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TerrainMesh: Metric-Semantic Terrain

Reconstruction from Aerial Images Using Joint

2D-3D Learning
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Abstract—This paper considers outdoor terrain mapping using
RGB images obtained from an aerial vehicle. While feature-based
localization and mapping techniques deliver real-time vehicle
odometry and sparse keypoint depth reconstruction, a dense
model of the environment geometry and semantics (vegetation,
buildings, etc.) is usually recovered offline with significant compu-
tation and storage. This paper develops a joint 2D-3D learning
approach to reconstruct a local metric-semantic mesh at each
camera keyframe maintained by a visual odometry algorithm.
Given the estimated camera trajectory, the local meshes can be
assembled into a global environment model to capture the terrain
topology and semantics during online operation. A local mesh
is reconstructed using an initialization and refinement stage. In
the initialization stage, we estimate the mesh vertex elevation by
solving a least squares problem relating the vertex barycentric
coordinates to the sparse keypoint depth measurements. In the
refinement stage, we associate 2D image and semantic features
with the 3D mesh vertices using camera projection and apply
graph convolution to refine the mesh vertex spatial coordinates
and semantic features based on joint 2D and 3D supervision.
Quantitative and qualitative evaluation using real aerial images
show the potential of our method to support environmental
monitoring and surveillance applications.

Index Terms—Mapping, Semantic Scene Understanding,
Aerial Systems: Perception and Autonomy, Graph Convolution
for Mesh Reconstruction

SUPPLEMENTARY MATERIAL

See http://erl.ucsd.edu/pages/terrainmesh.html for an open-

source implementation, dataset, and additional results.

I. INTRODUCTION

RECENT advances in sensing, computation, storage and

communication hardware have set the stage for mobile

robot systems to impact environmental monitoring, security

and surveillance, agriculture, and many other applications.

Constructing terrain maps onboard an unmanned aerial vehicle

(UAV) using online sensor measurements provides critical

situational awareness in such applications. This paper consid-

ers the problem of building a metric-semantic terrain model,

represented as a triangular mesh, of an outdoor environment

using a sequence of overhead RGB images obtained onboard a

UAV. Fig. 1 shows an example input and mesh reconstruction.

We assume that the UAV is running a localization algorithm,
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Fig. 1: This paper develops a method using aerial RGB images and
sparse depth measurements (top-left) to reconstruct a semantic mesh
of an outdoor terrain. The color, elevation, and semantics of the mesh
are visualized in the top-right, bottom-left and bottom-right plots.

based on visual-inertial odometry (VIO) [1] or simultane-

ous localization and mapping (SLAM) [2], which estimates

its camera pose and the depths of a sparse set of tracked

image keypoints. However, range sensors and, hence, dense

depth information are not available during outdoor flight. One

approach for terrain mapping is to recover depth images at

each camera view using dense stereo matching, fuse them

to generate a point cloud, and triangulate a mesh surface.

While specialized sensors and algorithms exist for real-time

dense stereo matching, they are restricted to a limited depth

range, much smaller than the distances commonly present

in aerial images. Moreover, due to limited depth variation,

the recovered point cloud might not be sufficiently dense

for accurate mesh reconstruction. Recently, depth completion

methods [3], [4] using deep learning have shown promising

performance on indoor [5] and outdoor datasets [6]. However,

aerial images are different from ground RGBD images used

to train these models. Due to the limited availability of aerial
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image datasets for supervision, learning-based methods have

not yet been widely adopted for outdoor terrain mapping. Re-

cently, there has also been increasing interest in supplementing

geometric reconstruction with semantic information because

many robotics tasks require semantic understanding. However,

few algorithms exist for joint metric-semantic reconstruction.

Most works treat semantic classification as a post-processing

step, decoupling it from 3D geometric reconstruction.

This paper is an extension of our 2021 IEEE ICRA con-

ference paper [7] on mesh reconstruction from aerial RGB

images with sparse depth measurements. We propose a joint

2D-3D learning method for metric-semantic mesh reconstruc-

tion using a novel coarse-to-fine strategy, composed of mesh

initialization and mesh refinement stages. In the initialization

stage, we use only the sparse depth measurements to fit a

coarse mesh surface. In the refinement stage, we extract deep

convolutional 2D image features and associate them with

the initial mesh 3D vertices through perspective projection.

The mesh is subsequently refined using a graph convolution

model to predict both spatial coordinates and semantic features

residuals of the vertices. We conduct extensive evaluation

on simulated and real aerial datasets. The proposed mesh

reconstruction method can be combined with any feature-based

SLAM algorithm [8] to fuse local keyframe meshes into a

consistent global terrain model.

The main contribution of the journal compared to the

conference is the introduction and association of semantic seg-

mentation with the mesh vertices, interpolation and projection

techniques to obtain dense semantic features over the whole

mesh, and graph convolution network optimization with a joint

geometric-semantic loss function to optimize the mesh vertices

and semantic features. We demonstrate empirically that the

joint geometric-semantic training can outperform the earlier

geometric-only method proposed in the conference paper. We

also derive a closed-form mesh initialization method, which

is more accurate and efficient than the one in the conference

paper, as well as an explicit mesh merging method to combine

multi-view mesh reconstruction into a single consistent global

mesh of the environment. In summary, the contributions of

this paper are summarized as follows.

• We introduce a joint 2D-3D loss function, utilizing

differentiable mesh rendering, for metric-semantic mesh

reconstruction.

• We develop a two-stage coarse-to-fine mesh reconstruc-

tion approach, using a closed-form mesh vertex initial-

ization from sparse depth measurements and a graph

convolution network mesh vertex refinement from RGB,

sparse depth measurements and semantic image features.

• We evaluate our metric-semantic mesh reconstruction

algorithm on synthetic and photo-realistic aerial image

datasets.

II. RELATED WORK

A. Depth Completion

Predicting depth from monocular RGB images allows

single-camera perception systems to recover 3D environment

structure [9], [10]. However, dense depth estimation from

monocular images may be challenging, especially for aerial

images, where the depth variation is small compared to the

absolute depth values. In contrast, the depth of sparse visual

keypoints may be obtained efficiently and accurately using tri-

angulation [11] between tracked feature points from Kanade-

Lucas-Tomasi tracking [12] or visual feature matching [13].

Depth completion is the task of reconstructing a dense

depth image from an RGB image with given sparse depth

estimates. Ma et al. [3], [14] develop a deep network for depth

completion that passes the sparse depth and RGB image inputs

through convolution layers, ResNet encoder layers, transposed

convolution decoder layers, and a 1x1 convolution filter. The

model is trained either with supervision from ground-truth

depth images or via photometric error self-supervision from

calibrated RGB image pairs. Instead of consuming sparse

depth images directly, Chen et al. [15] pre-process sparse depth

images by generating a Euclidean distance transform of the

keypoint locations and a nearest-neighbor depth fill map. The

authors propose a multi-scale deep network that treats depth

completion as residual prediction with respect to the nearest-

neighbor depth fill maps. We borrow the idea of densify the 2D

sparse depth inputs for our model design. Chen et al. [4] design

a 2D convolution branch to process stacked RGB and sparse

depth images and a 3D convolution branch to process point

clouds and fuse the outputs of the two branches so that the 2D

and 3D features are combined. Our approach also combines

both the 2D and 3D feature extraction phases but in the

form of mesh. CodeVIO [16] uses a Conditional Variational

Autoencoder (CVAE) to encode RGB and sparse depth inputs

into a latent depth code and decode a dense depth image from

the latent depth code. The sparse depth measurements are used

to perform incremental depth code updates, allowing the depth

reconstruction to be coupled with visual odometry estimation

in the MSCKF filter [17]. Our method is loosely integrated

with a feature-based VIO/SLAM algorithm.

We approach depth completion using mesh reconstruction

from RGB images and sparse depth measurements. While

both dense depth completion and mesh reconstruction are

challenging, a mesh model is more memory efficient than a

depth image. For example, a 512 × 512 dense depth image

requires 260, 000 parameters. In contrast, our approach can

represent the same region using only 1024 vertices.

B. Mesh Reconstruction

Online terrain mapping requires efficient storage and up-

dates of a 3-D surface model. However, storing dense depth

information from aerial images needs significant memory

and subsequent model reconstruction for robot objectives

like motion planning or environment exploration. An explicit

surface representation using a polygonal mesh can be quite

memory and computationally efficient. Compared to sparse

point cloud models, mesh surfaces are continuous, allowing

direct integration in motion planning algorithms as well as

intuitive visualization for human operators. FLaME [18] per-

forms variational optimization over a time-varying Delaunay

graph to obtain an inverse-depth mesh of the environment,

using sparse depth measurements from a VIO algorithm.
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Rosinol et al. [19] extend FLaME to optimize the mesh

over dense depth image measurements in real-time using a

parallel implementation. Rosinol et al. [20] detect vertical and

horizontal planes to regularize mesh vertices, and optimize

the mesh vertices and the camera poses using a factor graph.

Voxblox [21] incrementally builds a voxel-based truncated

signed distance field and can reconstruct a mesh as a post-

processing step using the Marching Cubes algorithm [22].

Terrain Fusion [23] performs real-time terrain mapping by

generating digital surface model (DSM) meshes at selected

keyframes. The local meshes are converted into grid-maps and

merged using multi-band fusion.

