tend) to the
root q(0), i.e., q0:tend = q(0), . . . ,q(tend) [line 18, Alg. 1].
Note that for simplicity of notation, we abstain from storing
the control inputs in the tree structure. Note that satisfaction
of the constraints (5d)-(5f) is guaranteed by construction of
G; see Sect. 3.1. In what follows, we describe the core oper-
ations of Algorithm 1, ‘sample’ and ‘extend’ that are used to
construct the tree G.

3.1 Incremental construction of trees

At every iteration n of Algorithm 1, a new state qnew(t+1) =
[pnew(t + 1),�new(t + 1)] is sampled. The construction of
the state qnew(t + 1) relies on two steps. Specifically, first
we sample a state pnew(t + 1) [lines 2-3, Alg. 1]; see Sect.
3.1.1. Second, given pnew(t + 1) we compute the covariance
matrix�new(t +1), giving rise to qnew(t +1)which is added
to the tree structure [line 6, Alg. 1]; see Sect. 3.1.2.

3.1.1 Sampling strategy

To construct the state pnew, we first divide the set of nodes
V into a finite number of sets, denoted by Vk ⊆ V , based
on the robot-configuration component of the states q ∈ V .
Specifically, a Vk collects all states q ∈ V that share the same
robot configuration p; see Fig. 2. By construction of Vk , we
get that V = ∪Kn

k=1Vk , where Kn is the number of subsets Vk

at iteration n. Also, notice that Kn is finite for all iterations
n, since the set of admissible control inputs U is finite, by
assumption. At iteration n = 1 of Algorithm 1, it holds that
K1 = 1, V1 = V [line 1, Alg. 1].

Second, given the setsVk , we first sample from a given dis-
crete distribution fV (k|V) : {1, . . . , Kn} → [0, 1] an index
k ∈ {1, . . . , Kn} that points to the set Vk [line 2, Alg. 1]. The
probability mass function fV (k|V) defines the probability of
selecting the set Vk at iteration n of Algorithm 1 given the
set V .

Next, given the set, denoted by Vkrand , sampled from fV
and the corresponding robot state prand, we sample a control
input unew ∈ U from a discrete distribution fU (u) : U →
[0, 1] [line 3, Alg. 1]. Given a control input, denoted by unew,
sampled from fU , we construct the state pnew as pnew =
f(prand,unew) [line 3, Alg. 1].

Fig. 2 Graphical illustration of the subsets Vk . The colored circles rep-
resent the states q(t) ∈ V of the tree while the root is depicted by
a blue square. Nodes q that share the same robot-configuration are
depicted with the same color. Note that the covariance component of
the states/nodes q(t) is not depicted. As a result, nodes with the same
time stamp t and the same robot configuration but possibly with differ-
ent covariance matrices �(t) overlap in this figure; see, e.g., the blue
node in the layer ”t = 2” (Color figure online)

3.1.2 Extending the tree

If the configuration pnew, constructed as in Sect. 3.1.1, does
not belong to the obstacle-free space, then the current sample
pnew is rejected and the sampling process is repeated [line
4, Alg. 1]. Otherwise, the tree is extended towards states
qnew that are constructed as follows. Given a state qrand(t) =
[prand(t),�rand(t)] ∈ Vkrand , we construct a state qnew by
appending to pnew(t +1), the covariance matrix �new(t +1)
computed as �new(t + 1) = ρ(prand(t),�rand(t)), where
recall thatρ(·) is theKalmanfilterRicattimap [lines 6-7,Alg.
1]. Next, we update the set of nodes and edges of the tree as
V = V∪{qnew(t+1)} and E = E ∪{(qrand(t),qnew(t+1))},
respectively [lines 8-9, Alg. 1]. The cost of the new node
qnew(t + 1) is computed as in (6), i.e., JG(qnew(t + 1)) =
JG(qrand(t)) + det�new(t + 1) [line 10, Alg. 1]. Finally, the
sets Vk are updated, so that if there already exists a subset
Vk associated with the configuration pnew, then Vk = Vk ∪
{qnew(t + 1)}. Otherwise, a new set Vk is created, i.e., Kn =
Kn+1andVKn = {qnew} [lines 11-14,Alg. 1]. This process is
repeated for all states qrand(t) ∈ Vkrand [line 5, Alg. 1]. Recall
that the states in Vkrand share the same robot configuration
prand but they are possibly paired with different time stamps
t and covariance matrices �(t); see Fig. 2.

Remark 2 (Decomposition of the set of nodes ) During the
construction of the tree, Algorithm 1 decomposes the set
of nodes V into a finite number of subsets Vk so that each
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subset Vk collects all nodes that share the same multi-robot
configuration. However, any other criterion can be used to
decompose V as long as the number of subsets Vk remains
finite as n → ∞; see e.g., Sect. 6. As it will be shown in Sect.
4, the latter is required to ensure completeness and optimality
of Algorithm 1.

4 Theoretical analysis

In this section, we show that Algorithm 1 is probabilisti-
cally complete and asymptotically optimalwhile it converges
exponentially fast to the optimal solution at a rate that
depends on the employed sampling strategy. Moreover, we
also discuss the complexity of Algorithm 1.

4.1 Completeness, optimality and convergence

To prove completeness and optimality of Algorithm 1, we
first need to make the following two assumptions about the
probability mass functions fV and fU used in the proposed
sampling strategy. The proofs of the following results can be
found in Appendix 8.

Assumption 2 (Probability mass function fV ) (i) The prob-
ability mass function fV (k|V) : {1, . . . , Kn} → [0, 1]
satisfies fV (k|V) ≥ ε, ∀ k ∈ {1, . . . , Kn} and for all n ≥ 0,
for some ε > 0 that remains constant across all iterations n.
(ii) Independent samples krand can be drawn from fV .

Assumption 3 [Probability mass function fU ] (i) The proba-
bilitymass function fU (u) satisfies fU (u) ≥ ζ , for allu ∈ U ,
for some ζ > 0 that remains constant across all iterations n.
(ii) Independent samples unew can be drawn from fU .

Theorem 1 (Probabilistic completeness) If there exists a
solution to Problem 1, then Algorithm 1 is probabilistically
complete, i.e., a feasible path q0:F = q(0),q(1),q(2), . . . ,
q(F), q( f ) ∈ V , for all f ∈ {0, . . . , F}, will be found with
probability 1, as n → ∞.

Theorem 2 (Asymptotic optimality) Assume that there exists
an optimal solution to Problem 1. Then, Algorithm 1
is asymptotically optimal, i.e., the optimal path q∗

0:F =
q(0),q(1),q(2), . . . ,q(F), will be found with probability 1,
as n → ∞. In other words, the path generated by Algorithm
1 satisfies

P

({
lim
n→∞ J (F,u0:F ) = J ∗}) = 1, (7)

where J is the objective function of (5) and J ∗ is the optimal
cost.2

2 Note that the horizon F and u0:F returned by Algorithm 1 depend on
n. For simplicity of notation, we drop this dependence.

