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Abstract—This paper considers robot motion planning under
temporal logic constraints in probabilistic maps obtained by
semantic simultaneous localization and mapping (SLAM). The
uncertainty in a map distribution presents a great challenge
for obtaining correctness guarantees with respect to the linear
temporal logic (LTL) specification. We show that the problem
can be formulated as an optimal control problem in which
both the semantic map and the logic formula evaluation are
stochastic. Our first contribution is to reduce the stochastic
control problem for a subclass of LTL to a deterministic shortest
path problem by introducing a confidence parameter δ. A
robot trajectory obtained from the deterministic problem is
guaranteed to have minimum cost and to satisfy the logic
specification in the true environment with probability δ. Our
second contribution is to design an admissible heuristic function
that guides the planning in the deterministic problem towards
satisfying the temporal logic specification. This allows us to
obtain an optimal and very efficient solution using the A*
algorithm. The performance and correctness of our approach
are demonstrated in a simulated semantic environment using a
differential-drive robot.

I. INTRODUCTION

This paper addresses robot motion planning in uncertain
environments with tasks specified by linear temporal logic
(LTL) co-safe formulas. A map distribution, obtained from
a semantic simultaneous localization and mapping (SLAM)
algorithm [25, 1, 30, 3], facilitates natural robot task specifi-
cations in terms of objects and landmarks in the environment.
For example, we can require a robot to “go to a room where
there is a desk and two chairs” instead of giving it exact target
coordinates. One could even describe tasks when the entire
map is not available but is to be obtained as the robot explores
its environment. Meanwhile, temporal logic allows one to
specify rich, high-level robotic tasks. Hence, a meaningful
question we aim to answer is the following. Given a semantic
map distribution, how does one design a control policy that
enables the robot to efficiently accomplish temporal logic
tasks with high probability, despite the uncertainty in the
true environment?

This question is motivated by two distinct lines of work,
namely, control under temporal logic constraints and multi-
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task SLAM. Control synthesis with temporal logic specifi-
cations has been studied for both deterministic [15, 13, 4]
and stochastic systems [19, 7]. Recent related work focuses
on the design problem in the presence of unknown and
uncertain environments. In general, three types of uncertainty
are considered: sensor uncertainty [12], incomplete environ-
ment models [16, 11, 22, 23], or uncertainty in the robot
dynamics [31, 9]. Johnson and Kress-Gazit [12] employ a
model checking algorithm to evaluate the fragility of the
control design with respect to temporal logic tasks when
sensing is uncertain. To handle unexpected changes in the
environment and incompleteness in the environment model,
Kress-Gazit et al. [16] develop a sensor-based reactive motion
planning method that guarantees the correctness of the robot
behaviors under temporal logic constraints. Livingston et al.
[22, 23] propose a way to efficiently modify a nominal
controller through local patches for assume-guarantee LTL
formulas. Guo et al. [11] develop a revision method for online
planning in a gradually discovered environment. Probabilistic
uncertainty is studied in [31, 9]. Wolff et al. [31] develop
a robust control method with respect to temporal logic
constraints in a stochastic environment modeled as an interval
Markov decision process (MDP). Fu and Topcu [9] develop
a method that learns a near-optimal policy for temporal logic
constraints in an initially unknown stochastic environment.
Generally, existing work abstracts the system and its envi-
ronment into discrete models, such as, MDPs and two-player
games, and plans in the discrete state space. In contrast, this
work considers the new problem of control design within a
probabilistic map obtained via a semantic SLAM algorithm.
In this setting, the uncertainty in the landmark poses is
modeled via a continuous distribution, while the uncertainty
in their classes - via a discrete distribution.

While temporal logic can be used to specify a wide range
of robot behaviors, recent advances in SLAM motivate the
integration of task planning with simultaneous discovery of
an unknown environment. Multi-task SLAM is proposed
in Guez and Pineau [10]. The authors consider a planning
problem in which a mobile robot needs to map an unknown
environment, while localizing itself and maximizing long-
term rewards. While the problem is formulated as a partially
observable Markov decision process, planning is carried out
using the mean of the robot pose and the mean of the map
distribution. Bachrach et al. [2] develop a system for visual
odometry and mapping using an RGB-D camera. The authors
employ the Belief Roadmap algorithm [24] to generate the
shortest path from the mean robot pose to a goal state, while
propagating uncertainties along the path. It is difficult, how-
ever, to extend these approaches to temporal logic planning



with probabilistic semantic maps. Unlike reachability and
reward maximization, the performance criteria induced by
LTL formulas require a rigorous way to reason about the
uncertainty in the map distribution. To satisfy quantitative
temporal logic specifications within a probabilistic semantic
map, our method brings together the notions of robustness
and probabilistic correctness. This work makes the following
contributions:
• A stochastic optimal control problem for planning robot

motion in a probabilistic semantic map under temporal
logic constraints is formulated.