Recently, learning methods have emerged as a promising

approach for mesh reconstruction from limited or no 3D

information. Bloesch et al. [24] propose a learning method

to regress the image coordinates and depth of mesh vertices

in a decoupled manner. This allows an in-plane 2D mesh to

capture the image structure. Pixel2Mesh [25] treats a mesh as

a graph and applies graph convolution [26] for vertex feature

extraction and graph unpooling to subdivide the mesh for

refinement. Using differentiable mesh rendering [27], [28],

the 3D mesh structure of an object can be learned from 2D

images [29]–[31]. Mesh R-CNN [32] simultaneously detects

objects and reconstructs their 3D mesh shape. A coarse voxel

representation is predicted first and then converted into a

mesh for refinement. Recent works [33], [34] can generate

mesh reconstructions of complete scenes, including object and

human meshes and their poses, from a single RGB image.

In contrast with many mesh reconstruction approaches, our

method uses both visual and semantic features to refine the

mesh geometry and generates mesh models with per-vertex

semantic category distributions.

C. Semantic 3D Reconstruction

3D reconstruction from an image sequence is a fundamental

problem in robotics and computer vision. Multi-view stereo

(MVS) [35] aims to estimate the depth at one frame using sev-

eral different frames. Classical MVS methods perform patch

matching with photometric and geometric consistency [36].

These methods generalize well although the performance can

be affected by low texture, lighting variation, and occlusion.

Recently, learning-based methods that fuse multi-view learned

features across frames for depth recovery have achieved ex-

cellent performance. NeuralRecon [37] reconstructs and fuses

sparse TSDF volumes for each frame incrementally using

3D sparse convolutions and Gated Recurrent Units (GRUs).

VoRTX [38] learns to fuse multi-view frames using a trans-

former model and projective occupancy. SimpleRecon [39]

leverages relative poses among frames to build a cost volume

and uses a multi-layer perceptron (MLP) to reduce the volume

and avoid costly 3D convolution. Learning-based MVS [40]–

[43] can tackle challenges like severe occlusion but generally

labeled data is needed for training. Recently, SLAM systems

that integrate a learning-based MVS model to obtain dense

3D reconstruction in real-time have been proposed [44], [45].

Besides explicit 3D representations, implicit representations

that model 3D structures as level sets of distance or radiance

functions have shown impressive performance recently. Neural

Radiance Fields (NeRF) [46] represent the color and density

field of the scene through the weights of the neural network.

For any given camera pose, an RGB and depth image can be

generated through volume rendering over the NeRF, providing

photo-realistic novel view synthesis. Another advantage of

NeRF models is that they can be trained from posed RGB

images without depth supervision. However, for any new 3D

scene a NeRF needs to be trained from scratch which may

take a long time. Numerous recent works have extended the

NeRF model [47]–[50] to enable MVS pre-training, capture

high-frequency details, and apply to unbounded outdoor envi-

ronments. Instant-NGP [51] and Nerfstudio [52] incorporate

many of the recent NeRF model advances and offer open-

source implementations.

Semantic 3D reconstruction aims to estimate both the

geometric structure and semantic content of an environment

from visual observations. Extending 2D semantic segmentation

and depth prediction to a 3D multi-view consistent semantic

model provides information that is critical for environmental

monitoring tasks, such as observing vegetation recovery after

a wildfire or controlling fuel build-up for fire prevention [53],

or for terrain traversablility estimation in ground-aerial robot

teaming [54]. Semantic information also allows human opera-

tors to specify tasks for mobile robots in terms of objects and

concepts in the environment model. Semantic segmentation on

the 2D images can be back-projected onto 3D space and multi-

view information can be fused to annotate the 3D structure

[55]–[57]. Besides, semantic segmentation can be directly

performed on the 3D point cloud [58], [59] or the mesh

[60]. Instead of treating the semantic annotation as the post-

processing step after geometric reconstruction, researchers also

investigate on how to jointly optimize geometric and semantic

accuracy. Häne et al. [61] formulate a joint segmentation

and dense reconstruction problem on voxels and show that

appearance likelihoods and class-specific geometric priors help

each other. Cherabier et al. [62] leverage variational energy

minimization method for regularization to capture complex de-

pendencies between the semantic labels and the 3D geometry.

Guo et al. [63] jointly optimize the geometry and semantics

by predicting the implicit neural representations of the signed

distance, color and semantic field.

Our approach is most closely related to the concurrent

work on semantic mesh mapping [64]. Our formulation uti-

lizes sparse depths obtained from keyframe-based SLAM and

emphasizes the interaction of geometric reconstruction and

semantic segmentation in 3D mesh reconstruction.

III. PROBLEM FORMULATION

Consider a UAV equipped with an RGB camera flying

outdoor. Let I denote an RGB image. Obtaining dense depth

images during outdoor flight is challenging due to the large

distances and relative small variation. However, a VIO or

SLAM algorithm can track and estimate the depth of a sparse

set of image feature points. Let Ds be a sparse 2D matrix that

contains estimated depths at the image feature locations and

zeros everywhere else. Let D denote the dense ground-truth
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depth image. Let S denote an associated ground-truth semantic

segmentation image. Assuming there are s semantic classes in

total, we model S as a tensor with the same width and height

as the RGB image I and third channel size s. Each element

Si,j ∈ [0, 1]s is a one-hot vector with 0s in all elements, except

for a single 1 indicating the true semantic class.

Our goal is to construct an explicit model of the camera

view using a 3D semantic triangle mesh M := (V,C, E ,F),
where V ∈ R

n×3 are the vertex spatial coordinates, C ∈
R

n×s are the vertex semantic features, [n] := {1, . . . , n} is

the set of vertex indices, E ⊆ [n] × [n] are the edges, and

F ⊆ [n] × [n] × [n] are the faces. Each row of the matrix

C contains an unnormalized score vector for the s classes

that can be converted into a probability distribution over the

s classes using the softmax function [65].

Problem. Given a finite set of RGB images {Ik}k and

corresponding sparse depth measurements {Ds
k}k, define a

semantic mesh reconstruction function M = f(I,Ds;θ) and

optimize its parameters θ to fit the ground-truth depth {Dk}k
and semantic segmentation {Sk}k images:

min
θ

∑

k

ℓ(f(Ik,D
s
k;θ);Dk,Sk) (1)

where ℓ(M;D,S) is a loss function measuring the error

between a 3D semantic mesh M and a depth image D plus

a semantic image S.

The choice of loss function ℓ is discussed in Sec. IV.

We develop a machine learning approach consisting of an

offline training phase and an online mesh reconstruction phase.

During training, the parameters θ are optimized using a

training set D := {Ik,D
s
k,Dk,Sk}k with known ground-

truth depth images and semantic segmentation images. During

testing, given streaming RGB images I and sparse depth

measurements Ds, the optimized parameters θ∗ are used in

the model f(I,Ds;θ∗) to reconstruct the mesh vertex spatial

coordinates V and semantic features C. The mesh edges E
and faces F are assumed fixed and known, and hence are

not reconstructed by the model. For notational simplicity,

we write the output of model f directly as the semantic

mesh M = f(I,Ds;θ∗). A keyframe-based VIO or SLAM

algorithm estimates the positions p and orientations R of

camera keyframes as well as the depth of sparse keypoint

measurements associated with each keyframe. Our approach

estimates a local mesh M = (V,C, E ,F) at each camera

keyframe. The keyframe meshes can be converted to a global

frame (with vertex coordinates VR⊤+1p⊤, where 1 is a n×1
vector filled with 1) and fused to obtain a complete consistent

metric-semantic model of the environment.

IV. LOSS FUNCTIONS FOR MESH RECONSTRUCTION

We develop several loss functions to measure the consis-

tency between a semantic mesh M and corresponding depth

image D and semantic segmentation image S. Since our

problem focuses on optimizing the mesh, the loss function

must be differentiable with respect to the mesh vertex spatial

coordinates V and semantic features C. We keep the mesh

edges E and faces F fixed during the mesh optimization.

Fig. 2: Loss function visualization: ℓ2 compares rendered mesh depth
ρD(M) to a depth image D, ℓ3 compares a mesh M to an elevated
mesh MD obtained from a depth image, and ℓS compares a rendered
mesh semantic image ρS(M) to a semantic segmentation image S.

A loss function can be defined in the 2D image plane by

rendering a depth image from M and comparing it with D.

The differentiable mesh renderer [28], [66] makes the 3D mesh

rendering, e.g., from a 3D mesh to a 2D image, differentiable.

Therefore, we can back-propagate the loss measured on the 2D

images to the 3D mesh vertices. We leverage a differentiable

mesh renderer to generate a depth image ρD(M) and define

a 2D loss function:

ℓ2(M,D) := mean(|ρD(M)−D|), (2)

where mean(·) is a function taking the mean over all the valid

pixels where both D and ρD(M) have a depth value.