Theorem 3 (Convergence rate bounds) Let q∗
0:F denote

the optimal solution to (5). Then, there exist parameters
αn(q∗

0:F ) ∈ (0, 1], which depend on the selected mass func-
tions fV and fU , for every iteration n of Algorithm 1, such
that

1 ≥ P(An(q∗
0:F )) ≥ 1 − e−

∑n
n=1 αn (q∗

0:F )

2 n+F , (8)

if n > F. In (8), An(q∗
0:F ) denotes the event that Algorithm

1 constructs the path q∗
0:F within n iterations.

Remark 3 (Convergence rate) Observe in (8) that
limn→∞ P(An(q∗

0:F )) = 1. This means that if Problem 1
has an optimal solution, then Algorithm 1 will find it with
probability 1 as nmax → ∞, as expected due to Theorem
2. Also (8) should be interpreted in an existential way, since
values for the parameters αn(q∗

0:F ) are difficult to obtain due
to their dependence on the optimal solution. Note that such
results are common in sampling-based planning algorithms,
such as RRT∗, as recently shown in Solovey et al. (May 31 -
August 31 2020).

Remark 4 (Mass functions fV and fU ) Assumptions 2(i) and
3(i) imply that the mass functions fV and fU are bounded
away from zero on {1, . . . , Kn} and U , respectively. Also,
observe that Assumptions 2 and 3 are very flexible, since
they also allow fV and fU to change with iterations n of
Algorithm 1, as the tree grows.

Remark 5 (Sampling strategy) An example of a distribution
fV that satisfies Assumption 2 is the discrete uniform dis-
tribution fV (k|V) = 1

k , for all k ∈ {1, . . . , Kn}. Observe
that the uniform function trivially satisfies Assumption 2(ii).
Also, observe that Assumption 2(i) is also satisfied, since
there exists an ε > 0 that satisfies Assumption 2(i), which is
ε = 1

|R| , where R is a set that collects all robot configura-
tions p that can be reached by the initial state p(0), at some
t ≥ 0. Note that R is a finite set, since the set U of admissi-
ble control inputs is finite, by assumption. Similarly, uniform
mass functions fU satisfy Assumption 3. Note that any func-
tions fV and fU can be employed as long as they satisfy
Assumptions 2 and 3. Nevertheless, the selection of fV and
fU affects the performance of Algorithm 1; see Theorem 3.
In Sect. 6.1, we design (non-uniform) mass functions fV and
fU for a target tracking application that bias the exploration
towards informative regions in ΩN

free.

4.2 Complexity analysis

In what follows, we discuss the worst-case time complexity
of extending the tree towards a new node, given a set Vkrand
and a control input unew generated by the sampling functions
fV and fU ; see Algorithm 1. The complexity of checking if
the multi-robot state pnew belongs to the obstacle free space
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[line 4, Alg. 1] is O(N logd o), where o stands for the number
of obstacles, N the number of robots, and d is the dimen-
sion of the obstacle space Karaman and Frazzoli (2011); Lan
and Schwager (2016). Next, we denote by O( fKF(N , n,m))

the complexity of applying the Kalman filter Riccati equa-
tion to compute �new, where recall that N is the number of
robots, n is the dimension of the hidden state, and m is the
dimension of the measurement generated by a single robot;
O( fKF(N , n,m)) will be computed analytically later in the
text. The complexity of computing the cost of node qnew (i.e.,
the determinant of�new) is O(n3) [line 10, Alg. 1]. Also, the
complexity of checking if there exists a subset Vk associated
with the state pnew is O(|V|), since in the worst-case the set
V is decomposed into singleton subsets Vk [lines 11-14, Alg.
1]. Since the last three steps are performed for each node in
Vkrand , where |Vkrand | ≤ |V|, we conclude that the complexity
per iteration of Algorithm 1 is

O(N logd o + |V|( fKF(N , n,m) + n3 + |V|))

Finally, to compute the time complexity of the Kalman fil-
ter Riccati map, we rely on the fact that the complexity of
(i) adding two square matrices of dimension n is O(n2);
(i) multiplying two square matrices with dimension m × n
and n × p is O(mnp); and inverting a square matrix of
dimension n using the Gauss-Jordan elimination method is
O(n3). Thus, the time complexity of computing (i) the pre-
dicted covariance matrix is O(n3 + n2); (ii) the innovation
covariance is O(m2 +m2n); (ii) the optimal Kalman gain is
O(n2m+m3); and (iii) computing the a-posteriori covariance
matrix is O(n3+n2+n2m). Since application of the Kalman
filter Riccati map requires the above three steps, we conclude
that its complexity per robot isO(m2(1+n)+n3+n2(m+1)).
Also, if the Kalman filter Riccati map is applied sequentially
across the robots, then we conclude that fKF(N , n,m) =
N (m2(1+n)+n3 +n2(m+1)). Observe that as the number
of obstacles, the number of robots, the dimension of hidden
state, or the size of the tree increase, the time complexity per
iteration increases as well necessitating the need of sampling
strategies that are capable of finding feasible solutions as fast
as possible; see Sect. 5.

5 Biased sampling strategy

In this section, we design mass functions for the sampling
strategy discussed in Sect. 3.1 that allow us to address large-
scale estimation tasks that involve estimation tasks with large
robot teams and high dimensional hidden states. The main
idea is to build fV and fU so that the tree is biased to explore
regions of the environment that are expected to be informa-
tive.

To this end, we first compute the informative part of the
environment defined as locations in the workspace that if vis-
ited the uncertainty of the hidden state will further decrease.
Formally, at any time t ≥ 0, the informative part of the envi-
ronment is defined as

I(t) = {q ∈ Ωfree | ρ(q, �(t)) < det�(t)} , (9)

where �(t + 1) = ρ(q, �(t)). Note that computing I(t) is
not straightforward as it depends on the sensor model (3).
In Sect. 6, we show how this set can be computed approxi-
mately for range-limited sensors in a target tracking scenario.
Specifically, we construct I(t) so that it collects all locations
q in the environmentwhere a sensormeasurement is expected
to be generated and, therefore, visiting these locations will
result in decreasing the uncertainty of the hidden state.

Next, we decompose I(t) ⊆ Ωfree into K (t) > 0 con-
nected sub-regions Ii (t) so that

I(t) = ∪K (t)
i=1 Ii (t), (10)

where the number K (t) of the sub-regions can change with
time. Note that the subsets Ii (t) can be constructed arbitrar-
ily via, e.g., a grid-based decomposition of I(t), as long as
they are connected. In what follows, we build mass functions
that bias the construction of the tree towards the informative
regions Ii (t).