• For a subclass of LTL, the stochastic problem is reduced
to a deterministic shortest path problem that can be
solved efficiently. We prove that for a given confidence
parameter δ, the robot trajectory obtained from the
deterministic problem, if it exists, satisfies the logic
specification with probability δ in the true environment.

• An admissible heuristic is designed in order to com-
pute the optimal solution of the deterministic problem
efficiently via an A* planning algorithm.

II. PROBLEM FORMULATION

In this section, we introduce models for the robot and
its uncertain environment, represented by a semantic map
distribution. Using temporal logic as the task specification
language, we formulate a stochastic optimal control problem.

A. Robot and environment models

Consider a mobile robot whose dynamics are governed by
the following discrete-time motion model:

xt+1 = f(xt, ut) (1)

where xt = (xpt , x
a
t ) ∈ X is the robot state at time t,

containing its pose xpt and other variables xat such as velocity
and acceleration and ut ∈ U is the control input, selected
from a finite space of admissible controls. A trajectory
of the robot, for t ∈ N ∪ {∞}, is a sequence of states
x0:t := x0x1 . . . xt.

The robot operates in an environment modeled by a se-
mantic map M := {l1, . . . , lM} consisting of M landmarks.
Each landmark li := (lpi , l

c
i ) ∈ M is defined by its pose

lpi and class lci ∈ C, where C is a finite set of classes (e.g.,
table, chair, door, etc.). The robot does not know the true
landmark poses but has access to a probability distribution
P over the space of all possible maps. Such a distribution
can be produced by a semantic SLAM algorithm [30, 3]
and typically consists of a Gaussian distribution over the
landmark poses and a discrete distribution over the landmark
classes. More precisely, we assume P is determined by
parameters (l̄p,Σp, {ρci}Mi=1) such that lp ∼ N (l̄p,Σp) and lci
is generated by the probability mass function ρci . We suppose
that the class of each landmark is known and leave the case
of uncertain landmark classes for future work.

B. Temporal logic specifications

We use linear temporal logic (LTL) to specify the robot’s
task in the environment. LTL formulas [29] can describe
temporal ordering of events along the robot trajectories and

are defined by the following grammar: φ := p | ¬φ | φ1∨φ2 |
©φ | φ1Uφ2, where p ∈ AP is an atomic proposition
and © and U are temporal modal operators for “next” and
“until”. Additional temporal logic operators are derived from
basic ones: ♦ϕ := true Uϕ (eventually) and �ϕ := ¬♦¬ϕ
(always). We assume that the robot’s task is given by an LTL
co-safe formula [17], which allows checking its satisfaction
using a finite-length robot trajectory.

The LTL formula is specified over a finite set of atomic
propositions that are defined over the robot state space X and
the environment map M. Examples of atomic propositions
include:

αpi (r) : d(xp, lpi ) ≤ r for r ∈ R, i ∈ {1, . . . ,M},
αci (Y ) : lci ∈ Y for Y ⊆ C, i ∈ {1, . . . ,M}.

(2)

Proposition αpi (r) evaluates true when the robot is within
r units distance from landmark i, while proposition αci (Y )
evaluates true when the class of the i-th landmark is in the
subset Y of classes. In order to interpret an LTL formula
over the trajectories of the robot system, we use a labeling
function that determines which atomic propositions hold true
for the current robot pose.

Definition 1 (Labeling function1). Let AP be a set of atomic
propositions and M be the set of all possible maps. A labeling
function L : X×M→ 2AP maps a given robot state x ∈ X
and map M ∈ M to a set L(x,M) of atomic propositions
that evaluate true.

For robot trajectory x0:t and map M ∈ M, the label
sequence of x0:t in M, denoted L(x0:t,M), is such that
L(x0:t,M) = L(x0,M)L(x1,M)L(x2,M) . . . L(xt,M).
Given an LTL co-safe formula ϕ, one can construct
a deterministic finite-state automaton (DFA) Aϕ =
(Q, 2AP , T, q0, F ) where Q, 2AP , q0, F are a finite set of
states, the alphabet, the initial state, and a set of final states,
respectively. T : Q × 2AP → Q is a transition function
such that T (q, a) is the state that is reached with input a at
state q. We extend the transition function in the usual way2:
T (q, uv) = T (T (q, u), v) for u, v ∈ (2AP)∗. A word w is
accepted in Aϕ if and only if T (q0, w) ∈ F . The set of words
accepted by Aϕ is the language of Aϕ, denoted L(Aϕ).