While ℓ2 is a natural choice of a loss function in the image

plane, it does not emphasize two important properties for mesh

reconstruction. First, since ℓ2 only considers a region in the

image plane where both depth images have valid information,

its minimization over M may encourage the mesh M to

shrink to cover only a smaller image region. Second, ℓ2 does

not emphasize regions of large depth gradient variation (e.g.,

the side surface of a building), which may lead to inaccurate

3D reconstruction. To address these limitations, we define

an additional loss function in the 3D spatial domain using

two point clouds PM and QD obtained from M and D,

respectively:

ℓ3(M,D) :=
1

2
d(PM,QD) +

1

2
d(QD,PM), (3)
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Fig. 3: Overview of our mesh reconstruction architecture. In the initialization stage (Sec. V-A), we use sparse depth to elevate a flat mesh
from the image plane to 3D space (Fig. 4). In the refinement stage (Sec. V-B,V-C), we first combine the RGB image, a depth image rendered
from the initial mesh, and a Euclidean Distance Transform of the sparse depth measurements to extract features using a 2D feature extractor.
We have a 2D semantic segmentation model to generate 2D semantic features from the RGB image. The 2D features and the 2D semantic
features are associated with the mesh vertices using camera projection at different stages (Fig. 5,6). The vertex spatial coordinates and the
vertex semantic features, are regressed using graph convolution network (GCN) over the mesh. The refined output is a metric-semantic
mesh (Fig. 7). The 2D feature extractor and GCN parameters are optimized jointly using the loss function in Sec. IV. The 2D semantic
segmentation model is trained separately.

where d is the asymmetric Chamfer point cloud distance [67]:

d(P,Q) :=
1

|P|

∑

p∈P

min
q∈Q

‖p− q‖22. (4)

Note that squared Euclidean distance is used when calculating

the Chamfer distance. To generate PM, we sample on the

faces of M uniformly using PyTorch3D library [66]. The loss

function is differentiable with respect to the mesh vertices

because the samples on the mesh faces can be represented as

linear combinations of the mesh vertices using the barycentric

coordinate introduced in Sec. V-A. To generate QD, we may

sample the depth image D uniformly and project the samples

to 3D space but this will not generate sufficient samples

in the regions of large depth gradient variation. Instead, we

first generate a pseudo ground-truth mesh MD by densely

sampling pixel locations in D as the mesh vertices and

triangulating on the image plane to generate faces. We then

sample the surface of MD uniformly to obtain QD. The

sample number is set as 10000.

We also define two regularization terms to measure the

smoothness of the mesh M. The first is based on the Laplacian

matrix L := G − A ∈ R
n×n of M, where G is the vertex

degree matrix and A is the adjacency matrix. We define a

vertex regularization term based on the ℓ2,1-norm [68] of the

degree-normalized Laplacian [69] Ln = G−1L = In−G−1A

where In is an identity matrix of size n× n:

ℓV(M) :=
1

n
‖LnV‖2,1 , (5)

where n is the number of vertices. We also introduce a mesh

edge regularization term to discourage long edges in the mesh

ℓE(M) :=
1

|E|

∑

(i,j)∈E

‖vi − vj‖2, (6)

where vi ∈ R
3 are the coordinates of the i-th mesh vertex.

We also define a semantic loss function that relates the 3D

mesh semantic information to the 2D semantic segmentation

image by rendering the semantic mesh similar to (2). We

define a differentiable semantic rendering function ρS(M)
which can generate a same-sized image as S with s channels,

where s is the number of semantic classes. At each pixel,

the s-dimensional vector stores the unnormalized scores rep-

resenting the likelihoods of the s classes. We use a softmax

function [65] σi(x) = exp(xi)/
∑s

j=1 exp(xj) to compute the

probability distribution over the s classes σ(ρS(M)). For the

semantic segmentation task, we choose the Dice loss [70] :

ℓS(M,S) := −
2|σ(ρS(M)) · S|

|σ(ρS(M))|+ |S|
, (7)

where |·| sums up all the absolute values of the elements. Note

that S contains one-hot vectors while σ(ρS(M)) stores proba-

bility vectors for the s classes. Therefore, |σ(ρS(M))·S| is the

probabilistic intersection between two semantic segmentation

images. In Sec. VI-G, we compare the Dice loss with three

alternative semantic loss functions (cross-entropy loss, focal

loss, and Jaccard loss). Finally, we apply Laplacian smoothing

(5) to the vertex semantic features:

ℓC(M) :=
1

n
‖LnC‖2,1 . (8)
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Fig. 4: Mesh initialization stage (Sec. V-A). Left: Sparse depth
measurements (color dots) are used to determine vertex heights from
a flat image-plane mesh (bottom wireframe). Right: The initialized
mesh. Colors indicate elevation.

The complete loss function is:

ℓ(M,D,S) := w2ℓ2(M,D) + w3ℓ3(M,D)

+ wVℓV(M) + wEℓE(M)

+ wSℓS(M,S) + wCℓC(M)

(9)

where the first two terms evaluate the error between M and

D, the following two terms encourage smoothness of the mesh

structure, and the last two terms evaluate the error between M
and S and regularize the semantic features, which affects both

the geometric and semantic properties of the mesh. The scalars

w2, w3, wV, wE , wS, wC ∈ R≥0 allow appropriate weighting

of the different terms in (9). Fig. 2 illustrates the loss functions

ℓ2 in (2), ℓ3 in (3), and ℓS in (7).

V. 2D-3D LEARNING FOR SEMANTIC MESH

RECONSTRUCTION

Inspired by depth completion techniques, we approach mesh

reconstruction in two stages: initialization and refinement. In

the initialization stage, we generate a mesh from the sparse

depth measurements alone (Sec. V-A). In the refinement stage,

we optimize the mesh vertex coordinates based on RGB

image features (Sec. V-B) and assign semantic categories to

each vertex using image segmentation features (Sec. V-C).

An overview of our semantic mesh reconstruction model

M = f(I,Ds;θ) is shown in Fig. 3.

A. Mesh Initialization

Outdoor terrain structure can be viewed as a 2.5-D surface

with height variation. Hence, we initialize a flat mesh surface

and change the surface elevation based on the sparse depth

measurements. The flat mesh is initialized with regular-grid

vertices (n = 1024 in our experiments) over the image plane,

and the edges and the faces connecting the vertices. See Fig. 4

for an illustration. Subsequently, our mesh reconstruction

approach only optimizes the mesh vertices and keeps the edge

and face topology fixed. The initialized mesh Mint = (V∗,0)
is used as an input to the mesh refinement stage, described in

Sec. V-B, V-C. Since we do not update E ,F , we will omit

them for simplicity.

We constrain the mesh vertex deformation to the z-axis to

change the vertex heights only. The coordinates of the i-th
vertex of the flat mesh, vi = [vxi , v

y
i , 1], are divided by a

scalar inverse depth λi to obtain the i-th vertex coordinates

[vxi /λi, v
y
i /λi, 1/λi] of the initialized mesh. We concatenate

λi to obtain a vector λ ∈ R
n of all vertex inverse depths.

Any point p on the mesh surface that lies in a specific

triangle can be represented as a convex combination p =
bivi + bjvj + bkvk of the triangle vertices vi,vj ,vk with

weights bi, bj , bk ∈ [0, 1] such that bi + bj + bk = 1. The

vector [bi, bj , bk]
⊤ is called the barycentric coordinates of

p. We use barycentric coordinates to relate the sparse depth

measurements Ds to the vertex inverse depths λ, which is

equivalent to a linear interpolation.

Let the valid measurements in the sparse depth image Ds

be {(i, j),Ds
ij}, where (i, j) are the pixel coordinates and Ds

ij

are the corresponding depth measurements. Each pixel (i, j)
falls within one triangle of the flat 2D mesh (see Fig. 4).

Let bij ∈ R
n be the barycentric coordinates of pixel (i, j),

where at most three elements of bij , corresponding to the

three triangle vertices, are non-zero. The inverse depth 1/Ds
ij

is related to the vertex inverse depths λ through the barycentric

coordinates [71], b⊤
ijλ = 1/Ds

ij . Stacking these equations for

all valid pixels (i, j) in Ds, we obtain:

Bλ = ρ, (10)

where ρ is a vector of the valid inverse depth measurements

in Ds with elements 1/Ds
ij . Using Laplacian regularization as

in (5), we formulate a least-squares problem in λ:

λ∗ = argmin
λ

(

‖Bλ− ρ‖22 + w
′

V‖Lnλ‖
2
2

)

. (11)

The problem in (11) has a closed-form solution:

λ∗ = (B⊤B+ w
′

VL⊤
nLn)

−1B⊤ρ. (12)

The regularization term, not only makes the initialized mesh

smoother, but also guarantees that the solution exists even

when the number of sparse depth measurements is smaller than

the number of mesh vertices. Since the 2D mesh projection and

Ln are pre-defined, the problem can be solved very efficiently,

e.g., in less than 0.1 sec for a mesh with 1024 vertices.

Given λ∗, we obtain an initialized mesh Mint with each vertex

coordinate as [vxi /λ
∗
i , v

y
i /λ

∗
i , 1/λ

∗
i ].

B. Geometric Mesh Refinement

Initialization using the sparse depth measurements only

provides a reasonable mesh reconstruction but many details are

missing. In the geometric refinement stage, we use a learning

approach to extract features from both the 2D image and 3D

initial mesh and regress mesh vertex spatial coordinate resid-

uals. The ground-truth depth maps are used for supervision.

The photometric image information is useful for mesh re-

finement since man-made objects have sharp vertical surfaces,

while natural terrain has noisy but limited depth variation. The

sparse depth measurements also provide information about

areas with large intensity variation. Inspired by Mesh R-

CNN [32], we design a network that extracts features from the

2D image, associates them with the 3D vertices of the initial

mesh, and uses them to refine the vertex spatial coordinates.

Our network has 3 stages: feature extraction, vertex-image

feature association, and vertex graph convolution.
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Fig. 5: Illustration of image feature to mesh vertex association. With
known camera intrinsics, each mesh vertex can be projected in uv
coordinates (range [0, 1]) onto the image plane. Bilinear interpolation
is used to associate image feature maps at different resolutions
with the mesh vertices. The features across different resolutions are
concatenated to form a composite vertex feature.

Feature Extraction. We extract features from three sources:

the RGB image I, the rendered depth ρD(Mint) from the

initial mesh, and a Euclidean distance transform (EDT) E(Ds)
of the sparse depth measurements in the 2D image space,

obtained by computing the Euclidean distance to the closest

valid depth measurement pixel from each pixel coordinate.

