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Abstract—This paper considers the problem of safely coordi-
nating a team of sensor-equipped robots to reduce uncertainty
about a dynamical process, where the objective trades off
information gain and energy cost. Optimizing this trade-off is
desirable, but leads to a non-monotone objective function in
the set of robot trajectories. Therefore, common multi-robot
planners based on coordinate descent lose their performance
guarantees. Furthermore, methods that handle non-monotonicity
lose their performance guarantees when subject to inter-robot
collision avoidance constraints. As it is desirable to retain both the
performance guarantee and safety guarantee, this work proposes
a hierarchical approach with a distributed planner that uses
local search with a worst-case performance guarantees and
a decentralized controller based on control barrier functions
that ensures safety and encourages timely arrival at sensing
locations. Via extensive simulations, hardware-in-the-loop tests
and hardware experiments, we demonstrate that the proposed
approach achieves a better trade-off between sensing and energy
cost than coordinate-descent-based algorithms.

Index Terms—Multi-Robot Systems; Reactive Sensor-Based
Mobile Planning; Target Tracking; Collision Avoidance.

I. INTRODUCTION

Developments in sensing and mobility have enabled effec-
tive utilization of robot systems in diverse applications, such
as autonomous mapping [1]–[4], agriculture [5]–[7], search
and rescue [8]–[11], and environmental monitoring [12]–
[16]. These tasks require spatiotemporal information collection
which can be achieved more efficiently and accurately by
larger robot teams, rather than individual robots. Robot teams
may take advantage of heterogeneous capabilities, require less
storage and computation per robot, and may achieve better
environment coverage in shorter time [17]–[20]. Task-level
performance is usually quantified by a measure of information
gain, where typically the marginal improvements diminish
given additional measurements (submodularity), and adding
new measurements does not worsen the objective (mono-
tonicity). Although planning optimally for multi-robot sensing
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Fig. 1: A real-world dynamic target tracking scenario. Unmanned
ground and aerial vehicles (UGVs and UAVs) use onboard cameras
to collaboratively estimate the states of moving targets with different
colors. The proposed approach is able to coordinate heterogeneous
robots with desired trade-off between sensing performance and en-
ergy cost, while guaranteeing inter-robot collision avoidance.

trajectories is generally intractable, these two properties allow
for near-optimal approximation algorithms that scale to large
robot teams, while providing worst-case guarantees [21].

The work in this paper is motivated by problems in which
robots seek to trade off between sensing performance and
energy cost while maintaining safety constraints such as col-
lision avoidance (an example shown in Fig. 1). Specifically,
we formulate an energy-aware active information acquisition
problem, wherein the goal is to plan trajectories for a team
of heterogeneous robots to maximize a weighted sum of
information gain and the energy cost. Unlike imposing fixed
budgets (e.g., [22]–[24]), adding an energy cost breaks the
monotonicity of the objective, violating an assumption held
by existing approximation algorithms. Thus, we present a
distributed planning approach based on local search [25] that
has a worst-case guarantee for the non-monotone objective
function. For practical deployment, safety constraints such
as inter-robot collision avoidance are required, but imposing
such constraints directly during planning incurs large com-
putational overhead and breaks the performance guarantee
of existing approximation algorithms [4], [26]. Therefore,
we take a hierarchical approach that preserves the compu-
tational advantage and performance guarantee of the high-
level planner by offloading safety constraints to the low-level
controller. By leveraging control barrier functions (CBFs [27]),
we propose a decentralized controller that ensures safety and
encourages timely arrival at the sensing configurations via a
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novel use of weighted norm in the optimization objective.
Lastly, we discuss the conditions in which the high-level
planner’s performance guarantee will be preserved by the tra-
jectories executed by the low-level controller. Our evaluation
demonstrates that the overall approach achieves better trade-
off between information gain and energy cost than the existing
coordinate-descent-based methods in real-world multi-robot
target tracking experiments.

A. Related Work
Multi-robot informative trajectory planning addresses the

challenge of planning sensing trajectories for robots to reduce
uncertainty about a dynamic process. To alleviate the com-
putational complexity that scales exponentially in the number
of robots (since the decision space is a Cartesian product of
every robot’s decision space), approximation methods have
been developed to produce near-optimal solutions for a sub-
modular and monotone objective (e.g., mutual information). A
common technique is coordinate descent, where robots plan
successively while incorporating the plans of previous robots.
Coordinate descent was shown to extend the near-optimality
of a single-robot planner to the multi-robot scenario [22]. This
result was extended to dynamic targets [28] where each robot
chooses from non-myopic sensing trajectories built from a
search tree, achieving at least 50% of the optimal performance
regardless of the planning order. Similarly, the coordinate
descent strategy was used to create an anytime method [29]
and a sampling-based method [30]. Methods such as [24],
[31] implemented the greedy method [32] in a decentralized
fashion, and a distributed version was proposed by [4] to
alleviate the inefficiency in sequential planning. Unlike prior
work, this work considers the trade-off between the value and
cost of information—an important formulation to consider for
physical systems—but the objective becomes non-monotone
because additional sensing trajectories may not result in better
performance due to high energy cost. As a result, existing
techniques based on coordinate descent and greedy methods
no longer have any worst-case performance guarantees.

The problem can be seen as non-monotone submodular
maximization subject to a partition matroid constraint, for
which approximation algorithms already exist. Lee et al. [25]
presents a method based on local search that can handle the
intersection of multiple matroid constraints, where multiple
solution candidates are generated and each solution set is
built iteratively via additions or deletions. Extending [25], a
greedy-based approach [33] was proposed to handle multiple
independence systems, but has a worse approximation ratio
given a single matroid. Other methods use multilinear relax-
ation [34], [35] for better approximation ratios, but require
significant computation. In robotics, decentralized multi-robot
task assignment was considered in [36], which adopted the
continuous greedy method by [34]. The approach in [37]
combined sampling, greedy method, and lazy evaluation [38]
to achieve fast computation. The work presented here designs
a distributed planner based on [25] for its simplicity and
guarantees, while additionally incorporating well-known tech-
niques, like greedy and lazy evaluation, to reduce the method’s
computation and communication.

Practical deployment of robots requires collision avoidance,
for which existing approaches can be grouped into three
categories. The first category involves spatial partitioning,
e.g., drones flying at different heights [29] and ground robots
driving in disjoint regions [39], which leads to conservative-
ness as robots cannot easily work together to exploit different
sensing modalities. Methods in the second category adopt
a hierarchical structure that separates planning and control,
where safety is only handled in low-level controller (e.g., [40],
[41]). As a result, existing safe multi-robot controllers can be
utilized (see [42], [43] for comprehensive surveys) without
affecting the problem structure in planning. The last category
involves the joint optimization of information gathering objec-
tives and safety, by capturing collision avoidance as constraints
or penalties, without necessarily assuming submodularity and
monotonicity, where typical examples include [44]–[47]. This
work adopts a hierarchical approach that considers safety only
in the low-level controller in order to preserve computational
tractability and the performance guarantees of the planning
algorithm. The discrete-time informative planning stage pre-
scribes sequences of robot poses that need to be visited at
specific time to achieve desired information-energy trade-off,
and the continuous-time control stage needs to meet these
terminal state and time conditions while also ensuring safety.
We propose a novel formulation of CBF-based controller with
a weighted norm penalty that encourages timely arrival at
planned sensing configurations by penalizing the deviation
from the nominal mission rate captured by a time-varying
control Lyapunov function (CLF). Although many works
developed safe finite-time controllers using CBFs and CLFs
(e.g., [48]–[51]), few have considered time-varying CLFs in
weighted norms of the optimization objective.

B. Contributions
The energy-aware problem considered in the paper seeks to

optimize the trade-off between information gain and energy
cost while meeting safety requirements such as collision
avoidance, for which existing approximation planning algo-
rithms lose performance guarantees. By adopting a hierarchical
approach that separates planning and control, our approach
preserves the existing guarantee of a centralized planner
adapted for distributed execution, while ensuring safety and
encouraging timely arrival at sensing configurations via the
controller. The contributions of this work are:

1) a distributed planner based on local search that has an
existing theoretical performance guarantee for a non-
monotone submodular objective, with reduced computa-
tion and communication via lazy and greedy techniques,

2) a decentralized controller that ensures safety via CBF
and encourages timely arrival at desired sensing config-
urations with a novel use of weighted norm in the opti-
mization objective that penalizes deviation from desired
mission rate (Lyapunov function derivative),

3) an extensive set of simulations, hardware-in-the-loop
benchmarks and hardware experiments that demonstrate
better ability to trade off sensing and energy costs than a
state-of-the-art method while retaining practical feasibil-
ity in communication and computation.
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The preliminary version of this work appeared in [52] with
the planning method and simulation results, while this work
proposes a new decentralized controller that ensures safety and
encourages arrival at sensing locations at designated time, pro-
vides extra simulation and hardware-in-the-loop benchmarks,
and conducts hardware experiments that validate the proposed
hierarchical approach’s practical feasibility and performance.
Note that the proposed decentralized controller is not limited
to information gathering tasks and may be applicable for other
trajectory tracking problems.