We say that a robot trajectory x0:∞ satisfies the LTL
formula ϕ in the map M if and only if there is k ≥ 0 such
that L(x0:k,M) ∈ L(Aϕ). Then, x0:k is called a good prefix
for the formula ϕ. Furthermore, Aϕ accepts exactly the set
of good prefixes for ϕ and for any state q ∈ F , it holds that
T (q, a) ∈ F for any a ∈ 2AP .

We are finally ready for a formal problem statement.

Problem 1. Given an initial robot state x0 ∈ X , a se-
mantic map distribution P , and an LTL co-safe formula ϕ

1For a deterministic map, our labeling function definition reduces to
the commonly used one in robotic motion planning under temporal logic
constraints [7].

2Notation: Let A be a finite set. Let A∗, Aω be the set of finite and
infinite words over A. Let λ = A0 be the empty string. Abusing notation,
we use ∅ and λ interchangeably. For w ∈ Aω , if there exist u ∈ A∗ and
v ∈ Aω such that w = uv then u is a prefix of w and v is a suffix of w.



represented by a DFA Aϕ, choose a stopping time τ and a
sequence of control policies µt ∈ U for t = 0, 1, . . . , τ that
maximize the probability of the robot satisfying ϕ in the true
environment M while minimizing its motion cost:

min
τ,µ0,µ1,...,µτ

E
[ τ∑
t=0

c(xt, xt+1)
]

+ κP(qτ+1 /∈ F )

s.t. xt+1 = f(xt, µt(xt, qt)),

qt+1 = T (qt, L(xt+1,M)), ∀ 0 ≤ t < τ,

where P(qt /∈ F ) is the probability (induced by P) that
the automaton state q at time t does not belong to the set
F , c is a positive-definite motion cost function that satisfies
the triangle inequality, and κ ≥ 0 determines the relative
importance of satisfying the specification versus the total
motion cost.

Remark: The optimal cost of Problem 1 is bounded below by
0 due to the assumptions on c, κ and above by κ, obtained
by stopping immediately (τ = 0) without satisfying ϕ.

III. PLANNING TO BE PROBABLY CORRECT

The map uncertainty in Problem 1 leads to uncertainty
in the evaluation of the atomic propositions and hence to
uncertainty in the robot trajectory labeling. In turn, the
automaton state is unobservable. Rather than solving the
resulting optimal control problem with partial observability,
we propose an alternative solution that generates a near-
optimal plan with a probabilistic correctness guarantee for
the temporal logic constraints. The main idea is to convert
the original semantic map distribution to a high-confidence
deterministic representation and solve a deterministic optimal
control problem with this new representation. The advantage
is that we can solve the deterministic problem very efficiently
and still provide a correctness guarantee. This avoids the
need for sampling-based methods in the continuous space of
map distributions, which become computationally expensive
when planning in large environments. To this end, we use a
confidence region around the mean M̄ := {(l̄pi , lci )}Mi=1 of
the semantic map distribution P to extend the definition of
the labeling function.

Definition 2 (δ-Confident labeling function). Given a robot
state x ∈ X , a map distribution P , and a parameter δ ∈
(0, 1), a δ-confident labeling function is defined as follows:

Lδ(x,P) :=


L(x,M̄) if L(x,M̄) = L(x,m) for all maps

m in the δ-confidence region of P ,
∅ otherwise,

where the δ-confidence region of P corresponds to the δ-
confidence region of the joint landmark pose distribution
specified by P .

We now explain the intuition for defining the δ-confident
labeling function as in Def. 2. For a given robot trajectory
x0:t, rather than maintaining a distribution over the possible
label sequences, the robot keeps only a sequence of labels

that, with probability δ, is a subsequence3 of the label
sequence L(x0:t,M) in the true environment. This statement
is made precise in the following proposition.

Proposition 1. Given a robot trajectory x0:t and a map
distribution P , Lδ(x0:t,P) is a subsequence of L(x0:t,M)
with probability δ.

Proof. See Appendix A

Intuitively, a label L(xk,M) is preserved at the k-th
position of Lδ(x0:t,P) if for any two sample maps m,m′

in the δ-confidence region of P , L(xi,m) = L(xi,m
′).

Otherwise, it is replaced by ∅. Next, we show that when the
LTL formula ϕ satisfies a particular property, if Lδ(x0,t,P)
is accepted by the DFA Aϕ, then with probability δ, x0:t
satisfies the LTL specification ϕ. The required property is
that the formal language characterization of the logic formula
translates to a simple polynomial [27]. An ω-regular language
L over an alphabet A is simple monomial if and only if it is
of the form

A∗a1A
∗a2A

∗ . . . A∗akA
∗(A∗b1A

∗b2A
∗ . . . A∗b`A

∗)ω

where a1, a2, . . . , ak, b1, b2, . . . , b` ∈ A, k ≥ 0, and ` ≥
0. A finite union of simple monomials is called a simple
polynomial.