The three images are concatenated to form a 5-channel input

(3-channels in I, 1-channel in each ρD(Mint) and E(Ds)):

F2D = concat(I, ρD(Mint),E(Ds)). (13)

Four layers of features with different resolution and channels

are extracted:

[L1,L2,L3,L4] = φres(F2D;θ2D), (14)

where φres is a ResNet model [72] with parameters θ2D.

Vertex-Image Feature Association. Next, we construct 3D

features for the mesh vertices by projecting each vertex to the

image plane and interpolating the 2D image features. This idea

is inspired by Pixel2Mesh [25], which projects mesh vertices

onto the image plane and extracts features at the projected

coordinates. To obtain multi-scale features, we associate the

projected mesh vertices with the intermediate layer feature

maps [L1,L2,L3,L4] from (14). The vertex-image association

step is illustrated in Fig. 5. All features corresponding to

different channels are concatenated to form composite vertex

features. We define associate(·, ·) as the function that assigns

2D features to 3D mesh vertices:

Vgin
= associate(M, φres(F2D)), (15)

where Vgin
∈ R

n×(l1+l2+l3+l4) are the vertex features and li
is the number of channels in feature map Li.

Vertex Graph Convolution. After the feature assignment, the

mesh can be viewed as a graph with vertex features Vgin
. Using

the vertex features, a graph convolution network [26], [32] is

a suitable architecture to predict coordinate deformation ∆V

for the vertex spatial coordinates to optimize the agreement

between the refined mesh Mref = (V+∆V) and the ground

Fig. 6: A 2D semantic segmentation feature map (top left) is used to
generate semantic features for the 3D elevation mesh vertices (bottom
left). Each mesh vertex is projected to the semantic segmentation
feature map to retrieve an associated semantic feature (top right).
Dense semantic features over the whole mesh can be obtained by
interpolation on the mesh faces (bottom right).

truth depth D according to the loss in (9). To capture a

larger region of feature influence, we use 3 layers of graph

convolution gV1 ,gV2 ,gV3 , as follows:

Vin
1 = ReLU(WV

1 Vgin
)

Vin
i = Vout

i−1, i = 2, 3,

Vout
i = ReLU(gVi ([Vin

i ;V];θgVi)), i = 1, 2, 3,

∆V = WV
2 [Vout

3 ;V],

(16)

where ∆V ∈ R
n×3 is the matrix of spatial coordinate residu-

als, WV
1 ,WV

2 are weight matrices of the linear layers, θgVi

are the graph convolution layer weights, and ReLU is the Rec-

tified Linear Unit activation function ReLU(x) = max(0, x).
The trainable parameters for vertex graph convolution are

θ3DV = [WV
1 ;WV

2 ;θgV1;θgV2;θgV3]. It is possible to

concatenate more stages of vertex-image feature association

and graph convolution. At stage i, the previous stage’s refined

mesh Mref
i−1 is set as the initial mesh Mint

i and new vertex

features are extracted via vertex-image feature association and

fed to new graph convolution layers. All refined meshes at

different stages are evaluated using the ground-truth depth map

D using the loss functions defined in (9).

C. Semantic Mesh Reconstruction

To further enrich the environment representation, we in-

troduce semantic information in the mesh reconstruction. By

assigning per-vertex semantic features C, we can interpo-

late the semantic information over the whole mesh using

barycentric coordinates (see Fig. 6). To obtain a 2D semantic

segmentation image from the mesh, we use the differentiable

semantic renderer ρS introduced in (7). Both the vertex spatial

coordinates V and the semantic features C can affect the

rendered 2D semantic segmentation image ρS(M). Hence, by
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Fig. 7: Mesh refinement stage: the mesh vertex spatial coordinate are refined to V+∆V using graph convolution based on the RGB image
features. Then, the semantic features C of the mesh vertices are initialized by projecting the vertices to the image plane and associating
them with 2D semantic segmentation features. Finally, the vertex semantic features are refined to be C+∆C using graph convolution.

optimizing the semantic loss in (7), we can refine both the

semantic features and the geometric structure of the mesh.

We first obtain 2D semantic segmentation features

φdeep(I;θ2Dsem) from the RGB image I using the DeepLabv3

model [73] with parameters θ2Dsem. Then, we associate the

mesh vertices to the 2D semantic feature map to get initial

mesh vertex semantic features:

C = associate(M, φdeep(I)). (17)

Fig. 6 illustrates the mesh vertex association with respect to the

2D semantic segmentation features. In the semantic refinement

stage, we regress a semantic residual ∆C for the semantic

features. We use 3 layers of graph convolution gC1 ,gC2 ,gC3 . We

also use the Vgin
extracted from ResNet in (15) as an input to

the first graph convolution layer. Additionally, we concatenate

the initial mesh vertex semantic features C in (17) to the graph

convolution input:

Cin
1 = ReLU(WC

1 Vgin
)

Cin
i = Cout

i−1, i = 2, 3,

Cout
i = ReLU(gCi ([Cin

i ;V;C];θgCi)), i = 1, 2, 3,

∆C = WC
2 [Cout

3 ;V;C],

(18)

where ∆C ∈ R
n×s is the matrix of semantic residuals and

WC
1 ,WC

2 are two matrices as linear layers. The trainable

parameters for vertex semantic graph convolution are θ3DC =
[WC

1 ;WC
2 ;θgC1;θgC2;θgC3].

Now we can perform the joint geometric and semantic

refinement. All trainable parameters for the 3D graph con-

volution are θ3D = [θ3DV;θ3DC]. An illustration of the joint

geometric and semantic refinement is provided in Fig. 7. For

the initial mesh M(V,0), we first estimate the geometric

residuals ∆V (16) from Sec.V-B. On the geometrically refined

mesh M(V+∆V,0), we initialize the semantic features as in

(17) to get M(V +∆V,C). Then we estimate the semantic

residuals ∆C (18). The final joint geometric and semantic

refined mesh is Mref = (V +∆V,C+∆C).

D. Global Mesh Merging

Given semantically annotated meshes obtained by our model

from each camera view, a global mesh of the whole environ-

ment can be obtained by transforming each local mesh to the

global frame using the camera pose trajectory and merging

it into a combined global mesh. We design an approach to

incrementally merge local meshes into a global mesh. Given

a new local mesh obtained from a camera view with a known

pose and the current global mesh, we update the global mesh

by merging information from the local mesh.

First, we refine the global mesh vertices. We transform

the global mesh to the local camera frame and project it

onto the 2D image plane. If the resulting 2D global mesh

covers an area over a certain threshold (e.g., 70%), we regard

the local frame as duplicate and proceed to the next frame.

Otherwise, we determine the overlapping parts between the

2D projections of the global and local meshes. We choose

the vertices of the overlapped global mesh as a source point

cloud and sample a point cloud from the overlapped local mesh

vertices as a target point cloud. We perform non-rigid point

cloud registration between the source and target point cloud

using the Coherent Point Drift (CPD) algorithm [74]. Through

this non-rigid transformation, we deform and refine the global

mesh geometry based on the local mesh information.

Second, we introduce new vertices and faces into the global

mesh from the non-overlapping region of the local mesh. We

remove the faces of the local mesh that overlap with the global

mesh projection on the image plane. Through this step, we

decouple the global mesh and the local mesh because their

2D projections do not intersect with each other any longer.

We perform 2D constrained Delaunay triangulation [75] over

the global and local mesh projections, keeping the edges of

existing triangles in tact. Through this step, we connect the

global mesh and the local mesh to obtain a new global mesh,

which is lifted back to 3D using the vertex depth values and

the known camera pose.

Fig. 8 and Fig. 9 demonstrate the mesh merging process,

which results in a single consistent global mesh and removes

artifacts such as double layers in naı̈ve mesh merging.

VI. EXPERIMENTS

In this section, we evaluate our metric-semantic mesh

reconstruction approach using aerial image sequences gener-

ated from three open-source 3D datasets: WHU MVS/Stereo

[76], SensatUrban [58], and STPLS3D [77]. We evaluate

the model generalization ability by training and testing on
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TABLE I: Quantitative evaluation on the WHU dataset [76]. The second column shows the number of available sparse depth measurements
per image and indicates whether the measurements are noisy (Sec. VI-A). The SD-tri method triangulates a mesh using all the sparse depth
measurements as vertices. The Regular-n model generates a regular mesh with n vertices and performs initialization and refinement steps
as we propose in Sec. V. The Initialized model constructs a mesh from the sparse depth (Sec. V-A). The RGB, RGB+RD, RGB+RD+EDT
methods refine the initialized mesh (Sec. V-B), using different inputs respectively.

Error
Meshing SD-tri Regular-576 Regular-1024

Inputs (vert = SD) Initialized RGB+RD RGB+RD+EDT Initialized RGB RGB+RD RGB+RD+EDT

ℓ2

500 w/o noise 1.492 2.069 1.670 1.637 1.861 1.575 1.289 1.252

1000 w/o noise 1.172 1.834 1.596 1.546 1.535 1.298 1.124 1.097

2000 w/o noise 0.916 1.941 1.551 1.511 1.344 1.144 1.045 1.024

ℓ3

500 w/o noise 9.815 18.278 13.438 13.763 13.799 7.242 5.647 6.352
1000 w/o noise 6.494 17.762 12.938 13.574 11.872 5.876 4.911 5.703
2000 w/o noise 4.649 17.130 12.483 13.506 10.859 5.131 4.477 5.291

ℓ2

500 1.865 2.294 1.809 1.768 2.155 1.828 1.486 1.456

1000 1.632 2.056 1.701 1.685 1.826 1.535 1.319 1.308

2000 1.485 1.717 1.655 1.654 1.629 1.364 1.236 1.241

ℓ3

500 19.737 18.392 12.974 13.532 14.887 8.351 6.157 6.865
1000 22.189 17.693 12.258 13.161 12.480 6.447 5.266 6.075
2000 18.545 17.256 11.856 12.988 11.147 5.452 4.793 5.620

Fig. 8: Red: global mesh. Blue: local mesh. Yellow: New edges
after merging. Left: the refined global mesh overlaps with the local
mesh. Right: the global and the local meshes are separated by
removing overlapping faces and a new global mesh is generated via
2D constrained Delaunay triangulation.