C. Outline

The proposed planner and controller are introduced in
Sec. II and III. Simulations and hardware-in-the-loop tests for
the planner are in Sec. IV and the controller is evaluated in
Sec. V, followed by hardware experiments with performance
and feasibility analysis in Sec. VI.

II. ENERGY-AWARE INFORMATIVE TRAJECTORY
PLANNING

This section considers how to generate trajectories for robots
that optimize the trade-off between information gain and
energy cost, using general nonlinear discrete dynamical and
measurement models of robots and linear-Gaussian target mo-
tion models (Sec. II-B). Because commonly used techniques
such as coordinate descent [2], [22] no longer have a worst-
case performance guarantee due to non-monotonicity in the
problem, we propose to use local search [25] to provide near-
optimal performance guarantees, which requires centralized
computation undesirable in multi-robot application (Sec. II-C).
Then, we propose a new distributed algorithm and reduce
its communication and computation requirements based on
greedy and lazy methods (Sec. II-D).

A. Preliminaries

We review some useful definitions. Let g : 2M → R be a
set function defined on a ground set M consisting of finite
elements. Let g(a|S) := g(S ∪ {a}) − g(S) be the marginal
gain of g at S with respect to a.

Definition 1 (Submodularity). Function g is submodular if for
any S1 ⊆ S2 ⊆ M and a ∈ M\S2, g(a|S1) ≥ g(a|S2).

Definition 2 (Monotonicity). Function g is monotone if for
any S1 ⊆ S2 ⊆ M, g(S1) ≤ g(S2).

B. Planning Problem Formulation (Discrete Time)

Consider robots indexed by i ∈ R := {1, . . . , n}, with
states xi,k ∈ Xi at step k ∈ {0, . . . ,K} and dynamics:

xi,k+1 = fi(xi,k, ui,k), (1)

where ui,k ∈ Ui is the control input and Ui is a finite set. We
denote a control sequence as σi = (ui,0, . . . , ui,K−1) ∈ UK

i .
The robots’ goal is to track targets with joint state y ∈ Rdy

that follows a linear-Gaussian motion model:

yk+1 = Akyk + wk, wk ∼ N (0,Wk), (2)

where Ak ∈ Rdy×dy and wk is a zero-mean Gaussian noise
with covariance matrix Wk ⪰ 0. The robots have sensors that
measure the target state subject to an observation model:

zi,k = Hi,k(xi,k)yk + vi,k(xi,k), vi,k ∼ N (0, Vi,k(xi,k)),
(3)

where zi,k ∈ Rdzi is the measurement taken by robot i in state
xi,k, Hi,k(xi,k) ∈ Rdzi

×dy , and vi,k(xi,k) is a state-dependent
Gaussian noise, whose values are independent at any pair
of time steps and across sensors. The observation model is
linear in target states but can be nonlinear in robot states. If it
depends nonlinearly on target states, we can linearize it around
an estimate of target states to get a linear model.

We assume every robot i has access to Ni control tra-
jectories Mi = {σκ

i }
Ni
κ=1 to choose from. Denote the set

of all control trajectories as M = ∪n
i=1Mi and its size

as N = |M|. Potential control trajectories can be generated
by various single-robot information gathering algorithms such
as [53]–[56]. The fact that every robot cannot execute more
than one trajectory can be encoded as a partition matroid
(M, I), where M is the ground set, and I = {S ⊆ M |
|S ∩Mi| ≤ 1 ∀i ∈ R} consists of all admissible subsets of
trajectories. Given S ∈ I, we denote the joint state of robots
that have been assigned trajectories as xS,k at time step k,
and their indices as RS := {i | |Mi ∩ S| = 1 ∀ i ∈ R}.
Also, denote the measurements up to step k ≤ K collected by
robots i ∈ RS who follow the trajectories in S by zS,1:k.

Due to the linear-Gaussian assumptions in (2) and (3), the
optimal estimator for the target states is a Kalman filter. The
target estimate covariance ΣS,k at time step k resulting from
robots RS following trajectories in S obeys:

ΣS,k+1 = ρeS,k+1(ρ
p
k(ΣS,k), xS,k+1), (4)

where ρpk(·) and ρeS,k(·, ·) are the Kalman filter prediction and
measurement updates, respectively:

Predict: ρpk(Σ) := AkΣA
⊤
k +Wk,

Update: ρeS,k(Σ, xS,k) :=

(
Σ−1 +

∑
i∈RS

Mi,k(xi,k)

)−1

,

Mi,k(xi,k) := Hi,k(xi,k)Vi,k(xi,k)
−1Hi,k(xi,k)

⊤.

When choosing sensing trajectories, we want to capture the
trade-off between sensing performance and energy expendi-
ture, which is formalized below.

Problem 1. Given initial states xi,0 ∈ Xi for every robot i ∈
R, a prior distribution of target state y0, and a finite planning
horizon K, find a set of trajectories S ∈ M to optimize:

max
S∈I

J(S) := I(y1:K ; zS,1:K)− C(S), (5)

where I(y1:K ; zS,1:K) = 1
2

∑K
k=1

[
log det

(
ρpk−1(ΣS,k−1)

)
−

log det(ΣS,k)
]
≥ 0 is the mutual information between target

states and observations1, and C : 2M → R is defined as:

C(S) :=
∑
σi∈S

mi Ci(σi), (6)

1Our problem differs from sensor placement problems that consider the
mutual information between selected and not selected sensing locations.
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Fig. 2: Overview of the proposed distributed planning approach for
non-monotone information gathering (see Sec. II). Robots generate
individual candidate trajectories and jointly build a team plan via
distributed local search (DLS), by repeatedly proposing changes to
the collective trajectories.

where 0 ≤ Ci(·) ≤ cmax is a non-negative, bounded energy
cost for robot i to apply controls σi weighted by mi ≥ 0.

Remark 1. The robots are assumed to know others’ states,
motion models (1) and observation models (3), so that any
robot can evaluate (5) given a set of trajectories.

Remark 2. The optimization problem (5) is non-monotone,
because adding extra trajectories may worsen the objective by
incurring high energy cost C(S). Thus, the constraint S ∈
I may not be tight, i.e., some robots may not get assigned
trajectories. This property is useful when a large repository of
heterogeneous robots is available but only a subset is necessary
for achieving good sensing performance.

Remark 3. The choice of (5) is motivated by the energy-aware
target tracking application. However, the proposed algorithm
in Sec. II-D is applicable to any scenario where J(S) is a
submodular set function that is not necessarily monotone, but
can be made non-negative with a proper offset.

Solving Problem 1 is challenging because adding energy
cost C(S) breaks the monotonicity of the objective, a property
required for approximation methods, e.g., coordinate descent
[2] and greedy algorithm [32], to maintain performance guar-
antees. This is because these methods only add elements to the
solution set, which always improves a monotone objective,
but can worsen the objective in our setting, and may yield
arbitrarily poor performance.

In the following subsections, we first present how local
search [25] can be used to solve Problem 1 with near-optimal
performance guarantees but requires centralized computation.
Subsequently, we propose a new distributed algorithm (see
Fig. 2) that exploits the structure of a partition matroid to
allow robots to collaboratively build a team plan and design
techniques based on greedy and lazy methods to reduce its
communication and computation requirements.

C. Centralized Local Search (CLS)

This section presents the original local search [25] in our
setting with a single partition matroid constraint. We refer to it

Algorithm 1: Centralized Local Search [25] (CLS)

1: require α > 0, ground set M, admissible subsets I, oracle g
2: N←|M|
3: S1,S2←∅
4: for κ = 1, 2 do
5: Sκ←{argmaxa∈M g({a})} // Initialize with best traj.
6: while resultant S ′

κ from 1 , 2 or 3 satisfies S ′
κ ∈ I and

g(S ′
κ) ≥ (1 + α

N4 )g(Sκ) do Sκ←S ′
κ // Repeat local operations

7: 1 Delete: S ′
κ←Sκ\{d}, where d ∈ Sκ

8: 2 Add: S ′
κ←Sκ ∪ {a}, where a ∈M\Sκ

9: 3 Swap: S ′
κ←Sκ\{d} ∪ {a}, where d ∈ Sκ, a ∈M\Sκ

10: M←M\Sκ // Update after while loop
11: return argmaxS∈{S1,S2} g(S)

as centralized local search (CLS, Alg. 1) because it requires ac-
cess to trajectories M from all robots. We denote g : 2M → R
as the non-negative, submodular oracle function used by local
search, where the ground set M contains robot trajectories.
The algorithm proceeds in two rounds2 to find two candidate
solutions S1,S2 ∈ I. In each round κ = 1, 2, solution Sκ

is initialized with a single-robot trajectory maximizing the
objective (Line 5). Repeatedly, Sκ is modified by executing
one of the Delete, Add or Swap operations, if it improves the
objective by at least (1+ α

N4 ) of its original value (Lines 6–9),
where α > 0 controls run-time and performance guarantees.
This procedure continues until Sκ is no longer updated, and
the next round begins without considering Sκ in the ground
set M (Line 10). Lastly, the better of S1 and S2 is returned.