Theorem 1. If the the language L(Aϕ) of Aϕ is a sim-
ple polynomial, then Lδ(x0:τ ,P) ∈ L(Aϕ) implies that
P(L(x0:τ ,M) ∈ L(Aϕ)) = δ.

Proof. See Appendix B.

The significance of Thm. 1 is that it allows us to reduce the
stochastic control problem with an uncertain map (Problem
1) to a deterministic shortest path problem. We introduce the
following product system to facilitate the conversion.

Definition 3 (δ-Probably correct product system). Given the
robot system in (1), the map distribution P , the automaton
Aϕ, and a parameter δ ∈ (0, 1), a δ-probably correct product
system is a tuple Gδ = 〈S,U,∆, s0, SF 〉 defined as follows.
• S = X ×Q is the product state space.
• ∆ : S × U → S is a transition function such that

∆((x, q), u) = (x′, q′) where x′ = f(x, u) and q′ =
T (q, Lδ(x′,P)). It is assumed that T (q, ∅) = q, ∀q ∈
Q.

• s0 = (x0, q0) is the initial state.
• SF = X × F is the set of final states.

For the subclass of LTL co-safe formulas whose languages
are simple polynomials, Thm. 1 guarantees that the projection
on X of any trajectory s0:t of Gδ that reaches SF in the δ-
confidence region of P has probability δ of satisfying the
specification in the true map. The implications are explored
in Sec. IV.

Before we proceed, however, it is important to know to
what extent the expressiveness of LTL is limited by restricting

3For a word u ∈ Aω , u is a subsequence of w if u can be obtained from
w by replacing symbols with the empty string λ.



it to the subclass of simple polynomials. In Appendix C, we
show that such LTL formulas can express reachability and
sequencing properties. Moreover, with a slight modification
of Def. 3, we can also ensure the correctness of plans with
respect to safety constraints.

Consider safety constraints in the following form �φsafe
with φsafe being a propositional logic formula over AP .
For example, an obstacle avoidance requirement is given by
�(d(x, xo) ≥ r) where xo are the coordinates of an obstacle.
When the LTL formula includes such safety constraints,
we need to modify the transition function in Def. 3 in the
following way. For any state s ∈ S and any input u ∈ U , let
s′ = (x′, q′) = ∆(s, u). Then, if there exists at least one m
in the δ-confidence region of P such that the propositional
logic formula corresponding to L(x′,m) implies4 ¬φsafe, let
∆(s, u) = sink, where sink is a non-accepting sink state that
satisfies ∆(sink, u) = sink for any u ∈ U . Thus, the state
sink will not be visited by any trajectory of Gδ that reaches
SF , which means the safety constraint will be satisfied with
probability δ in the true environment. The following toy
example illustrates the concepts.

Example 1. In Fig. 1, a mobile robot is tasked with vis-
iting at least one landmark in an uncertain environment.
Formally, the LTL specification of the task is ϕ := ♦p
where p := ∨i (d(x, lpi ) ≤ 1). Given the robot trajectory x0:t
represented by the dashed line in the figure, when the robot
traverses the 95%-confidence region of l1’s pose distribution,
it cannot confidently (with confidence level δ = 0.95) decide
the value of p in the true map because for some map
realizations, d(x, lp1) > 1. On the other hand, when the
robot is near l2, p evaluates true because a unit ball around
the robot covers the entire 95%-confidence region of l2’s
pose distribution. Let Br(l) a ball centered at l with radius
r. The label sequence of x0:t in the true environment is
L(x0:t,M) = ∅k1{p}k2∅k3{p} = {p}k2+1 where k1, k2, k3
are the numbers of steps before reaching B1(lp1), in B1(lp1),
and after leaving B1(lp1) but before reaching B2(lp2). The la-
bel sequence L0.95(x0:t,P) = ∅k1+k2+k3{p} = {p}. Clearly,
L0.95(x0:t,P) is a subsequence of L(x0:t,M). Moreover,
the trajectory satisfies the LTL specification which is a
reachability constraint.

In the case of a safety constraint, e.g., ϕsafe = �p where
p := d(x, lpi ) > 1 for any landmark i, once the robot
gets close to l1 the δ-probably correct product system will
transition to the non-accepting sink because there exists a
sample map m such that the safety constraint is violated.
Thus, in any run that is safe in Gδ , the robot is able to safely
avoid both l1 and l2 with probability δ.