Fig. 9: Left: Stacking two local meshes directly. Right: Merging two
meshes with our proposed method in Sec. V-D.

different datasets. Ablation studies are included to show the

effectiveness of our choices in the model design.

A. Datasets

Our mesh reconstruction approach requires ground-truth

depth and semantic segmentation data for supervised training,

which are generally not available and challenging to obtain

from RGB aerial images. We used photo-realistic point cloud

models covering several km2 reconstructed from real aerial

images in WHU MVS/Stereo and SensatUrban dataset to

render RGB, depth, and semantic segmentation images. This

provides accurate depth and semantic supervision data, while

keeping the RGB images realistic, which is important for real-

world applications of our model. We also use data from the

synthetic STPLS3D dataset, which has more variation in the

scene layout and the texture. We divide the large point cloud

models in each dataset into different regions and generate

Fig. 10: Left: Camera trajectory used to render RGBD images from
a point cloud model generated from the SensatUrban dataset [58]).
Right: Sparse depth points and camera poses estimated by ORB-
SLAM3 [8]. The color indicate elevation.

different image sequences over them. Each camera trajectory

follows a sweeping grid-pattern, which is common in drone

flight planning (see Fig. 10). The camera trajectories are

chosen to ensure enough image overlap for tracking and sparse

depth reconstruction. RGBD images with resolution 512×512
are rendered along the trajectory from the ground-truth point

cloud using PyTorch3D [66]. We keep the RGB aerial image

resolution at around 0.2 meter/pixel. When semantic labels are

available in the point cloud model, we also render semantic

segmentation images with the same size as the RGBD images.

All the data sequences are available in the Supplementary

Material.

WHU. The WHU MVS/Stereo dataset [76] provides geo-

calibrated RGBD images rendered from a highly accurate 3D

digital surface model of a 6.7 × 2.2 km2 area over Meitan

County, Guizhou Province, China. The 3D DSM model is not

publicly available, so we recover a dense point cloud from

the RGBD images as a ground-truth 3D model. Semantic

labels are also not available in this dataset so we only perform

geometric reconstruction using the WHU dataset. We obtain

sparse depth measurements Ds for each image by applying

OpenSfM [78] to its four neighbor images with known camera

intrinsic and extrinsic parameters. Since monocular structure

from motion (SfM) suffers from scale ambiguity, we rescale

the reconstructed point cloud obtained from OpenSfM to align

it with the real 3D model. In reality the scale can be recovered

from other sensor measurements like GPS or IMU. The point
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Fig. 11: Mesh reconstructions on the WHU dataset [76] visualized as rendered depth images. The colors indicate the relative depth
values. Column 1: RGB images. Column 2: sparse depth measurements (around 1000). Column 3: meshes reconstructed from sparse-
depth triangulation. Column 4: meshes after initialization (Sec.V-A). Column 5: meshes after neural network refinement (Sec.V-B). Column
6: ground-truth depth images.

Fig. 12: Reconstructed meshes painted with RGB texture and colors
indicating elevations. These are associated with the first two rows
in Fig. 11. The sharp vertical transitions of the buildings are recon-
structed accurately.

Fig. 13: Complete environment model obtained by transforming to
the global frame and merging local meshes from 12 camera views.

features reconstructed by OpenSfM are treated as sparse noisy

depth measurements. The noise is due to feature detection

and matching as well as the bundle adjustment step. We

also obtain noiseless depth measurements with the same 2D

sparsity pattern from the ground-truth depth images D. We

vary the number of available sparse depth measurements as

500, 1000, 2000. We generate 20 camera trajectory sequences

with 200 images in each sequence, split into 14 for training,

2 for validation, and 4 for testing.

SensatUrban. The SensatUrban dataset [58] is a point cloud

dataset obtained using photogrammetry in two urban areas in

Birmingham and Cambridge, UK. Each 3D point in the dataset

is labeled as one of 13 semantic classes. The Birmingham

region covers an area of 1.2 km2. The Cambridge region

covers an area of 3.2 km2. We only use the training set part of

the data in which point cloud semantic labels are available. We

keep 4 semantic categories (ground, vegetation, building, and

traffic road) and merge or discard the remaining less-frequent

categories. We used monocular ORB-SLAM3 [8] to estimate

the camera poses and sparse feature depths on the SensatUrban

dataset. Compared with OpenSfM, ORB-SLAM3 performs

sequential optimization of the image sequences, instead of

looping over all the images to find matching pairs. As a

result, it runs faster (1-10 Hz) and may be deployed on an

aerial robot directly. We use OrbSLAM3 in order to ensure

that our method can operate incrementally in time and handle

pose and sparse depth estimation errors typical for online

SLAM algorithms. We also re-scale the reconstructed point

cloud and camera poses to align with the real 3D model.

Finally, we project the point cloud to each camera frame to

derive a sparse depth image. We vary the number of available

sparse depth measurements as 500, 1000, 2000, 4000. We

generate 13 camera trajectory sequences with 660 images in

each sequence, split into 8 for training, 2 for validation, and

3 for testing.

STPLS3D. The STPLS3D dataset [77] is a richly-annotated

synthetic 3D aerial photogrammetry point cloud dataset with

more than 16 km2 of landscapes and up to 18 fine-grained

semantic category annotations. To ensure the object place-

ments in the virtual environments resemble real city blocks,

the environments are built based on Geographic Information

System (GIS) data that are publicly available. We use the

same 4 semantic categories as for the SensatUrban dataset.

We generated 38 camera trajectory sequences with 660 images

in each sequence, split into 26 for training, 4 for validation,
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Fig. 14: Mesh reconstructions on SensatUrban dataset [58] visualized as rendered depth (colors indicate the relative depth values) and
semantic images. The original 3D model is not fully complete so the RGB, GT Depth and GT Semantic may have little missing region.
Column 1: RGB images. Column 2: sparse depth measurements (1000). Column 3: meshes reconstructed from sparse-depth triangulation.
Column 4: meshes after initialization (Sec.V-A). Column 5: meshes after neural network refinement (Sec.V-B). Column 6: ground-truth depth
images. Column 7: 2D semantic segmentation results. Column 8: meshes after neural network refinement (Sec.V-C). Column 9: ground-truth
semantic segmentation maps.

Fig. 15: Reconstructed meshes painted with colors indicating eleva-
tions and semantic labels. These are associated with the three rows
in Fig. 14. Column 1: initialized meshes. Column 2: refined meshes
colored by elevation. Column 3: refined meshes colored by semantic
categories.

and 8 for testing. Camera keyframe poses and sparse depth

measurements were estimated using ORB-SLAM3.

B. Implementation Details

During training, we use 1000 sparse depth measurements

per image and generate a mesh model with 576/1024/2025 ver-

tices. For the WHU dataset, the weights of the loss function in

(9) are set to [w2, w3, wV, wE , wS, wC] = [3, 1, 0.5, 0.01, 0, 0].
For the SensatUrban and the STPLS3D dataset, the weights

are set to [w2, w3, wV, wE , wS, wC] = [5, 1, 0.5, 0.01, 5, 0.5]
for the joint geometric-semantic training (Sec. V-C). For the

geometric training (Sec. V-B), the last two weights are set

to be 0. The loss weights are decided through evaluation on

the validation set. We use the 2D loss ℓ2 in (2) as the metric

to choose the best model on the validation set. The Chamfer

distance d in the ℓ3 loss (3) is computed using 10000 samples.

For the WHU experiments in Sec. VI-C, we use ResNet-18

for the 2D feature extraction. For the remaining ones including

the generalization experiments, we use ResNet-34. The ResNet

is initialized with the pretrained weights on ImageNet-1K.

The ResNet and GCN parameters of our model are optimized

jointly during the mesh refinement training using the Adam

optimizer [79] with initial learning rate of 0.0005 for 100
epochs. For the semantic reconstruction task, we first train

a DeepLabv3 model with ResNet-50 backbone [73] alone for

2D semantic segmentation on the SensatUrban training set.

The ResNet-50 is initialized with the pretrained weights on

ImageNet-1K. We use the Cross Entropy loss for training and

set the class weight as [ground, vegetation, building, traffic

road] = [1, 2, 3, 3]. During the mesh semantic refinement step,

we use the Dice loss in (7) and keep the same per-class

weights. We use three graph convolution stages for the WHU

dataset and two graph convolution stages for the SensatUrban

and the STPLS3D dataset. For the joint geometric-semantic

training, we concatenate two graph convolution stages, where

the first stage predicts the geometric residual only and the

second stage predicts both the geometric and the semantic

residuals. All trainable parameters of the model in (1) are

θ = [θ2D;θ2Dsem;θ3D], including the parameters of the 2D

features extraction, 2D semantic segmentation, and 3D graph

convolution models.
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Fig. 16: Global metric-semantic meshes reconstructed from three areas in the SensatUrban dataset [58] by fusing the local mesh reconstructions
at the keyframe camera poses (shown in blue). The three global meshes are obtained from 40/55/58 local keyframe meshes, respectively.