One important requirement of CLS is that the objective
function g is non-negative. With the objective from Problem 1,
this may not be true, so we add an offset O. The next
proposition provides a worst-case performance guarantee for
applying Alg. 1 to Problem 1 after properly offsetting the
objective to be non-negative.

Proposition 1. Consider that we solve Problem 1 whose
objective is made non-negative by adding a constant offset:

max
S∈I

g(S) := J(S) +O, (7)

where O :=
∑n

i=1 mic
max. Denote S∗ and S ls as the optimal

solution and solution obtained by CLS (Alg. 1) for (7), by
using g(·) as the oracle. We have the following worst-case
performance guarantee for the objective:

0 ≤ g(S∗) ≤ 4(1 + α)g(S ls). (8)

Proof. In (5), mutual information is a submodular set function
defined on measurements provided by selected trajectories [2].
Moreover, C(S) is modular given its additive nature:

C(S) =
∑
σi∈S

miCi(σi) ≥ 0. (9)

Since mutual information is non-negative, (7) is a submodular
non-monotone maximization problem with a partition matroid
constraint. Setting k = 1 and ϵ = α in [25, Thm. 2], the
proposition follows directly after rearranging terms.

2Only two rounds are needed to maintain the worst-case performance
guarantee given a partition matroid constraint [25]. Performance analysis for
executing more planning rounds is useful but out of the scope of the paper.
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Remark 4. Having the constant O term in (7) does not change
the optimization in Problem 1, but ensures that the oracle used
by CLS (Alg. 1) is non-negative so that the ratio (1 + α

N4 )
correctly reflects the sufficient improvement condition.

Despite the guarantee, CLS is not suitable for distributed
robot teams, because it assumes access to all locally planned
robot control trajectories which can be communication-
expensive to gather. Additionally, running it naively can in-
cur significant computation: in the worst case, CLS requires
O( 1

αN
6 log(N)) oracle calls3, where N is the total number of

trajectories [25]. To address this problem, we propose a new
distributed algorithm that exploits the structure of a partition
matroid to allow robots to collaboratively build a team plan
by repeatedly proposing changes to the collective trajectories.
Moreover, we develop techniques to reduce its computation
and communication to improve scalability.

D. Distributed Local Search (DLS)

This section proposes a distributed implementation of local
search (see Algs. 2 and 3 written for robot i). Exploiting the
structure of the partition matroid, DLS enables each robot
to propose local operations based on its own trajectory set,
while guaranteeing that the team solution never contains more
than one trajectory for every robot. All steps executed by CLS
can be proposed in a distributed fashion, so DLS provides the
same performance guarantee in Proposition 1. By prioritizing
search orders and starting with greedy solutions, we reduce
computation and communication of DLS, respectively.

1) Distributed Proposal: Every proposal consists of two
trajectories (d, a), where d is to be deleted from and a is to
be added to the solution set. We also define a special symbol
“NOP” that leads to no set operation, i.e., Sκ ∪ {NOP} =
Sκ\{NOP} = Sκ. Note that (d, NOP), (NOP, a) and (d, a) are
equivalent to the Delete, Add and Swap steps in CLS.

Every robot i starts by sharing the size of its trajectory set
|Mi| and its best trajectory a∗i ∈ Mi in order to initialize Sκ

and N collaboratively (Alg. 2 Lines 5–7). Repeatedly, every
robot i executes the subroutine FindProposal (Alg. 3) in
parallel, in order to propose changes to Sκ (Alg. 2 Lines 8–
13). Since any valid proposal shared by robots improves the
objective, the first (d, a) ̸= (NOP, NOP) will be used by all
robots to update Sκ in every round (Alg. 2 Lines 10–12). We
assume instantaneous communication, so robots always use a
common proposal to update their copies of Sκ. Otherwise, if
delay leads to multiple valid proposals, a resolution scheme is
required to ensure robots pick the same proposal.

In FindProposal (Alg. 3), an outer loop looks for
potential deletion d ∈ Sκ (Alg. 3 Lines 2–6). Otherwise,
further adding a ∈ Mi is considered, as long as the partition
matroid constraint is not violated (Alg. 3 Lines 7–8). Next,
we discuss how to efficiently search for trajectories to add.

2) Lazy Search: Instead of searching over trajectories in
an arbitrary order, we can prioritize the ones that already
perform well by themselves, based on g(a|∅) for all a ∈ Mi

(Alg. 2 Line 2). Note that ∅ is the empty set, and the marginal

3For 2 solution candidates, each requires O( 1
α
N4 log(N)) local opera-

tions, and N2 oracle calls to find each local operation in the worst case.

Algorithm 2: Distributed Local Search (DLS)

1: require α > 0, trajectories Mi, oracle g
2: Sort Mi in descending order based on g(a|∅) for all a ∈Mi

3: S1,S2 ← ∅
4: for κ = 1, 2 do
5: Broadcast |Mi| and a∗

i ∈Mi that maximizes g({a∗
i })

6: Sκ ← {a∗}, where a∗ ∈ {a∗
i }ni=1 maximizes g({a∗})

7: N ←
∑n

i=1 |Mi|
8: repeat
9: Run FindProposal(Sκ,Mi, α,N, g) in background

10: if Receive (d, a) ̸= (NOP,NOP) then
11: Terminate FindProposal if it has not finished
12: Sκ ← Sκ\{d} ∪ {a}
13: until Receive (d, a) = (NOP,NOP) from all robots
14: Mi ←Mi\Sκ
15: return argmaxS∈{S1,S2} g(S)

Algorithm 3: Find Proposal (FindProposal)

1: require Sκ, Mi, α > 0, N , g
2: for d ∈ Sκ or d = NOP do // Delete d, or no deletion
3: S−

κ ← Sκ\{d}
4: ∆← (1 + α

N4 )g(Sκ)− g(S−
κ ) // ∆: deficiency of S−

κ

5: if ∆ ≤ 0 then
6: broadcast (d,NOP)
7: if ∃ a ∈ S−

κ planned by robot i then
8: continue // Cannot add due to partition matroid
9: for a ∈Mi in sorted order do // Add a

10: if g(a|∅) < ∆ then
11: break // No a ∈Mi will improve S−

κ enough
12: if g(a|S−

κ ) ≥ ∆ then
13: broadcast (d, a)
14: broadcast (NOP,NOP)

gain g(a|∅) is equivalent to g({a}) − g(∅). In this fashion,
we are more likely to find trajectories that provide sufficient
improvement earlier (Alg. 3 Lines 12–13). Note that g(a|∅) is
typically a byproduct of the trajectory generation process, so
it can be saved and reused.

This ordering also allows us to prune unpromising trajecto-
ries. Given the team solution after deletion S−

κ := S\{d}, the
required marginal gain for later adding trajectory a is

g(a|S−
κ ) ≥ ∆ := (1 +

α

N4
)g(Sκ)− g(S−

κ ). (10)

We can prune any a ∈ Mi if g(a|∅) < ∆ based on the
diminishing return property: because ∅ ⊆ S−

κ , we know that
∆ > g(a|∅) ≥ g(a|S−

κ ), violating condition (10). Similarly,
all subsequent trajectories a′ can be ignored, because their
marginal gains g(a′|∅) ≤ g(a|∅) < ∆ due to ordering (Alg. 3
Lines 10–11). Lastly, if an addition improves S−

κ sufficiently,
the proposal is broadcasted (Alg. 3 Lines 12–13).

3) Greedy Warm Start: We observe empirically that a robot
tends to swap its own trajectories consecutively for small
growth in the objective, increasing communication unnecessar-
ily. This can be mitigated by a simple technique: when finding
local operations initially, we force robots to only propose
additions to greedily maximize the objective, until doing so
does not lead to enough improvement or violates the matroid
constraint. Then robots resume Alg. 3 and allow all local
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operations. By warm starting the team solution greedily, every
robot aggregates numerous proposals with smaller increase in
the objective into a greedy addition with larger increase, thus
effectively reducing communication.