5.1 Mass function fV

Let L(q) denote the length (number of hops) of the path that
connects the node q ∈ V to the root q(0) of the tree. Let also
Lmax denote the maximum L(q) among all nodes q ∈ V , i.e.,
Lmax = maxq∈V L(q). Hereafter, we denote by Lmax the set
that collects all nodes q ∈ V that satisfy L(q) = Lmax,
i.e.,Lmax = {q ∈ V | L(q) = Lmax}. Given the setLmax, we
construct the mass function fV so that it is biased to select
subsets Vk ⊆ V that contain at least one node q ∈ V that
belongs to Lmax. Specifically, fV (k|V) is defined as follows

fV (k|V) =
{
pV 1

|Kmax| , if k ∈ Kmax

(1 − pV ) 1
|V\Kmax| , otherwise,

(11)

where (i)Kmax is a set that collects the indices k of the subsets
Vk that satisfy Vk ∩ Lmax �= ∅, and (ii) pV ∈ (0.5, 1) stands
for the probability of selecting any subset Vk that satisfies
Vk ∩ Lmax �= ∅. Note that pV can change with iterations
n but it should always satisfy pV ∈ (0.5, 1) to ensure that
subsets Vk with Vk ∩ Lmax �= ∅ are selected more often.
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5.2 Mass function fU

The mass function fU is designed so that control inputs u j

that drive robot j towards the regions Ii (t) that are pre-
dicted to be informative are selectedmore often. Specifically,
given a state qrand(t) ∈ Vkrand , where krand is sampled from
fV (k|V), we design fU (u|qrand(t)) as follows. The con-
struction of fU (u|qrand(t)) presumes that regions Ii (t) are
assigned to each robot, when the robots are in state qrand(t);
the assignment process is described in Sect. 5.3. Given the
assigned regions, fU is designed so that control inputs u j , for
all robots j , thatminimize the distance between the next robot
positionp j (t+1) = f j (p j,rand(t),u j ) and the corresponding
assigned region/subset are selected more often. Specifically,
fU is defined as fU (u|qrand(t)) = ∏

j∈N f j
U (u j ), where

f j
U (u j ) is constructed as follows.

f j
U (u j ) =

{
pU , if (u j = u∗

j ) ∧ (p j (t) /∈ Ii (t))
(1 − pU ) 1

|U j | , otherwise,
(12)

where (i) di j is the distance of the location p j (t + 1)
from the assigned set/region Ii , and (ii) u∗

j ∈ U j is the
control input that minimizes the distance di j , i.e., u∗

j =
argminu j∈U j

di j Observe that the mass functions (11) and
(12) satisfy Assumptions 2 and 3, respectively, by construc-
tion.

In words, to exploit prior information about the hidden
state, (12) selects more often control inputs that drive the
robots close to their corresponding regions Ii , until the robot
lies within the assigned informative region. Once this hap-
pens, controllers are selected randomly to promote random
exploration.

Remark 6 (Online update of sampling strategy) Note that
once a feasible solution to (5) is found, or after a user-
specified number of iterations, we can switch to uniform
mass functions by selecting pU = pV = 0 that promote
random exploration, or to any other mass function. Recall
that the theoretical guarantees provided in Sect. 4 hold even
if the mass functions fV and fU change with iterations n
of Algorithm 1, as long as Assumptions 2 and 3 are always
satisfied.

5.3 On-the-fly assignment of informative regions

In what follows, we describe the assignment process that
is executed every time a state qnew(t + 1) = [pnew(t +
1),�new(t + 1)] is added to the tree; see also Algorithm
2. The goal of Algorithm 2 is to assign an informative region
to each robot when they are in the state qnew(t + 1). Specif-
ically, we construct a function s : V × N → K(t), where
K(t) is a set that collects the indices to all regions of interest
Ii (t), i.e., K(t) = {1, . . . , K (t)}. In words, the function s

Algorithm 2: On-the-fly Region Assignment
Input: (i) s(qrand, j) for all j ∈ N , (ii) new node qnew(t), (iii)

Boolean variable Bi , ∀i ∈ K(t)
Output: s(qnew, j), for all robots j

1 Initialize s(qnew, j) = s(qrand, j) for all j ∈ N ;
2 Collect in the Ras all regions that are already assigned to robots ;
3 Collect in the set Rsat ⊆ Ras all regions that satisfy their
respective Boolean variable Bj ;

4 Compute set D that includes all robots that are responsible for
regions in Rsat;

5 Initialize set of regions to be assigned to robots as
Rto-assign = K(t) \ {Ras ∪ Rsat};

6 if Rto-assign = ∅ then
7 Rto-assign = K(t);
8 for j ∈ D do
9 s(qnew, j) = iclosest, where iclosest ∈ Rto-assign;

10 Update Rto-assign = Rto-assign \ {iclosest};
11 if Rto-assign = ∅ then
12 Rto-assign = K(t);

maps each tree node q(t) ∈ V and each robot j ∈ N to a
single region Ii (t), i ∈ K(t); hereafter, we denote by s(q, j)
the region that is assigned to robot j for the tree node q(t).

First, given qnew, we initialize s(qnew, j) = s(qrand, j),
where recall that qrand is the parent node of qnew in the tree
G [line 1, Alg. 2]. Then, we compute (i) the set Ras that
collects the indices to regions that are already assigned to
robots [line 2, Alg. 2]; (ii) the setRsat ⊆ Ras that collects all
regions Ii that satisfy a certain user-specified Boolean condi-
tion, denoted by Bi , associated with the terminal uncertainty
constraint (5c) (which will be discussed later in the text) [line
3, Alg. 2]; (iii) the setD that includes the indices to the robots
that are physically present in the regions included in the set
Rsat [line 4, Alg. 2]; and (iv) the set Rto-assign ⊆ M that
collects the indices of the regions that are available to be
assigned to the robots in D [lines 5-7, Alg. 2]. Then, targets
fromRto-assign are assigned to the robots in D [lines 8-12].

The Boolean variable Bi discussed before is true if the
assigned region Ii satisfies a certain user-specified and
problem-specific condition to ensure that the desired level of
uncertainty captured by (5c) will eventually accomplished.
For instance, Bi may be defined to be true if at least one
robot has stayed within a region Ii for more than a user-
specified amount of time. A definition for Bi for a target
tracking problem is provided in Sect. 6. In lines 3-4, Rsat

collects all regions for which the corresponding Boolean
variable is true and D collects all robots that have been
assigned a region included in the set Rsat. Robots in the
set D select new regions from the set Rto-assign. This set is
initialized asRto-assign = M \ {Ras ∪ Rsat} [line 5, Alg. 2].
IfRto-assign = ∅, then it is redefined asRto-assign = M [lines
6-7, Alg. 2].