C. Geometric Reconstruction

Our experiments report the ℓ2 error in (2) and the ℓ3 error

in (3) for the reconstructed meshes. The ℓ2 error emphasizes

the accuracy of the projected depth, while ℓ3 emphasizes the

regions of large depth variation.

For comparison, we define a baseline method that triangu-

lates the sparse depth measurements directly to build a mesh.

The baseline method performs Delaunay triangulation on the

2D image plane over the depth measurements and projects the

flat mesh to 3D using the measured vertex depths. We refer

to the baseline method as sparse-depth-triangulation (SD-tri).

SD-tri defines vertices at all sparse depth measurements (500,

1000, or 2000) and, hence, may produce meshes with different

number of vertices compared to other models.

First, we perform geometric reconstruction on the WHU

dataset. The quantitative results from the comparison are

reported in Table I. All models are trained with 1000 sparse

depth measurements and directly generalize to different num-

bers of sparse depth measurements. We compared three op-

tions for the 2D inputs provided to the mesh refinement stage:

an RGB image only (RGB, 3-channels), an RGB image plus

rendered depth from the initial mesh (RGB+RD, 4-channels),

and an RGB image plus rendered depth from the initial mesh

plus Euclidean distance transform (EDT) obtained from of the

sparse depth measurements (RGB+RD+EDT, 5-channels). The

model using RGB-only does not perform as well as the other

two. The RGB+RD+EDT model has the best performance

according to the ℓ2 error metric. The RGB+RD method has

similar performance in the ℓ2 metric and smaller ℓ3 error

compared to RGB+RD+EDT. The RGB+RD model is used to

generate our qualitative results in Fig. 11, 12, 13 with 1024-

vertex meshes because it offers good performance according

to both error metrics.

At the bottom of Table I, we evaluate the mesh reconstruc-

tion accuracy with noisy sparse depth measurements obtained

from OpenSfM. The measurements are noisy due to feature

matching errors, local minima during bundle adjustment, and

the simple projective camera model used for optimization. The

average per image errors of the 500/1000/2000 sparse depth

measurements were 1.011/1.017/1.023 meters, respectively.

The baseline SD-tri method performs well in a noiseless

setting but degenerates drastically when noise from the SfM

feature reconstruction is introduced. In contrast, our model

is more robust to noise due to two factors. First, our mesh

initialization and refinement stages both include explicit mesh

regularization terms (in (5) and (6)). Second, the image

features extracted during the mesh refinement process help dis-

tinguish among different terrains and structures. The latter is

clear from the improved accuracy of the refined, compared to

the initialized, meshes. We also report the performance using

a mesh with only 576 vertices. When the depth measurements

are noisy, the 576-vertex mesh has lower ℓ2 loss compared

with the baseline method with similar number of vertices.

It even has lower ℓ3 loss compared with meshes with more

vertices generated from the baseline method.

Qualitative results are presented in Fig. 11 and 12. Com-

pared with SD-tri and initialized meshes, the refined meshes

have smoother boundaries on the side surfaces of the buildings.

The guidance from the image features allows the refined

meshes to fit the 3D structure better. Fig. 13 shows a global

mesh reconstruction obtained by transforming and merging

12 camera-view mesh reconstructions. The local meshes are

transformed to global frame using the camera keyframe poses

and no post-processing is used to merge them into a single

global mesh.

D. Joint Geometric & Semantic Reconstruction

On the SemsatUrban dataset, we first perform geometric

reconstruction with the same settings as in the WHU dataset.

We train three models with different numbers of mesh vertices:

576 = 242, 1024 = 322 and 2025 = 452. The quantitative

results are reported in Table II. As the number of sparse depth

measurements increases, the baseline SD-tri method has better

accuracy because the number of mesh vertices also increases.

Our initialized meshes with fewer vertices are comparable with

the SD-tri mesh, and the refined meshes are much better,

especially according to the 3D metric ℓ3. This shows that

the joint 2D-3D loss in (9) enables our model to capture

3D structure details. Comparing the number of input depth

measurements, we find that around 2000 measurements on

the 512 × 512 image provide the best performance, while

more do not noticeably improve the results. Regarding the

number of mesh vertices, all three mesh sizes perform well.

While we can see that the 1024-vertex mesh is generally better
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TABLE II: Quantitative evaluation on the SensatUrban dataset. The second column shows the number of available sparse depth measurements
per image (Sec. VI-A). The baseline SD-tri method triangulates a mesh using all sparse depth measurements as vertices. The Regular-n
model generates a regular mesh with n vertices and performs initialization and refinement steps (Sec. V).

Error
Meshing SD-tri Regular-576 Regular-1024 Regular-2025

Inputs (vert = SD) Initialized Refined Initialized Refined Initialized Refined

ℓ2

500 2.018 2.050 1.175 2.204 1.088 1.992 1.171
1000 1.843 1.841 1.096 1.865 1.000 2.033 1.153
2000 1.715 1.796 1.120 1.700 0.988 1.752 1.209
4000 1.647 1.834 1.181 1.662 1.026 1.630 1.283

ℓ3

500 8.926 7.898 2.371 9.871 2.128 7.645 2.371
1000 7.796 6.353 2.075 6.725 1.815 8.875 2.284
2000 7.164 5.989 2.133 5.527 1.745 6.200 2.500
4000 6.908 6.176 2.339 5.217 1.844 5.364 2.806

TABLE III: Semantic segmentation per-class IoU for different
geometric-semantic models. The definitions of the different models
can be found in Sec. VI-D and Sec. VI-G.

Class Ground Vegetation Building Traffic Road

Geo Init 0.642 0.810 0.846 0.643
Geo Refine 0.644 0.809 0.840 0.644

Cross Entropy 0.661 0.805 0.843 0.660
Focal 0.663 0.807 0.844 0.657

Jaccard 0.664 0.826 0.863 0.653

Our Model (Dice) 0.674 0.824 0.860 0.663

2D Seg 0.649 0.834 0.854 0.648

TABLE IV: Geometric error for different metric-semantic models.
The definitions of the different models and loss functions can be
found in Sec. VI-D and Sec. VI-G.

Method Depth (ℓ2) Chamfer (ℓ3)

Geo Init 1.866 6.725
Geo Refine 1.000 1.815

Cross Entropy 0.994 1.793
Focal 1.035 1.912

Jaccard 0.976 1.776

Our Model (Dice) 0.976 1.763

than 576-vertex mesh, the 2025-vertex mesh does not show an

advantage over the 1024-vertex mesh. This indicates that good

accuracy can be achieved with a light-weight storage-efficient

mesh model.

We choose the 1024-vertex mesh to perform joint

geometric-semantic reconstruction using 1000 sparse depth

measurements. To evaluate the semantic reconstruction, we

render a 2D semantic image from the mesh reconstruction

and calculate the per-class Intersection over Union (IoU). For

comparison, we report the IoU of the DeepLabv3 2D semantic

segmentation model (named 2D Seg), the direct projection of

the 2D semantic segmentation image onto the initial mesh

as in (17) (named Geo Init) and the semantic segmentation

projection onto the geometrically-refined mesh (named Geo

Refine). Only 2D Seg is using a dense semantic image while

the other methods store semantic features on the mesh vertices

and interpolate through the semantic mesh renderer. As we

can see in Table III, our semantic residual refinement model

improves the semantic segmentation performance compared

to the direct projection of the 2D semantic segmentation

image. Our approach also outperforms 2D Seg on most of

the categories (ground, building, traffic Road) even thought

it is using only 0.4% of the points to store the semantic

information (1024 mesh vertices vs 512 × 512 segmentation

image). Using a compact mesh with few vertices improves

TABLE V: Geometric error for global mesh-merging methods.

Method Depth (ℓ2) Chamfer (ℓ3)

Simple Stacking 1.620 6.267
Our Method 1.600 5.219

the computation and memory efficiency but restricts the mesh

from modeling small regions (e.g., small objects like cars,

street furniture). Our approach can capture additional semantic

categories if the number of mesh vertices is increased, e.g., to

642 = 4096 or more, and a semantic segmentation network

capable of segmenting small regions is used. Achieving this

does not require any changes to the model architecture but

only retraining the model parameters.

Further, we investigate whether the semantic mesh refine-

ment affects the geometric reconstruction quality. In Table IV,

we can see that our joint geometric-semantic mesh reconstruc-

tion achieves better geometric accuracy compared with purely

geometric training. This can be explained by the fact that the

semantic category information serves as regularization for the

geometric properties. The results show that the geometric and

semantic information help each other. More qualitative results

for single-image reconstruction are provided in Fig. 14 and

15. Compared with SD-tri and initialized mesh, the refined

mesh achieves higher reconstruction accuracy. The semantic

refinement can improve the 2D semantic segmentation results.

We can see that some noisy classification labels are removed

after the refinement.

To evaluate our global mesh-merging method based on CPD

and Delaunay triangulation, we compare it with a simple

stacking method that transforms the same set of local meshes

to the global frame and simply treats them as a single global

mesh. For each scene, about 10% of the frames are used to

generate a global mesh. The global mesh is rendered with

respect to all frames, including ones that were not used for its

construction, to compute the error. Therefore, the error is larger

than the per-frame prediction evaluation. The quantitative

results are reported in Table V. The stacked global mesh has

many double layers in regions where the local meshes overlap

while our method successfully merges the local meshes into

a consistent global mesh, which improves the reconstruction

accuracy, especially according to the 3D Chamfer error metric.