III. SAFE AND TIMELY CONTROL

The output from the discrete-time planning stage (Sec. II)
consists of pose sequences that have to be reached by every
robot at designated time. This section considers how to find
continuous-time control policies for reaching the sensing con-
figurations in a timely fashion, subject to safety constraints
such as but not limited to inter-agent collision avoidance. We
model continuous-time dynamics using integrator models that
are applicable to a wide range of robots with differentially
flat or feedback-linearized dynamics such as quadrotors and
differential-drive robots (Sec. III-A) where the system states
and inputs can be expressed via a small set of flat variables
and their derivatives (in our case, the position and its higher
derivatives) [57]. We leverage solutions to the linear quadratic
regulator (LQR) with fixed boundary state and time to obtain
the nominal control with finite-time convergence (Sec. III-B),
which can be modified to ensure safety via CBF in the form of
a Quadratic Program (QP) that can be easily adapted to run in
a decentralized fashion (Sec. III-C and Sec. III-D). Our main
novelty is a new CBF-QP formulation with weighted norm
in the objective that encourages timely arrival under safety
constraints by penalizing derivation from the desired mission
rate represented by the time derivative of the Lyapunov func-
tion under the LQR policy (Sec. III-E). Lastly, we discuss
the conditions under which the high-level planner’s worst-case
performance guarantee will be preserved by the trajectories
executed by the low-level controller (Sec. III-F). Note that
the proposed controller is applicable for many problems that
involve trajectory tracking and is not limited to the information
gathering scenario considered in this paper.

A. Control Problem Formulation (Continuous Time)

Consider robots with integrator models of order r ≥ 1,
where xi = [p⊤i , ṗ

⊤
i , . . . , (p

(r−1)
i )⊤]⊤ ∈ R3r is the state of

robot i and pi = [px
i , p

y
i , p

z
i]
⊤ ∈ R3 contains the x, y, z

positions. The state for each robot i evolves according to the
following dynamical model:

ẋi =

A∈R3r×3r︷ ︸︸ ︷
F∈Rr×r︷ ︸︸ ︷

0 1 · · · 0

0 0
. . .

...
...

. . . . . . 1
0 · · · · · · 0

⊗I3×3 ·xi +

B∈R3r×3︷ ︸︸ ︷
G∈Rr︷︸︸︷
0
0
...
1

 ⊗I3×3 ·ui. (11)

Recall that the solution to the planning Problem 1 consists
of a sequence of actions σi = (ui,0, . . . , ui,K−1) ∈ UK

i for
each robot i. Based on the discrete motion model (1), σi also
corresponds to a state sequence (xi,0, . . . , xi,K) ∈ XK+1

i with
xi,0 being the initial state of robot i. Denote the corresponding
continuous time stamps as tk = kτ for k ∈ {0, . . . ,K}, where

τ > 0 is the discrete time interval. As we consider a team of
robots gathering information in 3D space, we assume that there
is an appropriate mapping ϕi : Xi → R3r to convert discrete
states used by planner to reference goals for controller:

xref
i (tk) := ϕi(xi,k), ∀i ∈ R, k ∈ {0, . . . ,K} (12)

are the reference states that every robot i has to reach at
time tk. For linear systems like (11), the problem of reaching
desired states at desired time is well studied, thus we adopt
techniques from the optimal control literature.

Problem 2. Given the solution to the Problem 1 that consists
of discrete-time state sequences (xi,0, . . . , xi,K) ∈ XK+1

i for
robot i ∈ R at steps k ∈ {0, . . . ,K}, find a control policy
u(x, t) such that the system (11) under the policy satisfies

1) Timely Arrival: robots reach their reference sensing con-
figurations xref

i (tk) = ϕi(xi,k) at time tk = kτ , for all
i ∈ R and steps k ∈ {0, . . . ,K}.

2) Safety Constraints: robots remain within the safe set
C0 defined as the superlevel set of some continuously
differentiable function h : R3nr → R where

C0 = {x ∈ R3nr | h(x) ≥ 0}. (13)

B. Fixed-Final-State Linear Quadratic Regulator

This section reviews the results in [58] on LQR with fixed
boundary conditions. In order to reach the sensing configura-
tions xref

i (tk) for each robot i as designated by the informative
trajectory planning algorithm, a sequence of LQR problems
with fixed boundary conditions can be efficiently solved to
produce the policy ui(xi, t) given current state xi during time
tk ≤ t ≤ tk+1 for k ∈ {0, . . . ,K − 1}. For energy efficiency,
we want to find such policies that minimize control effort:

min
ui

1

2

∫ tk+1

tk

ui(xi, t)
⊤Rui(xi, t) dt,

s.t. xi(tk) = xref
i (tk),

xi(tk+1) = xref
i (tk+1),

ẋi = Axi +Bui,

(14)

where R ∈ R3×3 is some positive definite weight matrix.
The optimal control for (14) is open-loop and has a closed-
form expression for every interval tk ≤ t ≤ tk+1. However,
the need for collision avoidance may prevent robots from
closely following the state trajectory induced by the open-loop
controller. As a simple remedy, the open-loop controller for
robot i can be recomputed at time t based on the associated
robot state xi, leading to a time-varying policy of the form:

uLQR
i (xi, t) = R−1B⊤eA

⊤(tk+1−t)Gk(t)
−1di,k(xi, t), (15)

where di,k is the final state difference

di,k(xi, t) = xref
i (tk+1)− eA(tk+1−t)xi, (16)

and Gk is the weighted reachability Gramian defined as

Gk(t) =

∫ tk+1

t

eA(tk+1−s)BR−1B⊤eA
⊤(tk+1−s)ds. (17)
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Note that the integral (17) is not necessary and Gk(t) can be
obtained in closed-form. First, one has to solve the following
matrix Riccati equation

Ṗ (t) = AP (t) + P (t)A⊤ +BR−1B⊤, (18)

for tk ≤ t ≤ tk+1, whose solution takes the form of

P (t) = eA(t−tk)P (tk)e
A⊤(t−tk) +Gk(t). (19)

As the goal is to compute Gk(t), we notice that (19) becomes
Gk(t) = P (t) if we set the initial condition as P (tk) = 0.
Therefore, once P (t) has been derived offline analytically,
Gk(t) can also be evaluated efficiently online.

For the energy-aware planning problem 1 in Sec. II, it is
useful for the planner to know the energy cost associated with
the policy (15), which can be computed in closed-form after
substituting (15) and (17) into the objective of (14):

J∗
i,k =

1

2
di,k(x

ref
i (tk), tk)

⊤Gk(tk)
−1di(x

ref
i (tk), tk), (20)

for robot i between tk and tk+1. The energy cost (20) is exact
when the policy (15) is executed faithfully when the nominal
policy does not violate safety constraints.

This section has introduced the policy (15) for robots to
follow the trajectories produced by the high-level planner
(Sec. II), where the planner can also use (20) as estimates
for the actual energy cost. Next, we present the mathematical
framework that encodes constraints such as inter-robot colli-
sion avoidance.

C. Safety via Control Barrier Functions

Denote x = [x⊤
1 , . . . , x

⊤
n ]

⊤ ∈ R3nr and u =
[u⊤

1 , . . . , u
⊤
n ]

⊤ ∈ R3n as the aggregate state and control of
all n robots and xinit as the initial condition. We write the
aggregate dynamics as

ẋ = A⊗ In×n x︸ ︷︷ ︸
f(x)

+B ⊗ In×n︸ ︷︷ ︸
g(x)

u, (21)

which is also a control-affine system. Given control-affine
robot dynamics, CBFs are Lyapunov-like functions that can
be used to guarantee collision-free maneuvers of the robot
team. Specifically, safety is encoded as the forward invariance
of a set: if the system starts in the set, it will not leave
the set. The safe set of the robot team can be encoded by
the superlevel set C0 (13) of some continuously differentiable
function h : R3nr → R. For concreteness, we consider h(x)
with relative degree of r ∈ N where r is the degree of the
integrator system (21). In other words, the control u only
appears in the r-th time derivative of h which can be expressed
using Lie derivatives4:

h(r)(x, u) = Lr
fh(x) + LgL

r−1
f h(x)u, (22)

where LgL
r−1
f h(x) ̸= 0 and

LgLfh(x) = · · · = LgL
r−2
f h(x) = 0.

4The Lie derivative of h with respect to f is Lfh(x) =
∂h(x)
∂x

f(x).

As a result, the CBF formulations such as [59], [60] that
require relative degree 1 cannot be applied. Therefore, we
adopt the Exponential Control Barrier Functions (ECBF [27],
[61]) for enforcing high relative-degree safety constraints and
the forward invariance of C0. Next, we provide definitions for
ECBF with the maximum relative degree r permitted by our
choice of system model (21).