Given D and Rto-assign, our goal is to assign the regions
Ii , i ∈ Rto-assign, to the robots j ∈ D [lines 8-12, Alg. 2].
To do this, the robots j ∈ D sequentially select the closest
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region i ∈ Rto-assign to them, denoted by iclosest. Every time a
robot j picks a region fromRto-assign, themapping s(qnew, j)
and the set Rto-assign are updated as s(qnew, j) = iclosest
and Rto-assign = Rto-assign \ {iclosest} [lines 9-10, Alg. 2]. If
during this assignment process, it holds that Rto-assign = ∅,
then Rto-assign is reinitialized as Rto-assign = M [lines 11-
12, Alg. 2]. The latter happens if there are more robots in D
than regions to be assigned. Finally, note that any other task
assignment algorithm can be employed in place of lines 8-12
that may improve the performance of Algorithm 1; see e.g.,
Turpin et al. (2014); Michael et al. (2008).

6 Numerical experiments

In this section, we present numerical experiments for a target
localization and tracking problem that illustrate the per-
formance of Algorithm 1 compared to existing methods.
Specifically, in Sect. 6.1 we define the target localization and
tracking problem. In Sect. 6.2, we show howAlgorithm 1 can
be adapted to this problem. Then, we examine the scalability
of Algorithm 1 for various sizes of the workspace, num-
bers of robots and targets, and robot dynamics; see Sects.
6.3 and 6.4. We also show that Algorithm 1 can address
large-scale estimation tasks that are computationally chal-
lenging using existing approaches; see Sect. 6.5. Recall that
Algorithm 1 requires prior information about the hidden state
which is also used in the biased sampling strategy. In Sect.
6.6, we demonstrate how Algorithm 1 can be extended to
account for unknown number of targets without any prior
information. All case studies have been implemented using
MATLAB 2016b on a computer with Intel Core i7 3.1GHz
and 16Gb RAM.

6.1 Target localization and tracking scenario

Hidden State: In this scenario, the hidden state x(t) is cre-
ated by stacking the positions of M > 0 targets at time t , i.e.,
x(t) = [xT1 (t), xT2 (t), . . . , xTM (t)]T , where xi (t) is the posi-
tion of target i ∈ M := {1, . . . , M} at time t . The targets
are modeled as discrete-time linear time invariant systems
with known dynamics and known control inputs at any time
t subject to uncertain Gaussian noise as per Assumption 1.
We require the constraint (5c) to hold for all states xi (F), for
some δi .

Robot sensors: Moreover, we assume that the robots are
equippedwith omnidirectional, range-only, line-of-sight sen-
sors with limited range of 2 m. Every robot can take noisy
measurements of its distance from all targets that lie within
its sight and range. Specifically, the measurement associated
with robot j and target i is given by

y j,i = 	 j,i (t) + v(t) if (	 j,i (t) ≤ 2) ∧ (i ∈ FOV j )

where 	 j,i (t) is the distance between target i and robot
j , FOV j denotes the field-of-view of robot j , and v(t) ∼
N (0, σ 2(p j (t), xi (t))) is the measurement noise. Also, we
model the measurement noise so that σ increases linearly
with 	 j,i (t), with slope 0.25, as long as 	 j,i (t) ≤ 2; if
	 j,i (t) > 2, then σ is infinite.

Robot dynamics Throughout this section, we consider
robots with (i) first-order dynamics, i.e.,

p j (t + 1) = p j (t) + u j (t), (13)

where p j (t) captures the position of robot j and U =
{[0,±umax], [±umax, 0], [±umax,±umax]}, where umax =
0.2m/s, and (ii) differential drive dynamics defined as fol-
lows:⎡
⎢⎣
p1j (t + 1)
p2j (t + 1)

θ j (t + 1)

⎤
⎥⎦ =

⎡
⎢⎣
p1j (t)
p2j (t)

θ j (t)

⎤
⎥⎦

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣

τu cos(θ j (t) + τω/2)

τu sin(θ j (t) + τω/2)

τω

⎤
⎥⎦ , if τω < 0.001

⎡
⎢⎣

u
ω
(sin(θ j (t) + τω) − sin(θ j (t)))

u
ω
(cos(θ j (t)) − cos(θ j (t) + τω))

τω

⎤
⎥⎦ , else,

(14)

where the robot state p j (t) = [p1j (t), p2j (t), θ j ]T captures

both the position [p1j (t), p2j (t)] and the orientation θ j (t) of
the robots. Also, the available motion primitives are u ∈
{0, 0.2}m/s andω ∈ {0,±π/4,±π/2,±π/1.33,±π} rad/s.

6.2 Sampling-based AIA for target localization and
tracking

Relaxing linearity assumptions: Observe that the sensor
model is nonlinear and, therefore, the separation principle,
discussed in Sect. 2, does not hold; as a result, offline control
policies are not optimal. In this case, we execute Algorithm
1 using the linearized observation model about the predicted
target positions. Note that, similar to Atanasov et al. (2014),
Algorithm 1 can be coupled with a Model Predictive Con-
trol approach where the robots redesign their paths every few
measurements, to generate adaptive sensor policies.

Biased sampling strategy: To implement the biased sam-
pling strategy presented in Sect. 5, we need first to construct
the informative region I(t) of the environment defined in
(9). As discussed in Sect. 5, construction of I(t) can be com-
putationally challenging and specific to the sensor model.
Here we approximately compute I(t) so that it collects all
locations in the environment where the robots may generate
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a range measurement contributing to decreasing the uncer-
tainty of the hidden state. To compute this set of locations, we
rely on the estimated landmark positions. Specifically, given
the considered homogeneous range-limited sensor models,
the part of the environment that is expected to be informative
is defined as

I(t) =
M⋃
i=1

Ci (t) ∩ Ωfree, (15)

where Ci (t) is a FOV disk centered at the expected position
x̂i (t) of target i at time t with radius equal to the robot sensing
range. In other words, Ci (t) contains all locations q that are
visible from x̂i (t), i.e., Ci (t) = {q ∈ FOVi | ‖q−x̂i (t)‖ ≤ 2}.
This visibility-based disk can be computed efficiently using
available tools Obermeyer and Contributors (2008). Observe
in (15) that I(t) is by definition decomposed into connected
subsets Ii (t) defined as Ii (t) = Ci (t) ∩ Ωfree.