IV. REDUCTION TO DETERMINISTIC SHORTEST PATH

For a fixed confidence δ, due to Thm. 1, we can convert
Problem 1 to a deterministic shortest path problem within the
probably correct product system Gδ . In this case, P(qτ+1 /∈
F ) ∈ {0, 1} and the optimal solution to Problem 1 is either

4Given a label L(x′,m) ⊆ AP , the corresponding propositional logic
formula is

∧
αi∈L(x′,m) αi ∧

∧
αj∈AP\L(x′,m) ¬αj .

x

`1

`2

`1

`2
x

Fig. 1: Example: robot with a reachability objective. The red
diamonds are the means of the landmarks’ pose distributions and
the ellipsoids are the associated 95%-confidence regions. The robot
is represented by the blue dot. The green squares represent the true
locations of landmarks l1 and l2.

to stop immediately (τ = 0), incurring cost κ, or to find a
robot trajectory satisfying ϕ with cumulative motion cost less
than κδ. The latter corresponds to the following deterministic
problem.

Problem 2. Given an initial robot state x0 ∈ X , a semantic
map distribution P , a confidence δ ∈ (0, 1), and an LTL co-
safe formula ϕ represented by a DFA Aϕ, choose a stopping
time τ and a sequence of control inputs ut ∈ U for t =
0, 1, . . . that minimize the motion cost of a trajectory that
satisfies ϕ:

min
u0,u1,...,uτ

τ∑
t=0

c(xt, xt+1)

s.t. xt+1 = f(xt, ut),

qt+1 = T (qt, L
δ(xt,P)), ∀ 0 ≤ t < τ,

qτ+1 ∈ F,
τ∑
t=0

c(xt, xt+1) ≤ κδ.

If Problem 2 is infeasible, it is best in Problem 1 to stop
immediately (τ = 0), incurring cost κ; otherwise, the robot
should follow the control sequence u∗0:τ computed above and
the corresponding trajectory x∗0:τ+1 to incur cost:

τ∑
t=0

c(x∗t , x
∗
t+1) + κ(1− δ) ≤ κ

in the original Problem 1. Since Problem 2 is a deterministic
shortest path problem, we can use any of the traditional mo-
tion planning algorithms, such as RRT [20], RRT* [14, 13]
or A* [21] to solve it. We choose A* due to its completeness
guarantees5 [26] and because the automaton Aϕ can be used
to guide the search as we show next.

A. Admissible Heuristic

The efficiency of A* can be increased dramatically by
designing an appropriate heuristic function to guide the
search. Given a state s := (x, q) in the product system (Def.
3), a heuristic function h : S → R provides an estimate

5To guarantee completeness of A* for Problem 2, the robot state space
X needs to be assumed bounded and compact and needs to discretized.



of the optimal cost h∗(s) from s to the goal set SF . If the
heuristic function is admissible, i.e., never overestimates the
cost-to-go (h(s) ≤ h∗(s), ∀s ∈ S), then A* is optimal [26].

Lacerda et al. [18] propose a distance metric to evaluate
the progression of an automaton state with respect to an
LTL co-safe formula. We use a similar idea to design an
admissible heuristic function. We partition the state space
Q of Aϕ into level sets as follows. Let Q0 := F and for
i ≥ 0 construct Qi+1 := {q ∈ Q \

⋃i
k=0Qk | ∃q′ ∈ Qi, a ∈

2AP , such that T (q, a) = q′}. The generation of level sets
stops when Qi = ∅ for some i. Further, we denote the set
of all sink states by Q∞. Thus, given q ∈ Q one can find a
unique level set Qi such that q ∈ Qi. We say that i is the
level of q and denote it by Level(q) = i.

Proposition 2. Let s0:t be a trajectory of the product system
Gδ that reaches SF , i.e., st ∈ SF . Then, for any 0 ≤ k < t,
given sk = (xk, qk) and sk+1 = (xk+1, qk+1), it holds that
Level(qk) ≤ Level(qk+1) + 1.

Proof. Since T (qk, L
δ(xk+1,P)) = qk+1, if qk+1 ∈ Qi for

some level i, then, by construction of the level sets, either
qk ∈ Qi+1 or qk ∈

⋃i
j=0Qj .