Definition 3 (Exponential Control Barrier Function [27], [61]).
Given a set C0 ⊂ R3nr defined as the superlevel set of a
r-times continuously differentiable function h : R3nr → R,
then h is an exponential control barrier function (ECBF) if
there exists a row vector Kη ∈ Rr such that for the control
system (21),

sup
u∈U

[Lr
fh(x) + LgL

r−1
f h(x)u] ≥ −Kηη(x),∀x ∈ C0, (23)

resulting in h(x(t)) ≥ Ce(F−GKη)tη(x) ≥ 0 when h(xinit) ≥
0, where η(x) = [h(x), ḣ(x), . . . , h(r−1)(x)]⊤ ∈ Rr, row vec-
tor C = [1, 0, . . . , 0] ∈ Rr, and F and G are defined in (11).

Remark 5. Note that the Kη used in Def. 3 is required
to make the closed-loop matrix F − GKη that governs the
evolution of η have all strictly negative eigenvalues, which
can be achieved via pole placement techniques from linear
systems theory. Please refer to Sec. V and VI for examples
with r = 2. Intuitively, the more negative the poles are, the
more aggressive a robot’s motion is allowed to be when the
safety constraint is about to be violated.

D. Decentralized Safety Barriers

To account for inter-agent collision avoidance and the
effects of propeller down-wash from the aerial vehicles, we
follow [62] and approximate the safety region of each vehicle
i as a cylinder-like super-ellipsoid. The safe set of each robot
i is implicitly defined by the set of positions [px, py, pz]⊤ that
satisfy:[

(px
i − px)2 + (py

i − py)2
]2

+

(
pz
i − pz

c

)4

≤ D4
s , (24)

where Ds is the safety distance and c is the z-axis scaling
factor as visualized in Fig. 3. Note that the super-ellipsoid is
appealing for robots flying tightly in 3D (see Fig. 10a) where
it is desirable to maintain small horizontal distance but larger
vertical clearance to reduce the effect of propeller down-wash.
For the safety of the entire robot team, every pair of distinct
robots i and j has to respect each other’s safety regions,
leading to the following position-based barrier function:

hij(xi, xj) =
[
(px

i − px
j)

2 + (py
i − py

j)
2
]2
+

(
pz
i − pz

j

c

)4

−D4
s ,

(25)
which has a relative degree of r. The corresponding ECBF
constraint is

h
(r)
ij +Kη · [hij , ḣij , . . . , h

(r−1)
ij ] ≥ 0, (26)

where h
(r)
ij is affine in both ui and uj . Enforcing (26) requires

considering the controls from both robots i and j together,
thus requiring central coordination. However, notice that the
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Fig. 3: Illustration of the safe set encoded by the circular super-
ellipsoid barrier function (25) for robots i and j with position pi and
pj respectively. Note that Ds is the safety radius and 2cDs is the
height of the ellipsoid.

ECBF constraint defines the admissible control space, so it
is possible to decentralize the constraint by partitioning the
space such that every robot only uses control input from its
own partition [63]. First, we introduce a useful structure in
h
(r)
ij that enables the distributed constraint enforcement.

Proposition 2. Given system model (11) with order r ≥ 1,
the r-th derivative of the barrier function (25) can be written
as

h
(r)
ij = Lr

fhij(xi, xj) + LgL
r−1
f h(xi, xj)u︸ ︷︷ ︸

=Aij(ui−uj)

, (27)

where the row vector Aij ∈ R3 has a fixed expression

Aij = 4
[
(∆2

x +∆2
y)∆x, (∆

2
x +∆2

y)∆y,∆
3
z/c
]
, (28)

with ∆x = px
i − px

j , ∆y = py
i − py

j and ∆z = (pz
i − pz

j)/c as
the x, y position differences and scaled z position difference.

Proof. See Appendix. A.

With Prop. 2, we now introduce the distributed ECBF
constraints.

Proposition 3. Given system model (11) with order r ≥ 1 and
an exponential control barrier function hij (25) that satisfies
Def. 3 with the associated row vector Kη , the inequality
constraint (26) can be distributed to robots i and j as

−Aijui ≤
αi

αi + αj
bij , (29)

Aijuj ≤
αj

αi + αj
bij , (30)

where αi, αj > 0, Aij is defined in (28) and

bij = Kη ·
[
hij , ḣij , . . . , h

(r−1)
ij

]
+ Lr

fhij . (31)

Moreover, if the controllers ui, uj for i ̸= j satisfy the
decentralized ECBF constraints (29) and (30) and initial
states xinit

i , xinit
j satisfy hij(x

init
i , xinit

j ) ≥ 0, then all robots are
guaranteed to be safe.

Proof. If decentralized constraints (29) and (30) are satisfied,
then the centralized constraint (26) must be satisfied, which

can be shown via simple addition of the left hand sides and
right hand sides of (29) and (30). As hij is an ECBF satisfying
Def. 3 and hij(x

init
i , xinit

j ) ≥ 0 for all i ̸= j, all pair-wise (thus
the team) safety will be guaranteed.

With the decentralized ECBF constraints, every robot can
compute its own control while satisfying n − 1 pair-wise
collision avoidance constraints; on the other hand, n(n−1)

2
pair-wise constraints are considered in the centralized case.
The computational savings make decentralization attractive
when computation is limited, but one must note that the
decentralized ECBF constraints lead to smaller admissible
control space for every robot, thereby causing infeasibility in
extreme cases. However, this issue did not occur during our
empirical evaluation, because we only considered relatively
small robot teams. More discussion of this issue and potential
resolutions can be found in the literature (e.g., [60]), but is
not a central focus of this paper.

E. Decentralized CBF-QP with Weighted Norm Penalty

We now present the proposed decentralized controller that
encourages timely arrivals at desired sensing configurations
while satisfying inter-robot collision avoidance constraints. For
robot i with state xi at time t, its control input ui should match
the nominal time-varying policy uLQR

i (xi, t) (15) as best as
possible when safety is not at risk, which can be captured via
the following penalty:∥∥∥ui − uLQR

i (xi, t)
∥∥∥2 . (32)

In addition, the robots should match the desired mission rate
in order to arrive at the sensing configurations as timely as
possible—a desirable property for information gathering since
performance is time-sensitive. To capture the mission rate,
we utilize the Lyapunov function associated with the LQR
problem (14):

Vi(xi, t) =
1

2
di,k(xi, t)

⊤Gk(t)
−1di,k(xi, t), (33)

where Vi : R3r×R → R is a time-varying function for robot i
given the final state difference di,k(xi, t) and the reachability
gramian Gk(t) for reaching the k-th sensing configuration. The
following penalty captures the difference between the mission
rates V̇i (induced by ui) and the optimal mission rate V̇ LQR

i

(induced by the optimal controller uLQR
i ):∥∥∥V̇i − V̇ LQR

i

∥∥∥2 (34)

=

∥∥∥∥∂Vi

∂t
+

∂Vi

∂xi
(Axi +Bui)−

∂Vi

∂t
− ∂Vi

∂xi
(Axi +BuLQR

i )

∥∥∥∥2
=

∥∥∥∥∂Vi

∂xi
B(ui − uLQR

i )

∥∥∥∥2 , (35)

where interestingly:

∂Vi

∂xi
B = −di,k(xi, t)

⊤Gk(t)
−1eA(tk+1−t)B (36)

= −(uLQR
i )⊤R, (37)
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Fig. 4: Illustration of the effect of β ≥ 0 on the solution of
weighted CBF-QP, where R is set as an identity matrix. When the
nominal LQR constroller uLQR

i lies in the inadmissible control space,
u∗
i,β=0 represents the solution of CBF-QP without weighted penalty

which chooses the nearest admissible control in the L2 sense. As β
increases, the optimization focuses more on matching the optimal
mission rate V̇ LQR

i ; as a result, the vector component of u∗
i,β>0

that points in the direction of uLQR
i becomes greater and closer in

magnitude with uLQR
i as β approaches infinity if safety permits.

where R ≻ 0 is the weight matrix for penalizing control
efforts (14). Therefore, penalty (35) can be rewritten as:∥∥∥∥∂Vi

∂xi
B(ui − uLQR

i )

∥∥∥∥2 =
∥∥∥−(uLQR

i )⊤R(ui − uLQR
i )

∥∥∥2
=
∥∥∥ui − uLQR

i

∥∥∥2
W

, (38)

where W = RuLQR
i (uLQR

i )⊤R is a rank-1 matrix with spectral
norm of

∥∥W∥∥
2
= (uLQR

i )⊤R2uLQR
i .