Fig. 16, shows the reconstruction of three global metric-

semantic meshes using data from the SensatUrban dataset [58].

We also evaluated our model on the synthetic STPLS3D

dataset. We use a 1024-vertex mesh to perform geometric-
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TABLE VI: Geometric error on the STPLS3D dataset.

Method Depth (ℓ2) Chamfer (ℓ3)

SD-tri 2.039 11.832
Geo Init 1.996 10.417

Geo Refine 0.977 2.807
Sem Refine 0.972 2.725

only and joint geometric-semantic reconstruction using 1000

sparse depth measurements per image. The quantitative results

are shown in Table VI. Our joint geometric-semantic mesh

reconstruction method out-performs geometric-only mesh re-

construction, which verifies the effectiveness of fusing both

geometric and semantic information.

E. Generalization Across Datasets

In this section, we evaluate the generalization ability of

our model, trained on one dataset and applied to another. To

align the datasets, we regenerated the RGB images and the

sparse depth measurements on the WHU dataset to follow

the same camera intrinsic parameters and trajectory patterns

in the SensatUrban and the STPLS3D dataset so that there

are 660 frames for each trajectory and ORB-SLAM3 is used

to estimate sparse depth measurements and camera keyframe

poses. It is challenging to achieve zero-shot generalization, so

we also include a finetuning step. During finetuning, we only

use 10% of the target domain training set and train for 30

epochs. A validation set (10% of the target domain validation

set) is used to choose the best model with the 2D loss ℓ2 as the

metric. Usually, models trained on larger datasets show better

generalization ability. We choose to use a model trained on

WHU to generalize to SensatUrban and a model trained on

STPLS3D to generalize to both WHU and SensatUrban. The

average per image sparse depth errors in meters for 1000 depth

samples were 1.771 on STPLS3D, 2.460 on WHU, and 1.597

on SensatUrban. The sparse depth measurements are generated

through ORB-SLAM3.

First, we evaluate how the model trained on STPLS3D

generalizes to WHU. The geometric error is reported in Table

VII. The WHU dataset is more challenging due to the presence

of denser and taller (> 30m) buildings. The camera intrinsics

and the flight pattern and height are different compared to

the data generated in Sec. VI-C so the numbers in Table VII

are not directly comparable with Table I. Zero-shot gener-

alization does not work for WHU, which is understandable

given the large domain gap. The STPLS3D synthetic dataset

uses scene layouts extracted from a U.S. Geological Survey

(USGS) which covers cities in the United States, while the

WHU dataset is collected in a Chinese city. After finetuning

with only 10% of the original WHU training set, our model

generalizes well to WHU, and even outperforms the model

trained purely on WHU.

Next, we evaluate how models trained on WHU and

STPLS3D generalize to SensatUrban. The results are presented

in Table VIII and Table IX. We report only geometric error for

the model trained on WHU. We can see that zero-shot gener-

alization from WHU to SensatUrban improves the initialized

meshes, while a finetuned model performs even better. We

train a geometric-only model and a metric-semantic model on

TABLE VII: Generalization experiment: Geometric error on WHU.
Brackets indicate the dataset trained on.

Method Depth (ℓ2) Chamfer (ℓ3)

SD-tri 3.628 40.431
Init 3.582 38.570

Refine (WHU) 2.253 11.332

Refine (STPLS3D) 20.043 1478.478
Refine (STPLS3D finetune) 2.047 10.796

TABLE VIII: Generalization experiment: Geometric error on Sensat-
Urban. Brackets indicate the dataset trained on.

Method Depth (ℓ2) Chamfer (ℓ3)

SD-tri 1.843 7.796
Init 1.865 6.725

Refine (SensatUrban) 1.000 1.815
Sem Refine (SensatUrban) 0.976 1.763

Refine (WHU) 1.439 3.827
Refine (WHU finetune) 1.112 2.223

Refine (STPLS3D) 1.442 3.973
Sem Refine (STPLS3D) 1.501 4.309

Refine (STPLS3D finetune) 1.021 1.992
Sem Refine (STPLS3D finetune) 1.043 2.111

STPLS3D. In terms of geometric loss, both STPLS3D models

generalize well to SensatUrban and their performance after

finetuning is close to that of a model trained on SensatUrban.

However, the metric-semantic model is slightly worse than the

pure geometric model. In terms of semantic segmentation per-

formance, zero-shot generalization does not perform well and

especially fails on the traffic road category. After finetuning,

the metric-semantic model can largely close the gap between

itself and the SensatUrban model. Given that the RGB images

from the synthetic scenes in STPLS3D have very different

appearance, it is understandable that the semantic model that

heavily relies on the RGB image might be harder to generalize

compared to the geometric-only model.

These experiments demonstrate promising generalization

ability of our mesh reconstruction method, using limited data

to finetune or even without finetuning in some cases. The

model generalizes better in terms of geometric reconstruction

than in terms of semantic classification. Nevertheless, it is

exciting to see that a model trained on a synthetic dataset

(STPLS3D) can generalize well to real data. This makes it

possible to achieve good performance by training a model with

inexpensive synthetic data that comes with free ground-truth

labels and finetuning on a small set from the target domain.

F. Comparison with Other Methods

In this section, we compare our approach with depth com-

pletion, multi-view stereo, and NeRF techniques on the Sen-

satUrban dataset [58] with 1000 sparse depth measurements.

The qualitative results are shown in Fig. 17. The quantitative

results are shown in Table X. To evaluate the reconstruction

quality of the different methods comprehensively, we report

multiple 2D and 3D reconstruction accuracy metrics [37]. The

threshold distance for 3D precision and recall is set to 0.5m

due to the large scale of the reconstructed mesh.

Depth completion methods take a sparse depth image and

other inputs, such as an RGB image, and recover a dense depth

image. While there are many depth completion algorithms,

few focus on the aerial image domain. We compare against
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Fig. 17: Depth reconstruction comparison on the SensatUrban dataset among Sparse-to-Dense [3], COLMAP [36], Nerfacto [52], Nerfacto
restricted to 1000 mesh vertices, and our method.

TABLE IX: Generalization experiment: Semantic segmentation per-
class IoU on SensatUrban. Brackets indicate the dataset trained on.

Class Ground Vegetation Building Traffic Road

2D Seg (SensatUrban) 0.649 0.834 0.854 0.648
Sem Refine (SensatUrban) 0.674 0.824 0.860 0.663

2D Seg (STPLS3D) 0.444 0.676 0.565 0.061
Sem Refine (STPLS3D) 0.528 0.667 0.608 0.038

2D Seg (STPLS3D finetune) 0.652 0.827 0.838 0.638
Sem Refine (STPLS3D finetune) 0.657 0.814 0.850 0.623

the Sparse-to-Dense method [3], an end-to-end deep learning

regression model, because it considers a similar problem

setting and uses similar feature extraction as our approach. The

Sparse-to-Dense model consists of a ResNet feature extraction

encoder and per-pixel depth regression decoder. We trained

both our model and Sparse-to-Dense with a ResNet-34 feature

extractor, thus focusing the comparison on the performance of

the pure 2D learning and per-pixel depth regression of Sparse-

to-Dense versus the joint 2D-3D learning for mesh refinement

of our method. The results in Fig. 17 and Table X show that the

Sparse-to-Dense model is not as accurate as our method on the

SensatUrban dataset, and it is beneficial to utilize our joint 2D-

3D learning technique. At least on this dataset, it is challenging

for Sparse-to-Dense to regress an accurate dense depth map,

while, using the same 2D feature extraction network, our

mesh initialization and refinement method performs better at

reconstructing the 3D scene.

We also compare our method with COLMAP [36], a multi-

view stereo technique that recovers 3D structure from a series

of calibrated images using pixelwise view selection for depth

and normal estimation. In this comparison, we used ground-

truth camera poses and skip the SfM step. For each frame,

we manually select neighboring frames within a radius of 50
m for multi-view stereo matching. We use the reconstructed

dense depth images to obtain a global point cloud, generate a

global mesh, and crop the mesh at each camera pose to obtain

local meshes associated with each frame. For the meshing step,

we compared Poisson reconstruction [80] and Delaunay mesh

reconstruction [81] and found that due to point cloud noise

the Delaunay reconstruction performs better. The COLMAP

is the dense depth estimation result, while the COLMAP

Mesh is the subsequent meshing result. For COLMAP, we

convert the dense depth images to a point cloud and sample

10000 points to compute the ℓ3 error. For COLMAP Mesh,

we render the local mesh to get a rendered depth image to

compute the ℓ2 error. The results are shown in Fig. 17 and

Table X. The COLMAP method generally has better depth

reconstruction measured by ℓ2 error, while our method has

lower ℓ3 error because of the implicit regularization in our

mesh reconstruction. The 3D error ℓ3 can be large when

outliers appear in the reconstruction. COLMAP achieves better

reconstruction at the cost of heavy computation for the MVS

step. It takes around 4 seconds per frame to recover a dense

depth image using GPU, while meshing requires additional

time. Our method is much faster, with 0.07 s per frame on a

desktop with GeForce RTX 2080 Ti GPU and 0.45 s per frame

on a Jetson AGX Xavier edge computing platform. When it

comes to online mesh reconstruction on a resource-constrained

platform, our method offers an advantage over MVS.

Finally, we compare with Nerfacto [52], a NeRF model that

combines components from recent NeRF papers to achieve

a balance between speed and quality. As a NeRF model,

Nerfactor takes posed RGB images and constructs an implicit

3D scene represented by a deep neural network. We used

ground-truth camera poses for each image and trained separate

Nerfacto models for each test image sequences. One in ten

frames was chosen as an evaluation image during training.