By construction of the level sets, the automaton states q0:t,
associated with any trajectory s0:t of the product system that
reaches a goal state (st ∈ SF ), have to pass through the level
sets sequentially. In other words, if Level(q0) = i, then there
exists a subsequence q′0:i of q0:t such that Level(q′1) = i− 1,
Level(q′2) = i−2, . . . , Level(q′i) = 0. Thus, we can construct
a heuristic function that underestimates the cost-to-go from
some state s := (x, q) ∈ S with Level(q) = i by computing
the minimum cost to to reach a state s′ := (x′, q′) such that
Level(q′) ∈ {i−1, i} and q 6= q′. To do so, we determine all
the labels that trigger a transition from q to q′ in Aϕ and then
find all the robot states B that produce those labels. Then,
h(x, q) is the minimum distance from x to the set B. The
details of this construction and other functions needed for A*
search with LTL specifications, are summarized in Alg. 1.

Proposition 3. The heuristic function in Alg. 1 is admissible.

Proof. See Appendix D.

Prop. 3 guarantees that A* will either find the optimal
solution to Problem 2 or will report that Problem 2 is
infeasible. In the latter case, the robot cannot satisfy the logic
specification with confidence δ and it should either reduce δ
or stop planning.

Note that while the heuristic function is admissible, it is not
guaranteed that it is also consistent6. Consider two arbitrary
states (x, q) and (x′, q′) with Level(q) = n and Level(q′) =
n+1. It is possible that the cost to get from (x, q) to a place
in the environment, where a transition to level n− 1 occurs,
is very large, i.e., h(x, q) is large, but it might be very cheap
to get from (x′, q′) to (x, q) and vice versa. In other words,
it is possible that the following inequalities hold:

c(x, x′) + h(x′, q′) ≤ c(x, x′) + c(x′, x) < h(x, q),

6A consistent heuristic h satisfies h(s) = 0 for s ∈ SF and h(s) ≤
c(s, s′) + h(s′) for any s ∈ S and any successor s′ of s.

Algorithm 1 Functions needed for LTL-constrained A* search

1: function COMPUTEHEURISTIC(x,q)
2: if q is sink then
3: return ∞
4: if q ∈ F then
5: return 0
6: Q0 ← current level set of q in DFA
7: Q1 ← next level set of q in DFA
8: A ← {a ⊆ AP | T (q, a) ∈ Q1 ∪Q0 \ {q}}
9: . a set of labels to reach Q1 ∪Q0 \ {q}

10: B ← {x′ ∈ X | Lδ(x′,P) ∈ A}
11: return minx′∈B d(x, x

′)

12:
13: function ISGOAL(x,q)
14: if q ∈ F then return true
15: else return false
16:
17: function GETSUCCESSORS(x,q)
18: Succ← ∅, Cost← ∅
19: for each motion primitive σ[T ] do
20: x0 ← x, q0 ← q

21: xt ← f(xt−1, σ
[T ]
t−1), t = 1, . . . , T . Robot state sequence

22: αt ← Lδ(xt,P), t = 1, . . . , T . Atomic propositions
23: qt ← T (qt−1, αt), t = 1, . . . , T . Automaton state sequence
24: if any qt is sink or xt hits obstacle then
25: continue
26: Succ← Succ∪{xT }, Cost← Cost+

{∑T
t=1 c(xt−1, xt)

}
27: return Succ, Cost

which makes the heuristic in Alg. 1 inconsistent. We em-
phasize that, even with an inconsistent heuristic, A∗ can be
very efficient if a technique such as bi-directional pathmax
is employed to propagate heuristics between neighboring
states [32].

B. Summary

We formulate temporal logic planning in a probabilistic
semantic map as a stochastic optimal control problem (Prob-
lem 1). Since Problem 1 is intractable, we reduce it to a deter-
ministic shortest path problem (Problem 2) with probabilistic
correctness guaranteed by Thm 1. We can solve Problem 2
optimally using A* because the heuristic function proposed in
Alg. 1 is admissible (Prop. 3). The obtained solution is partial
with respect to Problem 1 because, rather than a controller
that trades off the probability of satisfying the specification
and the total motion cost, it provides the optimal controller in
the subspace of deterministic controllers that guarantee that
the probability of satisfying the specification is δ.

V. EXAMPLES

We demonstrate LTL-constrained motion planning on a
differential-drive robot with state xt := (xt, yt, θt)

T ∈
SE(2), where (xt, yt) and θt are the 2-D position and
orientation of the robot, respectively. The kinematics of the
robot are discretized using a sampling period τ as follows:

xt+1

yt+1

θt+1

=

xtyt
θt

+



τν cos(θt + τω/2)

τν sin(θt + τω/2)

τω

 , |τω| < 0.001,


ν
ω (sin(θt + τω)− sin θt)
ν
ω (cos θt)− cos(θt + τω))

τω

 , else.