In order to trade off the needs to match the nominal control
and the desired mission rate, our proposed controller optimizes
the weighted sum of (32) and (38), resulting in the following
QP with the weighted norm ∥·∥W (β):

min
ui

∥∥∥ui − uLQR
i (xi, t)

∥∥∥2
W (β)

(Weighted CBF-QP)

s.t. −Aijui ≤
αi

αi + αj
bij , ∀j ̸= i, (39)

where

W (β) = I3×3 + βW/
∥∥W∥∥

2
≻ 0, β ≥ 0. (40)

The effect of β is illustrated in Fig. 4. Importantly, when the
constraints (39) are not active, the optimal solution matches the
nominal control uLQR

i (xi, t), because the objective is quadratic
and W is positive definite. When safety constraints are active,
increasing β leads to solutions that better match the desired
mission rate V̇ LQR

i rather than minimizing the deviation from
the nominal control.
Remark 6. Many additional control or state constraints can be
added to the Weighted CBF-QP formulation. For example,
maximum infinity norm can be imposed over the control
input, which is an affine constraint in the control. General
box constraints can also be imposed via ECBF on each robot
i so that every entry of the state xi is limited to a range. For
example, the position pi of a second order integrator should be
limited within some bounded experiment area, and the velocity
ṗi should be bounded based on robot characteristics.

F. Performance Guarantee of the Overall System

The proposed low-level controller is used to execute the
trajectories planned by the high-level planner proposed in
Sec. II-D. The worst-case performance guarantee of the overall
system is preserved only when the controller (a) achieves
the desired sensing configurations in a timely fashion, and
(b) consumes the same amount of energy as the energy cost
used during planning. When the safety constraints are not
active, we are able to not only satisfy (a) via the fixed-final-
state LQR, but also achieve (b) by using the exact energy
expenditure for each trajectory during planning thanks to the
closed-form expression for energy cost (20). However, the
performance guarantee is not preserved if the previous two
conditions do not hold, for example, when the robots deviate
from the nominal LQR trajectories to ensure safety. In this
case, the proposed controller tries to reach the desired sensing
configurations as timely as possible, with gracefully increasing
energy expenditure as the mission becomes more challenging,
as shown in the benchmark results in Sec. V and Fig. 11.

IV. ANALYSIS OF PLANNING ALGORITHM

The proposed planning algorithm DLS is first analyzed in
two target tracking simulations (Sec. IV-B and Sec. IV-C)
based on objective values, computation, communication,
and ability to handle heterogeneous robots. Subsequently,
a hardware-in-the-loop benchmark is conducted over a dis-
tributed network with delays (Sec. IV-D). For all scenarios,
DLS is compared against coordinate descent (CD [2]), a
state-of-the-art algorithm for multi-robot target tracking that,
however, assumes monotonicity of the objective. Planning for
robots sequentially, CD allows every robot to incorporate the
plans of previous robots. We also allow CD to not assign
anything to a robot if it worsens the objective. Reduced
value iteration [53] is used to generate trajectories for both
algorithms, where its parameters ϵ, δ ≥ 0 are used to improve
computational efficiency by pruning search nodes with similar
information gain and close spatial proximity, respectively.
Comparisons between CLS and DLS are omitted because
the two algorithms empirically achieve the same average
performance. We set α = 1 arbitrarily, because tuning it was
not effective due to the large number of trajectories N .

Both DLS and CD are implemented in C++ and evaluated in
simulations on a laptop with an Intel Core i7 CPU. For DLS,
every robot owns separate threads, and executes Alg. 3 over 4
extra threads to exploit its parallel structure. Similarly, CD al-
lows every robot to use 4 threads and additionally incorporates
accelerated greedy [38] for extra speed-up. For the hardware-
in-the-loop benchmark, we use 6 laptops (robots) for running
distributed computational nodes over a ROS network.

A. Characteristics of Simulated Robots

Given initial state xi,0 ∈ Xi for robot i ∈ RS who
follows the control sequence (ui,0, . . . , ui,K−1) = σi ∈ S ,
the resultant states are (xi,1, . . . , xi,K) based on dynamics (1).
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The energy cost C(S) may also be state-dependent and it is
defined as:

C(S) :=
∑
i∈RS

mi

T−1∑
t=0

(
cctrli (ui,k) + cstatei (xi,k)

)
, (41)

where the state-dependent cost cstatei (·) and control-dependent
cost cctrli (·) are defined based on robot types—in our case,
robot i is either an unmanned ground vehicle (UGV) or
an unmanned aerial vehicle (UAV). Note that decomposition
between state and control is not required for our framework
to work. The setup for robots are summarized in Table I. For
simplicity, both the UGVs and UAVs follow differential-drive
models for implementation convenience, with sampling period
τ = 0.5 and motion primitives consisting of linear and angular
velocities {u = (ν, ω) | ν ∈ {0, 8} m/s, ω ∈ {0,±π

2 } rad/s}.
We consider muddy and windy regions that incur state-
dependent costs for UGVs and UAVs, respectively. The robots
have range and bearing sensors, whose measurement noise
covariances grow linearly with target distance. Within limited
ranges and field of views (FOVs), the maximum noise standard
deviations are 0.1 m and 5◦ for range and bearing measure-
ments, respectively. Outside the ranges or field of views,
measurement noise becomes infinite. See [29] for more details.

B. Simulation 1: Multi-Robot Dynamic Target Tracking

Here we show the computation and communication savings
for DLS, and compare the performance of DLS and CD (see
Figs. 5 and 6). The scenario involves 2–10 UGVs trying
to estimate the positions and velocities of the same number
of dynamic targets. The targets follow discretized double
integrator models corrupted by Gaussian noise, with a top
speed of 2 m/s. Robots and targets are spawned in a square
arena whose sides grow from 40 m to 60 m, and 50 random
trials are run for each number of robots.

Non-monotonicity in the problem is accentuated by an
increasing penalty for control effort of additional robots, by
setting mi = i for each robot i as defined in (41) (i.e., the
10-th added robot is 10 times more expensive to move than
the first). Note that state-dependent cost is set to 0 for this
experiment. Trajectory generation has parameters ϵ = 1 and
δ = 2 for horizon T = 10. As the planning order is arbitrary
for CD, we investigate two planning orders: first from cheaper
to more expensive robots, and then the reverse. Intuitively and
shown in Fig. 6, the former should perform better, because the
same amount of information can be gathered while spending
less energy. While other orderings are possible (e.g., [24],
[31]), we only use two to show CD’s susceptibility to poor
planning order. For a fair comparison between DLS and CD,
we use a fixed set of trajectories generated offline, but ideally

TABLE I: Robot setup in two simulations.

cctrl(u), u given as cstate(x), x in FOV (◦) Range (m)
0, 0 0, ±π

2
8, ±π

2
Mud Wind Exp.1&2 Exp.1&2

UGV 0 1 2 3 / 160 6 & 15
UAV 2 2 4 / 3 360 / & 20

Fig. 5: Computation and communication savings afforded by lazy
search (Lazy) and greedy warm start (Warm) for DLS. Computation
is measured by total oracle calls divided by the number of trajectories
N , where N reaches around 12500 for 10 robots. Communication
is measured by the number of proposal exchanges. Combining lazy
search and greedy warm start (green) leads to 80–92% computation
reduction, and up to 60% communication reduction compared to the
naive implementation (blue) on average.

Fig. 6: Objective values and computation time (s) for variants of
DLS and CD, where the lines and shaded areas show the mean and
standard deviation, respectively. The time excludes the trajectory
generation time (< 2 s), which is the same for every algorithm.
DLS (solid green) consistently outperforms CD in optimizing the
objective, where it is better for CD to plan from cheaper to more
expensive robots (brown), rather than the reverse order (orange). The
performance gap between DLS and CD widens as more costly robots
increase non-monotonicity of the problem. However, DLS requires
longer run-time, which in practice can be alleviated by using a portion
of all trajectories. This invalidates its worst-case guarantee, but DLS
solution based on the best 10% of each robot’s trajectories (green
crosses) still outperforms CD.

trajectories should be replanned online for adaptive dynamic
target tracking.

Proposed methods for improving naive distributed execution
of local search, namely lazy search (Lazy) and greedy warm
start (Warm), are shown to reduce computation by 80–92% and
communication by up to 60% on average, as shown in Fig. 5.
As expected, when there are few robots with similar control
penalties, the trade-off objective is easy to optimize, and DLS
and CD perform similarly as seen in Fig. 6. However, as more
costly robots are added, their contributions in information gain
are offset by high control penalty, making the problem harder
to optimize. Therefore, the performance gap between DLS and
CD widens, because CD requires monotonicity to maintain



11

Fig. 7: Trade-off between sensing performance (mutual informa-
tion (5)) and the true energy expenditure C(S)/m in heterogeneous
robot experiments produced by DLS and CD, where it is better to be
in the upper left pointed by the gray arrow. Each point is an average
obtained over 50 trials for a fixed m, where we set mi = m for each
robot i to penalize the team energy expenditure per (41).