Moreover, to employ the proposed biased sampling strat-
egy, in Algorithm 2 we define the Boolean variable Bi j as
follows:

Bi (t) =
{
True if det�i (t) ≤ δi

False otherwise
(16)

i.e., Bi (t) is true if the uncertainty associated with target i is
below the desired uncertainty threshold δi . Given this defini-
tion for Bi (t) and by construction of Algorithm 2, assuming
that the region Ii has been assigned to robot j , a new region
will be assigned to robot j once Bi (t) becomes true, i.e.,
once target i is accurately localized. This specific assign-
ment process motivates the robots to visit targets that do not
meet the desired levels of uncertainty. Hereafter, we employ
the density functions fV and fU designed in Sect. 6.1 with
prand = pnew = 0.9. Also, notice that the computational
complexity of Algorithm 1 per iteration depends linearly on
the size of the selected subset Vkrand . Therefore, to speed
up the construction of a feasible solution, a new set Vk is
constructed for every new sample, for the first 100 itera-
tions/samples (i.e., the first 100 Vk sets are singleton). After
that, the sets Vk are constructed as described in Sect. 3.

6.3 Scalability analysis

In this section, we examine the performance of Algorithm 1
with respect to the number of robots, their dynamics, and the
number of targets. The results are summarized in Table 1.
Specifically, Table 1 shows the average runtime and terminal
horizon of 5 simulations for each case study (i.e., ratio N/M).
The reported runtimes/horizons refer to the time required by
Algorithm 1 to compute feasible paths at time t = 0 with-
out considering any re-planning that may occur due to the

Table 1 Scalability analysis: effect of the number N of robots and
number M of targets on the cost of the first path found by Alg. 1 and
on the terminal horizon F

N/M First order dynamics Diff. drive dynamics

Runtime Cost / F Runtime Cost / F

1/5 15.32 secs 29.28 / 302 23.74 secs 34.47 / 374

10/10 24.54 secs 9.23 / 47 53.23 secs 12.24 / 53

10/20 27.33 secs 24.89 / 47 57.93 secs 39.35 / 75

10/35 27.87 secs 44.79 / 61 58.52 secs 55.58 / 77

15/10 46.67 secs 11.14 / 38 1.51 mins 14.24 / 52

15/20 48.18 secs 22.85 / 42 1.59 mins 29.78 / 60

15/35 55.6 secs 36.94 / 48 1.72 mins 49.16 / 68

20/10 58 secs 12.61 / 36 1.52 mins 15.31 / 50

20/20 1.35 mins 25.26 / 40 1.61 mins 32.44 / 57

20/35 1.40 mins 35.11 / 46 1.88 mins 49.2 / 62

30/60 2.1 mins 56.19 / 55 3.12 mins 74.5 / 68

nonlinear sensor model. In all case studies of Table 1, all
targets are modeled as linear systems and the parameters δi
are selected to be δi = 1.8 × 10−6, for all i ∈ M, while the
robots reside in the 10m×10m environment shown in Fig. 6.
Observe in Table 1 that Algorithm 1 can design feasible paths
very fast even for large number of robots and targets regard-
less of the robot dynamics; see also Fig. 6a. Additionally,
notice that given a fixed number of robots, the average run-
time/horizon tends to increase as the number of landmarks
increase. Similarly, for a fixed number of landmarks, as the
number of robots increases the terminal horizon decreases as
the burden of localizing the landmarks is distributed across a
larger number of robots. However, in the latter case, the total
runtime increases as expected since the complexity of Algo-
rithm 1 increases as the number of robots increases; see Sect.
4.2. Finally, we also applied Algorithm 1 to a scenario where
a team of N = 7 differential drive robots should localize and
track M = 20 targets in a significantly larger workspace,
such as a residential area, with dimensions 500m × 1000m.
In this scenario, the sensing range of the robots is 20m,
and the motion primitives are selected as u ∈ {0, 2}m/s
and ω ∈ {0,±π/4,±π/2,±π/1.33,±π} rad/s. Algorithm
1 generated robot paths in 12.23 mins with terminal horizon
F = 3769 that are depicted in Fig. 3.

6.4 Active information acquisition with aerial
vehicles

Algorithm1generates paths that satisfy a givenmission spec-
ification while respecting the robot dynamics as captured
in (5e). As shown in Table 1, the more complex the robot
dynamics is, the longer it takes to generate feasible paths.
To mitigate this issue, an approach that we investigate in this
section, is to generate paths for simple robot dynamics that
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Fig. 3 Case study N = 7, M = 20: Graphical depiction of the robot
paths (colored paths) and the targets (black paths)

need to be followed by robots with more complex dynamics.
Particularly, here, we present simulation studies that involve
a team of N = 20 AsTech Firefly Unmanned Aerial Vehicles
(UAVs) that operate over a city with dimensions 200 × 200
m with M = 16 landmarks; see e.g., Fig. 4. The AsTech
Firefly UAV is governed by first order dynamics where the
UAV state includes the position, velocity, orientation, and
biases in the measured angular velocities and acceleration;
more details can be found in Furrer et al. (2016).

The initial configuration of the robots and the landmarks
are shown in Fig. 4a. Algorithm 1 synthesized the initial
nominal pathswithin 179.12 seconds considering differential
drive dynamics (14) that are simpler than the actual AsTech
Firefly UAV dynamics. Given the waypoints, generated by
Algorithm 1, we compute minimum jerk trajectories, defined
by fifth-order polynomials, that connect consecutive way-
points in the nominal paths. To determine the coefficients
of this polynomial, we impose boundary conditions on the
UAV positions that require the travel time between consecu-
tive waypoints in the nominal paths to be T = 2 seconds for
all UAVs LaValle (2006). The UAVs are controlled to follow
the synthesized trajectories - using the ROS package devel-
oped in Furrer et al. (2016) - resulting in achieving the desired
level of uncertainty. The synthesized paths are illustrated in
Fig. 4b allowing the UAVs to always approach the original
waypoints within distance less than 0.8 m. Snapshots show-
ing the robots navigating the city to localize the landmarks
are shown in Fig. 5.

6.5 Comparisons with alternative approaches

Wefirst compare our algorithm tomyopic/greedy approaches,
where the robots select the control input that incurs the
maximum immediate decrease of the cost function in (5).
Such approaches failed to design meaningful paths, since the
majority of the robots at their initial locations cannot take any
measurement due to their limited sensing range (see e.g., Fig.
6(a)) and, therefore, all control inputs incur the same cost.
As a result, in these case studies, the greedy approach closely

Fig. 4 a Depicts the initial configuration of 20 aerial robots with lim-
ited field-of-view (blue disks). The red ellipsoids capture the positional
uncertainty of the targets. b Illustrates the robot paths where the disks
and squares denote initial and final locations

mimics random-walk methods. Furthermore, we also com-
pared Algorithm 1 to a (decentralized) coordinate descent
biased-greedy approach, an improved version of the standard
greedy method. Specifically, the robots select control inputs
in a coordinate descent way (see Atanasov et al. (2015a)),
as follows. If all control inputs for a robot are equivalent,
then the control input returned by the density function fU ,
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Fig. 5 Successive snapshots for theAIA task discussed in Sect. 6.4. The
blue disks, red spheres, and red ellipsoids represent the robots’ sensing
range, the true landmark locations, and the positional uncertainty of the
landmarks, respectively

designed in Sect. 6.1, is selected. Otherwise, the greedy
action is selected. The resulting paths for the case study
N/M = 10/20 are depicted in Fig.6b. Observe in this figure
that the robots get trapped in local optima/regions and fail to
explore the rest of the workspace, which is not the case when
Alg. 1 is applied; see Fig. 6a.