Notice here no depth images are used for the NeRF training.

We observed that depth images rendered directly from the

trained Nerfacto model have inconsistent depth across frames.

Therefore, we exported a mesh model using the Poisson

surface reconstruction [80] implemented in Nerfstudio [52].

Nerfacto exports meshes with different vertex density. A dense

mesh has about 20000 vertices for each camera view, while a

sparse mesh has about 1000, which is similar to our method’s

mesh vertex density. To compute the 2D metrics in Table X,

we rendered depth images from the mesh. The evalution results

for Nerfacto are shown in Fig. 17 and Table X. Qualitatively,
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TABLE X: Geometric error comparison among Sparse-to-Dense [3], COLMAP [36], Nerfacto [52], and our method using metrics defined in
[37]. Nerfacto Mesh (1000) uses about 1000 mesh vertices, similar to our method. The other two mesh methods use about 20000 vertices.

Method
2D 3D

Abs Diff (ℓ2) ↓ RMSE ↓ Abs Rel ↓ Sq Rel ↓ Chamfer (ℓ3) ↓ Accuracy ↓ Completeness ↓ Precision ↑ Recall ↑ F-score ↑
Initializaiton 1.865 3.210 0.029 0.218 6.692 1.319 1.173 0.192 0.202 0.197
Refinement 1.000 1.792 0.015 0.056 1.787 0.767 0.778 0.288 0.298 0.293

Semantic Refinement 0.976 1.715 0.014 0.053 1.735 0.754 0.772 0.293 0.301 0.297

Depth Completion - Sparse-to-Dense 1.987 2.949 0.029 0.148 6.136 1.283 1.432 0.139 0.137 0.138
MVS - COLMAP 0.425 1.741 0.006 0.054 3.358 0.638 0.914 0.464 0.405 0.432

MVS - COLMAP Mesh 0.588 1.612 0.008 0.039 3.379 0.980 0.724 0.320 0.361 0.339
NeRF - Nerfacto Mesh 1.217 2.444 0.016 0.102 5.818 1.364 0.947 0.181 0.221 0.199

NeRF - Nerfacto Mesh (1000) 1.178 2.395 0.016 0.099 5.351 1.258 1.018 0.195 0.212 0.203

Nerfacto has similar reconstruction accuracy with our method

but the quantitative metrics indicate that it is not as good as

our method. Furthermore, Nerfacto needs to be trained for each

novel environment and the training can hardly meet real-time

requirement, while our method can make the inference faster.

G. Ablation Studies

Sec. VI-C compared the effect of using RGB, rendered

depth, and Euclidean distance transform as inputs for the mesh

reconstruction model. This section reports additional ablation

studies on the SensatUrban dataset. We use a 1024-vertex

mesh model and 1000 sparse depth measurements for training

and testing. We evaluate the effects of mesh initialization,

types of 2D input data, and number of graph convolution

stages on the geometric mesh reconstruction accuracy. We

also evaluate the performance effect of joint metric-semantic

training and the choice of a semantic loss function.

1) Mesh Initialization: An important aspect of our model

in Sec. V is the separation of the mesh initialization stage

from the mesh refinement stage. The mesh initialization stage

allows the data-driven refinement stage to focus on learning the

mesh vertex deformation residuals instead of absolute vertex

coordinates. To demonstrate the effectiveness of this design,

we compare our model to a baseline model which applies the

refinement stage directly to a flat initial mesh. The baseline

model, Flat Init, deforms a flat initial mesh with vertex depth

specified by the mean of the sparse depth measurements. Table

XI shows that the Flat Init model makes the 2D-3D learning

problem challenging, and the model performs even worse than

purely geometric initialization as in Sec. V-A.

2) 2D Input Channels: In (13), we concatenate an RGB

image I (RGB), rendered depth ρD(Mint) (RD) and a Eu-

clidean distance transform E(Ds) (EDT) to form a 5-channel

input image used for 2D feature extraction. Table XI evaluates

the role of the different 2D inputs on the overall mesh

reconstruction performance. The results indicate that the RGB

information plays the most important role in refining the

initialized mesh. The model RD+EDT that does not use RGB

features performs the worst. Adding RD and EDT inputs to

the RGB gives an additional boost to the accuracy.

3) Number of graph convolution stages: Table XI also

evaluates the effect of one (1 Stage) vs two (Our Model)

graph convolution stages in the geometric mesh refinement

(Sec. V-B). The first GCN stage contributes the most to the

geometric refinement, while the second GCN stage further

refines the results.

4) Semantic Loss Function: Finally, we discuss the choice

of a semantic loss function ℓS in (7). Instead of the Dice loss

in (7), three other semantic loss functions may be considered.

• The cross entropy loss is widely used for semantic seg-

mentation. Given two stochastic vectors α,β ∈ [0, 1]s,

the cross entropy loss is defined as:

CE(α,β) = −

s
∑

i=1

βi log(αi),

ℓS1(M,S) := mean(CE(σ(ρS(M)),S)),

(19)

where CE is applied to the elements σ(ρS,ij(M)) ∈
[0, 1]s and Sij ∈ [0, 1]s of the tensors of predicted and

ground-truth semantic class probabilities.

• The focal loss [82] is a variation of cross entropy,

focusing on hard misclassified examples:

FL(α,β) = −
∑

i

βi(1−αi) log(αi),

ℓS2(M,S) := mean(FL(σ(ρS(M)),S)).

(20)

• The Jaccard loss [83] measures the negative Intersection

over Union (IoU) between the ground-truth and predicted

semantic segmentation:

ℓS3(M,S) := −
|σ(ρS(M)) · S|

|σ(ρS(M))|+ |S| − |σ(ρS(M)) · S|
,

(21)

where, as in (7), | · | sums up all the absolute values of

the elements.

In Table III, we see that the Jaccard loss in (21) leads to good

segmentation performance, outperforming the Dice loss in (7)

for some categories. The Cross Entropy and the Focal losses

are not as good. In Table IV, we see that the Cross Entropy and

the Jaccard loss both outperform the Focal loss when consider-

ing their effect on the geometric reconstruction accuracy. The

Dice loss leads to the best geometric reconstruction accuracy.

Considering the joint geometric and semantic performance, we

elected to use the Dice loss for our final model.

H. Memory and Computation Complexity

The reconstructed mesh model is a more efficient repre-

sentation than a dense depth image. A dense depth image

requires 512 × 512 ≈ 0.26M parameters, and a semantic

image also requires the same number of parameters. Our mesh

model with fixed face topology only needs storage of the

3D vertex coordinates and the semantic labels. With 1024

vertices, our semantic mesh model requires only 2% of the

depth and semantic image parameters to obtain a high-fidelity
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TABLE XI: Ablation study on geometric reconstruction error for
geometric models. The definitions of the different models can be
found in Sec. VI-G.

Method Depth (ℓ2) Chamfer (ℓ3)

Geo Init 1.865 6.725

Flat Init 4.646 20.655

RD+EDT 1.761 5.791
RGB 1.521 3.750

RGB+RD 1.070 2.138

1 Stage 1.015 1.828

Our Model 1.000 1.815

TABLE XII: Prediction time (second) on different NVIDIA devices.

Platform Initialization Refinement Total

Jetson AGX Xavier w/o GPU 0.45 0.75 1.20
Jetson AGX Xavier GPU 0.30 0.15 0.45

GeForce RTX 2080 Ti GPU 0.05 0.02 0.07

reconstruction of a camera view. Our model has about 21M

parameters (ResNet and GCN) and takes about 3GB GPU

memory during inference. We report the inference time of our

model on different computation platforms in Table XII. The re-

sults show that our mesh reconstruction algorithm can achieve

2 Hz on an embedded NVIDIA Jetson AGX Xavier computer,

making it applicable for real-time deployment onboard a robot

system. Regarding timing the baseline algorithm for sparse-

depth triangulation, we evaluated its run-time frequency to be

at around 20 Hz on the same platform.

I. Limitations

Our 3D metric-semantic mesh reconstruction algorithm can

run efficiently on an embedded computer but as a result

the number mesh vertices used for reconstruction is limited,

which in turn affects the geometric reconstruction accuracy.

Furthermore, local meshes are generated using only a sin-

gle camera frame without multi-view constraints, making it

challenging to achieve consistent mesh merging into a global

model. Potential avenues for future work that may improve

the reconstruction quality include adaptively increasing the

mesh vertices depending on the image feature distribution,

considering techniques like deformable convolution [84] for

associating the 3D mesh vertices with the 2D image features,

utilizing sparse depth measurement uncertainty (e.g., keypoint

covariances provided by SLAM) for weighted interpolation

during the image features to vertex association, and improving

the global mesh merging approach with multi-view constraints.

VII. CONCLUSION

This work introduces an approach for 3D metric-semantic

mesh reconstruction from RGB image and sparse depth mea-

surements. Compared to methods that utilize only sparse

depth for mesh initialization or triangulation, our approach

provides more accurate geometric reconstruction by utilizing

RGB image features. Compared to 2D semantic segmentation

methods, our semantic reconstruction eliminates classification

inaccuracies by inferring an underlying 3D mesh structure.

The joint metric-semantic reconstruction approach improve ge-

ometric accuracy further by utilizing semantic information and

provides memory savings compared to dense image depth and

segmentation techniques. Employing our method in combina-

tion with feature- and keyframe-based odometry techniques

allows reconstruction of global dense metric-semantic mesh

models with utility in environmental monitoring and semantic

navigation applications.
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