Fig. 8: Example solutions from CD (left) and DLS (right) for 2 UGVs
and 1 UAV with m = 0.2 that penalizes energy cost C(S) in (41).
The arena is both windy and muddy, which is costly for the UAV
and UGVs, respectively. (Left) CD performs poorly due to its fixed
planning order: the UAV plans first to hover near the targets on the
left, rather than venturing over the mud. Thus, the UGVs are under-
utilized because they are unwilling to go into the mud to observe the
targets on the bottom right. For similar reasons, CD with reversed
order under-utilizes the UAV, which is not visualized due to limited
space. (Right) In contrast, DLS deploys the UAV over the muddy
regions, leading to a better value of J(S) in (5).

its performance guarantee, but DLS does not. From Fig. 6,
we can see that planning order is critical for CD to perform
well, yet a good order is often unknown prior to a mission.
Compared to CD which requires only n − 1 communication
rounds for n robots, DLS requires more for its performance.
For practical concerns to save more time, DLS with down-
sampled trajectories (e.g., keeping the best 10% of each robot’s
trajectories) still produces better solution than CD, but the
guarantee of DLS no longer holds.

C. Simulation 2: Heterogeneous Sensing and Control

Now consider a heterogeneous team with 2 UGVs and
1 UAV with different sensing and control profiles (Table I)
tracking 10 static targets in a 100 m × 100 m arena over a
longer horizon T = 20 (see Fig. 8). The UAV has better
sensing range and field of view compared to UGVs, but

Fig. 9: Hardware-in-the-loop benchmark on 2–6 synchronized com-
puters (robots), over a ROS communication network with delays.
Communication measured in total exchange rounds (top), time per
exchange round (middle) and the overall time (bottom). The number
of exchange rounds significantly affects the overall planning time in
the distributed setting where delays necessitate the use of synchro-
nization with higher overhead. With the proposed greedy warm start
strategy, DLS planning time can be effectively reduced with fewer
exchange rounds. Note that CD is expected to perform the best as it
is sequential in nature, but it does not have a worst-case performance
guarantee for the non-monotone objective.

consumes more energy. The arena has overlapping muddy and
windy regions, so robots must collaboratively decide which
should venture into the costly regions. We set mi with a
common value for every robot i and increase it from 0 to
0.5, where each configuration is repeated for 50 trials. Robots
are spawned in the non-muddy, non-windy region, but targets
may appear anywhere. We set δ = 4 to handle the longer
horizon, and evaluate two CD planning orders: from UAV to
UGVs, and the reverse.

As shown in Fig. 7, DLS consistently achieves better sensing
and energy trade-off than CD on average. To gain intuition,
a trial where CD performs poorly is shown in Fig. 8. Due
to the non-monotone objective, the robot who plans first to
maximize its own objective can hinder robots who plan later,
thus negatively affecting team performance.

D. Hardware-In-The-Loop Benchmark

In order to analyze the communication and computation
requirements of DLS in a real-world distributed setup, we con-
duct a hardware-in-the-loop benchmark on 2–6 synchronized
computers with Intel Core i7 CPUs over a ROS communi-
cation network, where every computer acts as a robot and
runs a distributed planner. This setup is challenging due to the
presence of communication delay which increases with the
number of robots in the network (about 5 ms when 6 robots
are present), thereby violating the assumption of instantaneous
communication required for DLS. As a result, many robots
may broadcast valid proposals to the team, thus requiring a
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resolution scheme to make sure a common proposal is selected.
A simple strategy is to require every robot to receive proposals
(Delete, Add, Swap or NOP) from the entire team before
picking the best proposal, with ties broken in the same fashion
(e.g., always favoring the robot with lower index).

As the focus is on communication and computation, we
consider a simple scenario of static target tracking with a
team of UAVs that are equipped with the same range sensors
and require the same energy expenditure. We set 9 static
targets up in a fixed-size arena, and increase the number
of robots from 2 to 6 with randomized initial conditions.
We focus on the effect of greedy warm start on DLS (with
lazy method turned on), and also include results for CD for
comparison, with 10 Monte Carlo trials for every method
and every number of robots. We use the anytime version of
reduced value iteration [29] for ground set generation with
better real time performance, which continuously refines its
solution by decreasing parameters σ, ϵ within allocated time.
Specifically, we use time allocation of 0.1 s (included in the
computation time measurement) and initial parameters ϵ = 8
with decrements of 0.5 and δ = 2.5 with decrements of 0.05.
The benchmark results are visualized in Fig. 9 which shows
the communication requirement (exchange rounds), time spent
in each exchange round and the overall planning time.

The key takeaway is that greedy warm start reduces both
the communication and computation when synchronization
is required among robots due to communication delays, in
contrast to the simulation results in Fig. 5 where greedy
warm start does not reduce computation. Therefore, it is
necessary to use both lazy and greedy warm start to make DLS
suitable for real-world multi-robot applications. Note that CD
is expected to have the least communication and computation
due to its sequential nature, but it does not have a worst-case
performance guarantee and achieves worse information and
energy trade-offs as shown in Sec. IV-B and Sec. IV-C.

V. ANALYSIS OF CONTROL ALGORITHM

The proposed control method in Sec. III-E is analyzed in
simulation where robots with double integrator dynamics have
to achieve specified goal states within specified time in 3D.
The performances of the centralized and decentralized versions
are compared based on final position errors, control efforts
(the integral of squared acceleration) and computational time.
Note that the baseline of our analysis is the uniform-weight
formulation when β = 0 such that W (β) is an identity matrix
which does not account for timely arrivals. The algorithm is
implemented in Python with the CVXOPT [64] library on a
laptop with an Intel Core i7 CPU.

Robots are randomly spawned on a 3D sphere with radius
of 6 m and are tasked to navigate to the opposite side of the
sphere in 6 s. The safety radius is Ds = 0.5 m and the z-
scale factor is c = 1. The ECBF parameter Kη = [25.5, 10.1]
is obtained by setting the poles of the closed-loop double
integrator system as [−5,−5.1] (see Def. 3). Furthermore, we
impose additional affine constraints in the optimization such
that control inputs in acceleration are less than 10 m/s2 in
every axis. The specified initial and final conditions of the

(a) (b)

Fig. 10: An example Monte Carlo trial consists of 3 robots which
are spawned on a sphere and try to reach terminal states on the
opposite side of the sphere within 6 s, while satisfying inter-robot
collision avoidance constraints encoded by hij ≥ 0 (26) for robots
i, j ∈ {0, 1, 2} and i ̸= j. The start and end configurations and the
speed profiles are shown in (a). The collision avoidance constraints
are satisfied at all time as shown in (b).

robots are stationary but we add noise (both in position and
velocity) in order to break the symmetry of the problem and
reduce the likelihood of deadlocks. Given the number of robots
between 2 to 6, we also vary the CBF-QP weight β between 0
and 3 and repeat each configuration for 50 trials. An example
trial with 3 robots is visualized in Fig. 10 which shows the
executed trajectories and safety of the robot via the non-
negative barrier function values associated with inter-robot
collision avoidance. Note that safety of the robots is satisfied
for all trials. However, the decentralized scenario with many
more robots and smaller space may lead to infeasibility of the
optimization problem, but deadlocks can be ameliorated with
higher-level discrete-time planning (energy-aware trajectories
are typically spread-out in space) or directly addressed in the
QP formulation (e.g., see [60]).

The impact of the weight β on the norm of the final position
error and the control efforts is shown in Fig. 11 for both the
centralized and the decentralized CBF-QPs. Compared to the
commonly used uniform-weight CBF-QP (β = 0), increasing
β leads to lower average final position error and average
control effort, because robots resolve collisions faster and can
afford more time to navigate to goal with smaller control
inputs. Compared to the centralized one, the decentralized
controller leads to lower performance due to smaller admis-
sible control space for each robot. However, without the all-
to-all communication and potentially higher delays associated
with the centralized version, the decentralized controller is
attractive for real-world applications by requiring only one-
hop communication and lower computational overhead (see
Fig. 12).

VI. HARDWARE EXPERIMENTS—DYNAMIC TARGET
TRACKING

The previous sections provide analysis on the planning and
control strategies individually in simulation or hardware-in-
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(a) Centralized CBF-QP with weighted norm.

(b) Decentralized CBF-QP with weighted norm.

Fig. 11: Effect of β in Weighted CBF-QP that penalizes mission rate
deviation in the centralized and decentralized CBF-QP, where each
data point is an average over 50 Monte Carlo trials. The vertical axis
shows the average final position error per robot, and the horizontal
axis shows the average control effort per robot (integral of squared
acceleration). In general, greater β decreases both the average control
effort and the final position error for both the centralized and de-
centralized coordination, because the robots spend less time avoiding
collisions which allow more time to navigate to the goals with smaller
control inputs. Note that this trend does not hold smoothly for some
centralized cases, where the terminal errors are already small and
sensitive to oscillations due to the collision avoidance constraints.
Overall, the decentralized coordination is more conservative and
produces higher final position error with higher control effort because
each robot has a smaller admissible control space. However, the
computational benefit of decentralized coordination (see Fig. 12)
makes it attractive for real-world multi-robot experiments.