Second, we compared our algorithm to existing nonmy-
opic algorithms. Specifically, we applied the Feedforward
Value Iteration (FVI) method that exhaustively searches both
the robot motion space and the information space to gener-
ate optimal paths Le Ny and Pappas (2009). FVI also failed
to solve the considered case studies because of excessive
runtime and memory requirements. For instance, FVI was
able to solve an AIA task with N = 1 robot and M = 2
targets, in 44.56 secs, with cost 0.71 and u ∈ {0, 1} m/s.
Finally, we compared Algorithm 1 to the RIG-tree algorithm
proposed in Hollinger and Sukhatme (2014).3 The RIG-tree
algorithm failed to return a solution for all case studies of
Table 1within 2 hours. The largest estimation tasks that RIG-
tree was able to solve involved (i) N = 1 robot and M = 2
targets, and (ii) N = 2 robots and M = 3 targets, in 2.23
and 3.91 secs with cost 2.25 and 4.41, respectively, assuming

3 We appropriately modified the RIG-tree, so that it fits our problem
formulation. Specifically, first we used the objective function of (5) and,
second, we replaced the budget constraints in Hollinger and Sukhatme
(2014) with the terminal uncertainty constraint (5c).
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56.86secs

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5 6

7

8

9
1011

12

13

14
15

16

17

18

19

20

(b) N/M = 10/20, Cost = 61.32, F = 77, Runtime = 39.76
mins

Fig. 6 Comparison between Alg.1 (Fig. 6a) and a coordinate descent
biased-greedy approach (Fig. 6b) for the case study N/M = 10/20 of
Table 1. The green (cyan) and red (blue) square denote the initial and
final positions of the robots (targets). Obstacles are represented by gray
boxes

sparsely distributed targets. In fact, the RIG-tree algorithm
has been applied only to cases where information is available
everywhere in the workspace; see Sect. 5 in Hollinger and
Sukhatme (2014).

6.6 Extensions to unknown number of targets

In this section, we show that the proposed sampling-based
AIAalgorithmcan also be applied to scenarioswith unknown
number of static targets by coupling Algorithm 1 with exist-
ing frontiers-based exploration strategies Leung et al. (2012);
Yamauchi (1997); Atanasov et al. (2015a). Following a simi-
lar approach as in Leung et al. (2012); Atanasov et al. (2015a)
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Fig. 7 Target localization scenario: a – f show the configurations of
N = 2 robots at various time instants towards localizing M = 13
unknown landmarks with no prior information. The blue dots, the red
diamonds, and the green squares depict grid cells that have been sensed
by the the robots, exploration landmarks, and actual landmarks detected
by the robots, respectively. The green circle and red square depict the
initial and current location of the robots connected by a robot trajectory.
Gray boxes correspond to obstacles

we define a grid C = {c1, c2, . . . , cL} over the environment
where ck corresponds to the k-th grid cell. Then, we split the
grid cells into ‘explored’ (i.e., cells that have been visited
by the robots) and ’unexplored’. Then, we introduce dummy
‘exploration’ landmarks at the frontiers of the explored grid
mapwith a knownGaussian prior on their locations. This fake
uncertainty in the exploration-landmark locations promises
information gain to the robots. Given these exploration land-
marks, Algorithm 1 is applied to design informative paths.
As the robots follow the designed paths, they update the
exploredpart of the gridworld and accordingly introduce new
exploration landmarks. If an a-priori unknown landmark is
detected, then a Gaussian distribution is assigned to its loca-

tion. Algorithm 1 is applied in an MPC-fashion every few
time units, to account for new exploration or actual land-
marks that are detected on-the-fly. The algorithm terminates
once all grid cells are considered explored and all detected
landmarks are localized as per the user-specified uncertainty
threshold. The same idea can be applied to cases pertaining
to a known number of mobile targets with no prior infor-
mation. The difference is that in this case the robots should
persistently explore the environment (even if the grid cells of
the environment have been visited once) while the algorithm
should terminate when all mobile targets are localized as per
a user-specified accuracy and. Note that if the number of
mobile targets is unknown, it is non-trivial to design a termi-
nation criterion for the proposed algorithm as the grid cells
of the unknown environment should be visited repetitively
to detect potentially new targets. A simulation study with 2
robots that are responsible for localizing 13 fully unknown
static landmarks is presented in Fig.7.

7 Conclusion

In this paper we proposed a new sampling-based algo-
rithm for multi-robot AIA tasks in complex environments
supported by completeness, optimality, and convergence
guarantees. Comparative simulation studies validated the
theoretical analysis and showed that the proposedmethod can
quickly compute sensor policies that satisfy desired uncer-
tainty thresholds inAIA tasks that involve large sensor teams,
workspaces, and dimensions of the hidden state, which was
impossible using relevantmethods. Extensions to account for
hidden states with no prior information were also discussed
and evaluated in simulations.

Funding This work was supported by the ARL Grant DCIST CRA
W911NF-17-2-0181.

8 Appendix: proof of completeness,
optimality, and convergence

In what follows, we denote by Gn = {Vn, En, J } the tree
that has been built by Algorithm 1 at the n-th iteration. The
same notation also extends to fV , fU , and unew. To prove
Theorems 1 and 2, we need to prove the following results.

Lemma 1 (Sampling Vn
krand

) Consider any subset Vn
k and any

fixed iteration index n and any fixed k ∈ {1, . . . , Kn}. Then,
there exists an infinite number of subsequent iterations n+w,
where w ∈ W and W ⊆ N is a subsequence of N, at which
the subset Vn

k is selected to be the set Vn+w
krand

.

Proof Let Arand,n+w(k) = {Vn+w
krand

= Vn
k }, with w ∈ N,

denote the event that at iteration n + w of Algorithm 1 the
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subset Vn
k ⊆ Vn is selected by the sampling operation to

be the set Vn+w
krand

[line 2, Alg. 1]. Also, let P(Arand,n+w(k))

denote the probability of this event, i.e., P(Arand,n+w(k)) =
f n+w
V (k).
Next, define the infinite sequence of events Arand =

{Arand,n+w(k)}∞w=0, for a given subset Vn
k ⊆ Vn . In what

follows, we show that the series

∞∑
w=0

P(Arand,n+w(k))

diverges and then we complete the proof by applying the
Borel-Cantelli lemma Grimmett and Stirzaker (2001).