We accelerate the A* search by using motion primitives for
the robot in order to construct a lattice-based graph [28, 6].
The advantage of such a construction is that the underlying
graph is sparse and composed of dynamically-feasible robot
trajectories that can incorporate a variety of constraints. A
motion primitive is similar to the notion of macro-action
[5, 8] and consists of a collection of control inputs σ[T ] :=
(u0, u2, . . . , uT−1) that are applied sequentially to a robot
state xt so that:

xt+1+k = f(xt+k, σ
[T ](k)), k = 0, . . . , T − 1.

Instead of using the original control set U , we can plan with
a set Ū := {σ[Tj ]

j } of motion primitives (see GETSUCCESSORS

in Alg. 1).
In our experiments, the mobile robot is controlled via mo-

tion primitives, whose segments are specified by ν = 1 m/s,
τ = 2 s, and ω ∈ [−3, 3] rad/s (See Fig. 2). Twenty
locations with outward facing orientations were chosen on
the perimeter of a circle of radius 10 m. A differential-drive
controller was used to to generate a control sequence of
length 5 that would lead a robot at the origin to each of
the selected locations. Note that the trajectories generated
with motion primitives are wavy because the controller tries
to follow a straight line using a discrete set of velocity and
angular-velocity inputs.

The LTL constraints were specified over the two types
of atomic propositions in (2) for object classes C =
{�, ,�,�,N}. Proposition αci (y) means the class of i-th
landmark is y for y ∈ C. Proposition αpi (r) : d(xp− lpi ) ≤ r
means the robot is r-close to landmark li. The following LTL
specification was given to the robot:

ϕ : (♦(φ1 ∧ ♦(φ2 ∧ ♦φ3)) ∧ ♦φ4) ∧�φsafe

where φi, i = 1, . . . , 4 are the following propositional logic
formulas:

φ1 : = ∨i∈{1,...,M} (αpi (1) ∧ αci (N)) ,

φ2 : = ∨i,j∈{1,...,M}
(
αpi (2) ∧ αci (�) ∧ αpj (2) ∧ αcj( )

)
,

φ3 : = ∨i,j∈{1,...,M}
(
αpi (2) ∧ αci (�) ∧ αpj (2) ∧ αcj( )

)
,

φ4 : = ∨i∈{1,...,M} (αpi (1) ∧ αci (�)) ,

and for i, j ∈ {1, . . . ,M} the safety constraint is:

φsafe := ∧i,j∈{1,...,M}
(
¬(αpi (2) ∧ αci (�) ∧ αpj (2) ∧ αcj(�))

)
.

In other words, the robot needs to first visit a triangle, then go
to a region where it is close to both a circle and a diamond,
and finally visit a region where it is close to both a circle
and a square, while visiting a hexagon at some point and
avoiding getting stuck between any two squares.

Several case studies were carried out using a simulated
semantic map distribution. Robot trajectories with least cost
that satisfy the LTL specification with confidence δ = 0.95
for different initial conditions were computed with A* and
are shown in Fig. 3. Optimal paths with the same initial
conditions but different confidence parameters δ = 0.95 and
0.5 are shown in Fig. 4. As expected, we observe a trade-off
between the probability of satisfying the LTL formula and

Fig. 2: The set of motion primitives used for LTL-constrained A*
planning. Each segment contains 5 robot poses indicated by the red
triangles. Each robot pose represents a different motion primitive.

the total cost of the path. With a lower confidence (δ = 0.5),
the total cost for satisfying the LTL formula is also lower
than that of a path which satisfies the formula with a high
confidence (δ = 0.95). Particularly, the uncertainty in the
pose of triangle l1 with mean l̄p1 = (2.5, 1.19) is the main
reason for the difference in the planned trajectories. With
δ = 0.95, even though the robot can reach the vicinity of
triangle l1, it does not have enough confidence to ensure that
the triangle would be visited. Instead, it plans to visit another
triangle l2 with mean position l̄p2 = (−5.18, 12.04) for which
the uncertainty in the pose distribution is smaller. Reducing
the confidence requirements allows the robot to plan a path
that visits triangle l1 and has a lower total cost compared to
that of visiting triangle l2.

VI. CONCLUSION

This paper proposes an approach for planning optimal
robot trajectories that probabilistically satisfy temporal logic
specifications in uncertain semantic environments. By intro-
ducing a δ-confident labeling function, we show that the
original stochastic optimal control problem in the continuous
space of semantic map distributions can be reduced to a
deterministic optimal control problem in the δ-confidence
region of the map distribution. Guided by the automaton
representation of the LTL co-safe specification, we develop
an admissible A* algorithm to solve the deterministic prob-
lem. The advantage of our approach is that the deterministic
problem can be solved very efficiently and yet the planned
robot trajectory is guaranteed to have minimum cost and to
satisfy the logic specification with probability δ.