Recall that by Assumption 2(i), we have that given
any subset Vn

k ⊆ Vn , the probability f nV (k|Vn) satis-
fies f nV (k|Vn) ≥ ε, for any iteration n. Thus we have
that P(Arand,n+w(k)) = f n+w

V (k|Vn+w) ≥ ε > 0,
for all w ∈ N. Note that this result holds for any
k ∈ {1, . . . , Kn+w} due to Assumption 2(i). Therefore,
we have that

∑∞
w=0 P(Arand,n+w(k)) ≥ ∑∞

w=0 ε. Since
ε is a strictly positive constant, we have that

∑∞
w=0 ε

diverges. Then, we conclude that
∑∞

w=0 P(Arand,n+w(k)) =
∞. Combining this result and the fact that the events
Arand,n+w(k) are independent by Assumption 2(ii), we get
that P(lim supk→∞ Arand,n+w(k) = 1, by the Borel-Cantelli
lemma. In other words, the events Arand,n+w(k) occur
infinitely often, for all k ∈ {1, . . . , Kn}. This equivalently
means that for every subset Vn

k ⊆ Vn , for all n ∈ N+, there
exists an infinite subsequenceW ⊆ N so that for all w ∈ W
it holds Vn+w

krand
= Vn , completing the proof. ��

Lemma 2 (Samplingunew)Consider any subsetVn
krand

selected
by fV and any fixed iteration index n. Then, for any given
control input u ∈ U , there exists an infinite number of sub-
sequent iterations n + w, where w ∈ W ′ and W ′ ⊆ W is
a subsequence of the sequence ofW defined in Lemma 1, at
which the control input u ∈ U is selected to be un+w

new .

Proof Define the infinite sequence of events Anew =
{Anew,n+w(u)}∞w=0, for u ∈ U , where Anew,n+w(u) =
{un+w

new = u}, for w ∈ N, denotes the event that at iter-
ation n + w of Algorithm 1 the control input u ∈ U is
selected by the sampling function to be the input un+w

new , given
the subset Vn

krand
∈ Vn+w

krand
. Moreover, let P(Anew,n+w(u))

denote the probability of this event, i.e., P(Anew,n+e(u)) =
f n+w
U (u|Vn+w

krand
). Now, consider those iterations n + w with

w ∈ W such that kn+w
rand = knrand by Lemma 1. We will show

that the series∑
w∈K

P(Anew,n+w(u))

diverges and then we will use Borel-Cantelli lemma to show
that any given u ∈ U will be selected infinitely often

to be control input un+w
new . By Assumption 3(i) we have

that P(Anew,n+w(u)) = f n+w
U (u|Vn+w

krand
) is bounded below

by a strictly positive constant ζ > 0 for all w ∈ W .
Therefore, we have that

∑
w∈W P(Anew,n+w(u)) diverges,

since it is an infinite sum of a strictly positive constant
term. Using this result along with the fact that the events
Anew,n+w(u) are independent, by Assumption 3(ii), we
get that P(lim supw→∞ Anew,n+w(u)) = 1, due to the
Borel-Cantelli lemma. In words, this means that the events
Anew,n+w(u) for w ∈ W occur infinitely often. Thus, given
any subsetVn

krand
, for every control input u and for all n ∈ N+,

there exists an infinite subsequence W ′ ⊆ W so that for all
w ∈ W ′ it holds un+w

new = u, completing the proof. ��
Before stating the next result, we first define the reachable

state-space of a state q(t) = [p(t),�(t)] ∈ Vn
k , denoted by

R(q(t)) that collects all states q(t+1) = [p(t+1),�(t+1)]
that can be reached within one time step from q(t).

Corollary 1 (Reachable setR(q(t))) Given any state q(t) =
[p(t),�(t)] ∈ Vn

k , for any k ∈ {1, . . . , Kn}, Algorithm
1 will add to Vn all states that belong to the reachable
set R(q(t)) will be added to Vn+w, with probability 1, as
w → ∞, i.e., limw→∞ P

({R(q(t)) ⊆ Vn+w}) = 1. Also,
edges from q(t) to all reachable states q′(t + 1) ∈ R(q(t))
will be added to En+w, with probability 1, as w → ∞, i.e.,
limw→∞ P

({∪q′∈R(q)(q,q′) ⊆ En+w}) = 1.

Proof The proof straightforwardly follows fromLemmas 1-2
and is omitted. ��
Proof of Theorem 1 By construction of the path q0:F , it holds
that q( f ) ∈ R(q( f − 1)), for all f ∈ {1, . . . , F}. Since
q(0) ∈ V1, it holds that all states q ∈ R(q(0)), includ-
ing the state q(1), will be added to Vn with probability 1,
as n → ∞, due to Corollary 1. Once this happens, the
edge (q(0),q(1)) will be added to set of edges En due to
Corollary 1. Applying Corollary 1 inductively, we get that
limn→∞ P

({q f ∈ Vn}) = 1 and limn→∞ P ({(q( f − 1),
q( f )) ∈ En}) = 1, for all f ∈ {1, . . . , F} meaning that the
path q0:F will be added to the tree Gn with probability 1 as
n → ∞ completing the proof. ��
Proof of Theorem 2 The proof of this result straightforwardly
follows from Theorem 1. Specifically, recall from Theorem
1 that Algorithm 1 can find any feasible path and, therefore,
the optimal path as well, with probability 1, as n → ∞,
completing the proof. ��
Proof of Theorem 3 To prove this result, we model the sam-
pling strategy employed by Algorithm 1 as a Poisson
binomial process. Specifically, we define Bernoulli random
variablesYn at every iteration n ofAlgorithm1 so thatYn = 1
only if the edge (q( f −1),q( f )) is added to the tree at itera-
tion n, where f is the smallest element of the set {1, . . . , F}
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that satisfies q( f − 1) ∈ Vn−1 and q( f ) /∈ Vn−1. Then,
using the random variables Yn , we define the random vari-
able Y = ∑nmax

n=1 Yn which captures the total number of
successes of the random variables Yn and we show that it fol-
lows a Poisson binomial distribution. Finally, we show that
P(Anmax(q∗

0:F )) = P(Y ≥ F) which yields (8) by applying
the Chernoff bounds to Y . The detailed proof is omitted.