This work takes an initial step towards integration of
semantic SLAM and motion planning under temporal logic
constraints. In future work, we plan to extend this method to
handle the following: 1) landmark class uncertainty, 2) robot
motion uncertainty, 3) a more general class of LTL specifica-
tions, 4) map distributions that are changing online. Our goal
is to develop a coherent approach for planning autonomous
robot behaviors that accomplish high-level temporal logic
tasks in uncertain semantic environments.
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(a) x0 = [−5, 14, π/6]T , total motion cost 24 m.
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(b) x0 = [15, 0, π/6]T , total motion cost 44 m.

Fig. 3: Robot trajectories obtained by the planning algorithm with
different initial conditions. The green triangle represents the mobile
robot. The blue dash circle indicates the unit ball and the red dash
circle indicates a ball of radius 2 m. The red sold ellipses represent
the 0.95-confidence region of the landmark pose distributions. The
landmark coordinates are drawn according to the mean of the pose
distribution.

APPENDIX

A. Proof of Prop. 1

Let xk be the state at time k. If for all samples m
in the δ-confidence region of P , L(xk,m) = L(xk,M̄),
then Lδ(xk,P) = L(xk,M̄), which equals L(xk,M) with
probability δ. Otherwise, Lδ(xk,P) = λ (empty string).
Since k is arbitrary, we can conclude that Lδ(x0:t,P) is a
subsequence of L(x0:t,M) with probability δ.

B. Proof of Thm. 1

Since the language L(Aϕ) is a simple polynomial, the
following upward closure [27] property holds: For any word
uv ∈ L(Aϕ) and any a ∈ 2AP , it holds that uav ∈ L(Aϕ).
In other words, if any empty string in a word from a simple
polynomial language is replaced by a symbol in the alphabet,
then the resulting word is still in the language.

For a given robot trajectory x0:τ , let Lδ(x0:τ ,P) =
b0b1 . . . bτ ∈ L(Aϕ) be the δ-confident label sequence
and L(x0:τ ,M) = a0a1 . . . aτ be the true label sequence.
According to Prop. 1, for each 0 ≤ i ≤ τ , either ai = bi or
ai 6= bi and bi = ∅. Thus, if b0b1 . . . bτ belongs to L(Aϕ),
a0a1 . . . aτ must be in L(Aϕ) because it is obtained by
replacing each empty string in b0b1 . . . bτ with some symbol
in 2AP and the language L(Aϕ) is upward closed.
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(a) The optimal plan with 0.95-confidence and motion cost 38 m.
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(b) The optimal plan with 0.5-confidence and motion cost 34 m.

Fig. 4: Robot trajectories obtained by the planning algorithm
with different confidence parameters. The initial state is x0 =
[10, 16, 0.77π]T .

C. Characterization of LTL co-safe formulas that translate
to simple polynomials

Formally, the subset of LTL formulas is defined by the
grammar

ϕ := ϕreach | ϕseq | ϕ ∧ ϕ | ϕ ∨ ϕ, (3)

where ϕreach = ♦φ | ϕreach ∧ ϕreach | ϕreach ∨ ϕreach
represents the reachability, ϕseq := φ | ♦ϕseq | ♦(ϕseq ∧
♦ϕseq) is a set of formulas describing sequencing constraints.
Here, φ is a propositional logic formula.

D. Proof of Prop. 3

We proceed by induction on the levels in Aϕ. In the base
case, q ∈ Q0 ≡ F and h(x, q) = 0 for any x ∈ X . Suppose
that the proposition is true for level n and let (x, q) be some
state with x ∈ X and Level(q) = n + 1. As before, let
h∗(x, q) be the optimal cost-to-go. Due to Prop. 2, there are
only three possibilities for the next state (x′, q′) along the
optimal path starting from (x, q):

• Level(q′) = n: By construction of h:

h∗(x, q) = c(x, x′) + h∗(x′, q′) ≥ h(x, q) + 0.

• Level(q′) = n+ 1: Same conclusion as above.
• Level(q′) = k > n+ 1: In this case, there exists another

state (x′′, q′′) later along the optimal path such that
Level(q′′) = n + 1 (otherwise the optimal path cannot



reach the goal set). Then, by the triangle inequality for
the motion cost c:

h∗(x, q) = c(x, x′) + c(x′, x′′) + h∗(x′′, q′′)

≥ c(x, x′′) + 0 ≥ h(x, q)

Thus, we conclude that h∗(x, q) ≥ h(x, q) ≥ 0 for all x ∈ X
and q ∈ Q.
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