Let Xn
f , for all f ∈ {1, . . . , F − 1} denote a Bernoulli

random variable associated with iteration n of Algorithm 1,
that is equal to 1 if the edge (q f−1,q f ) in q∗

0:F is added to
the tree at iteration n or has already been added to the tree at
a previous iteration m < n, and is 0 otherwise. Observe that
Xn
1 is equal to 1 for all iterations n ≥ 1 of Algorithm 1, since

the tree is rooted at q1 and, therefore, q1 ∈ Vn , for all n ≥ 1.
By construction of the sampling strategy the probability that
Xn

f = 1 is defined as follows

P(Xn
f ) =

{
f nV (k f −1|Vn) f nU (u f −1→ f ), if (q f −1,q f ) /∈ En,

1, if (q f −1, q f ) ∈ En,

(17)

where q f −1 ∈ Vn
k f −1

and with slight abuse of notation
u f −1→ f ∈ U stands for the control input that steers the
robots from q f−1 to q f . Note that such a controller exists
since q f ∈ R(q f −1) by definition of the path q∗

0:F , where
R(·) denotes the reachable set. Observe that if q f −1 /∈ Vn

then P(Xn
f ) = 0, since f nV (k f −1|Vn) = 0. Moreover, note

that if an edge (q f−1,q f ) already belongs to En from a pre-
vious iteration m < n of Algorithm 1, then it trivially holds
that P(Xn

f ) = 1.
Given the random variables Xn

f , we define the discrete

random variable Yn initialized as Y1 = X1
1 and for every

subsequent iteration n > 1 defined as

Yn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Xn
f , if (Yn−1 = Xn−1

k ) ∧ (Xn−1
f = 0)

Xn
f +1, if (Yn−1 = Xn−1

f ) ∧ (Xn−1
f = 1)

∧ ( f + 1 ≤ F)

Xn
F , if (Yn−1 = Xn−1

f ) ∧ (Xn−1
f = 1)

∧ ( f + 1 > F)

. (18)

In words, Yn is defined exactly as Yn−1, i.e., Yn =
Yn−1 = Xn−1

f = Xn
f , if Yn−1 = Xn−1

f = 0, i.e., if
the edge (q f−1,q f ) associated with the random variable
Yn−1 = Xn−1

f does not exist in the tree at iteration n−1; see

the first case in (18). Also, Yn = Xn
f +1, if Yn−1 = Xn−1

f = 1,
i.e., if the edge (q f−1,q f )was added to the tree at the previ-
ous iteration n−1; see the second case in (18). If f +1 > F
and Xn−1

f = 1, then we define Yn = Xn
F ; see the last case in

(18). Note that in this case, Yn can be defined arbitrarily, i.e.,
Yn = Xn

f̄
, for any f̄ ∈ {1, . . . , F}, since if f + 1 > K and

Xn−1
f = 1, then this means that all edges that appear in q∗

0:F

have been added to En . By convention, in this case we define
Yn = Xn

F . Since Yn is equal to X f
n for some f ∈ {1, . . . , F},

as per (18), for all n ≥ 1, we get that Yn also follows a
Bernoulli distributionwith parameter (probability of success)
psucn equal to the probability of success of Xk

n defined in (17),
i.e.,

psucn = P(Xn
f ),

where the index f is determined as per (18).
Given the random variables Yn , n ∈ {1, . . . , nmax}, we

define the discrete random variable Y as

Y =
nmax∑
n=1

Yn . (19)

Observe that Y captures the total number of successes of
the random variables Yn after nmax > 0 iterations, i.e., if
Y = y, y ∈ {1, . . . , nmax}, then Yn = 1 for exactly y random
variables Yn . Therefore, if Y ≥ F , then all edges that appear
in the path q∗

0:F have been added to the tree, by definition of
the random variables Yn and Y in (18) and (19), respectively.
Therefore, we conclude that

P(Anmax(q∗
0:F )) = P(Y ≥ K ). (20)

In what follows, our goal is to compute the probability
P(Y ≥ K ). Observe that Y is defined as a sum of Bernoulli
random variables Yn that are not identically distributed as
their probabilities of success psucn are not fixed across the
iterations n, since the definition of Yn changes at every itera-
tion n as per (18). Therefore, Y follows a Poisson Binomial
distribution which has a rather complicated probability mass
function, which is valid for small n and numerically unsta-
ble for large n. Therefore, instead of computing P(Y ≥ K ),
we compute a lower bound for P(Y ≥ K ) by applying the
Chernoff bound to Y .

Specifically, we have that

P(Y < F) < P(Y ≤ F) = P(Y ≤ F
μ

μ
)

= P

⎛
⎜⎜⎜⎝Y ≤ (1 − (1 − F

μ
)︸ ︷︷ ︸

=δ

)μ

⎞
⎟⎟⎟⎠ = P(Y ≤ (1 − δ)μ) ≤ e− μδ2

2 ,

(21)

where μ is the mean value of Y defined as μ = ∑nmax
n=1 psucn .

Also, the last inequality in (21) is due to the Chernoff bound
in the lower tail of Y and holds for any δ ∈ (0, 1). Observe
that the Chernoff bound can be applied to Y , as it is defined
as the sum of independent Bernoulli random variables Yn .
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Specifically, the random variables Yn are independent since
independent samples q can be generated by the proposed
sampling process, specified by the density functions fV and
fU , due toAssumptions 2(ii) and3(ii). Substituting δ = 1− F

μ

in (21), we get

P(Y < F) ≤ e− μ
2 +F− F2

μ ≤ e− μ
2 +F = e−

∑nmax
n=1 psucn

2 +F ,

(22)

where the last inequality is due to e− F2
μ ≤ 1. Recall that

(22) holds for any δ = 1 − F
μ

∈ (0, 1), i.e, for any nmax that
satisfies

0 < δ < 1 �⇒ 0 < F < μ =
nmax∑
n=1

psucn �⇒ 0 < F < nmax,

(23)

where the last inequality in (23) is due to psucn ≤ 1. Therefore,
(22) holds as long as nmax > F .

Note also that the inequality 0 < F <
∑nmax

n=1 psucn in (23)
is well defined, since psucn = P(Xn

f ) is strictly positive for
all n ≥ 1 by definition of Yn . To show that, observe that if
Yn = Xn

f , for some f ∈ {1, . . . , F − 1}, then it holds that
(q f −2,q f−1) ∈ En , by definition of Yn in (18), i.e., q f −1 ∈
Vn . Thus, we have that fV (q f −1) > 0 by Assumption 2(i).
Also, fU (u f −1→ f ) > 0 by Assumption 3(i). Therefore, we
have that psucn = P(Xn

f ) > 0; see also (17).
Thus, we proved that there exist parameters αn(q∗

0:F ) =
psucn ∈ (0, 1] associatedwith every iteration n ofAlgorithm 1
such that the probability P(Anmax(q∗

0:F )) of finding the opti-
mal path q∗

0:F within nmax > F iterations satisfies

1 ≥ P(Anmax(q∗
0:F )) = 1 − P(Y < F) ≥ 1 − e−

∑nmax
n=1 αn (q∗

0:F )

2 +F ,

completing the proof. ��
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