Fig. 12: Computation time for solving the centralized and the de-
centralized CBF-QPs. The number of inter-robot collision avoidance
constraints scales linear in the number of robots in the decentralized
case (blue) but quadratically in the centralized version (red).

the-loop tests. It is also crucial to ensure the overall approach
is feasible and produces good performance under real-world
factors such as occlusion, collision avoidance, limited onboard
computation, and extended mission horizon that necessitates

re-planning. To this end, the proposed approach is tested on
hardware for a dynamic target tracking task, where a group of
ground and aerial robots track the states of moving targets with
onboard sensors while ensuring safety. Next, details about the
target simulation, robot characteristics and overall approach
are discussed in Sec. VI-A. Configurations for the planner and
controller are discussed in Sec. VI-B. Lastly, the performance
and feasibility of the proposed approach are analyzed in
Sec. VI-C.

A. Target Model, Observation Model, and Hardware Setup

An overview of the target models, experiment setup, and
detection techniques are summarized in Fig. 13. To simulate
dynamic targets, an overhead projection system visualizes
moving shapes with different colors with known fixed sizes.
For simplicity, four targets follow pre-determined linear tra-
jectories with constant velocity of 0.15 m/s across the floor,
and one target remains stationary in the center over the span
of 70 s. Robots are only given a rough position estimations
at the beginning of the mission with large uncertainty. The
targets are modeled as double integrator and the robots need
to reduce uncertainty about the target position and velocities.

A fleet of three UGVs and two UAVs are equipped with
computers with Intel Core i7 processor and RGB cameras
to detect targets based on colors. The ground truth poses of
the robots are provided by a Vicon tracking system. Given
a camera pose and a pixel coordinate that represents target
position in the image space, a unique position in the world
frame can be deduced since the targets are restricted to the
floor. To make the problem more difficult and encourage
more movements, we only use range measurements instead of
position measurements directly. Note that the detection task is
challenging due to existing markings on the floor and shadows
from the UAVs that can fragment a color patch. To resolve this
issue, the convex hull of all pixels of a given target color is
computed and prior knowledge about target sizes and room
bounds is used to reduce erroneous detections. The robots
process the images asynchronously and measurements are sent
to base station where the centralized filter runs at 3 Hz.

B. Planner and Controller Configurations

A schematic for the overall planning and control architecture
is shown in Fig. 14, where the robots have to exchange
proposals for planning informative trajectories in a distributed
fashion and exchange reference goals (e.g., position, velocities
for double integrators) in order to avoid collisions in a decen-
tralized fashion. For simplicity, target estimation is achieved
via a centralized filter at the base station to ensure that robots
share the same target belief, but distributed estimation methods
such as the distributed Kalman filter can be used instead
(e.g., see [29] for a concrete example and a discussion on
communication requirements and convergence guarantees).

During planning, UAVs are restricted to 3 m height and
UGVs are on the floor, and we use the same differential-
drive kinematic model for UAVs and UGVs to generate high-
level waypoints for simplicity, with sampling period τ =
3 s. The motion primitives for UGVs are {u = (ν, ω) |
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Fig. 13: The hardware experiments involve projected dynamic targets on the floor (triangles with different colors), which are observed by
robots via onboard camera. (Left) Targets follow predetermined linear motions except for the magenta target that stays stationary. The ground
truth target states are unknown to the robots who only know rough initial locations marked by crosses. (Middle) The cameras on UAVs and
UGVs are downward-facing and forward-facing respectively. (Right) Targets detections and data associations are based on colors, but the
pre-existing markings on the floor and shadows from UAVs make the detection tasks challenging and prone to erroneous detections.

Fig. 14: Overall information gathering architecture that includes onboard planning, control and sensing (shown in red blocks). For convenience,
measurements are fused at the base station for visualization, but decentralized estimators can be readily substituted and are not the focus of
this work. The robots exchange proposals for planning high-level waypoints using DLS or CD, which are tracked by the downstream safety
controller based on Weighted CBF-QP. The safety controller requires reference goals (e.g., position and velocity for double integrators)
from other robots to achieve collision avoidance. Lastly, low-level controllers stabilize the robots around the reference goals.

ν ∈ {0.3, 0.6} m/s, ω ∈ {0,±0.2,±0.5} rad/s}, and the
ones for UAVs are more aggressive: {u = (ν, ω) | ν ∈
{0.3, 0.5, 0.8} m/s, ω ∈ {0,±0.35,±0.5,±0.75} rad/s}. The
range measurement noise standard deviations are set to 0.4 m
for UAVs and 1.0 m for UGVs based on empirical evaluations.
For ground set generation, anytime reduced value iteration [29]
is used to plan trajectories with horizon T = 8 with time
allocation of 0.3 s, initial parameters ϵ = 5 with decrements
of 0.5 and δ = 1.5 with decrements of 0.05. To limit the
overall planning time, we limit the ground set of every robot
to be fewer than 800 trajectories. When used in the planning
objective, the energy cost for each generated trajectory is
computed in closed form according to (20) and weighted
by 0.1 to make the energy cost term comparable to the
information gain. To account for updated target beliefs and
long mission time span, replanning is scheduled every two
time steps (6 s) and planning occurs simultaneously while the
robots execute plans from previous rounds. Lastly, both lazy
evaluation and greedy warm start are used during DLS.

For the controller, we use double integrator models for both
the UAVs and UGVs, because multi-rotors and differential
drive robots are both differentially flat and move at low speed.
The integrator states (position and velocities) will be tracked
by lower-level controllers (position controller for UAVs [65]
and Lyapunov-based pose controller for UGVs). The inter-
UGV safety distance is 1.0 m and the one for UAVs is
1.5 m. We further restrict robots within the arena, limit their
velocities and accelerations (control input) via ECBF. For the
decentralized ECBF constraint (31), poles of [−3.0,−3.1] are
used to generate the Kη = [9.3, 6.1] vector, and any pair of
robots i and j share equal responsibility for avoiding collisions
(i.e., αi = αj > 0). The weight matrix R in the LQR
energy objective (14) is set to identity. To ensure timely arrival
at desired sensing configurations without overly aggressive
maneuvers, we set β = 0.5 for Weighted CBF-QP based
on empirical evaluations.
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Fig. 15: Performance analysis of the hardware experiments. (a) Trade-off between sensing performance (measured by mutual information
(MI)) and energy cost using DLS and CD, where it is better to be in the upper left indicated by the gray arrow. (b) The trade-off objective
being maximized. DLS outperforms CD by achieving better objective values. (c) The root mean square errors (RMSEs) of target positions
over time. The initial decrease and the subsequent increase in tracking performance are expected due to the change in mission difficulty. (d)
The differences between the filter-estimated RMSEs and the ground truth RMSEs. The values stay bounded near 0 towards the end of the
mission, indicating that the filter correctly reports high uncertainty as tracking performance degrades.

Fig. 16: Collision avoidance constraints are satisfied at all time in all
hardware trials, where the inter-UAV and inter-UGV distances never
fall below the safety distances (top 4 figures). A particular moment
in Trial 1 with DLS is shown at the bottom with robot trajectories
overlaid on top, demonstrating safe decentralized navigation.

TABLE II: Computation and communication of proposed approach.

Planning Time (s) #Exchanges Exchange
Delays (ms)

Control
Time (ms)CD DLS CD DLS

mean 0.995 1.656 5 17.296 6.696 2.650
std 0.092 0.226 0 3.400 2.145 1.082

C. Performance Analysis

The performances of DLS and CD are measured in two rep-
resentative trials with different initial robot positions, and the

computation and communication requirements of the overall
approach are summarized in Table II. Even with an average
communication delay about 7 ms, the robots are able to
reliably plan and remain safe. Note that the average time to
solve for the decentralized weighted CBF-QP still remains
tractable and well under 5 ms, and the inter-robot distances
always remain above safety threshold for all hardware trials,
as visualized in Fig. 16.

Although DLS requires more computation and communica-
tion than CD, it provides a worst-case performance guarantee
while optimizing the trade-off between sensing and energy
cost. Consistent with the simulation results in Fig. 7, DLS
achieves better trade-off between information gain and energy
cost than the trade-off achieved by CD after averaging the
results from 2 trials, as shown in Fig. 15a. In addition, Fig. 15b
shows that DLS achieves a better objective value (weighted
sum of information gain and energy cost) than CD, which is
consistent with the simulation results in Fig. 6.

To gain insight into the actual tracking performance
achieved by the robots, we plot the root mean square errors
(RMSEs) of the estimated target positions in Fig. 15c. Because
the mission starts easy as targets gather in the center initially
and becomes more difficult as they move towards the bound-
ary, the tracking performance first improves and subsequently
degrades as expected. Other than the accuracy of the estimated
target positions, we also analyze whether the filter predicts
higher uncertainty when the tracking performance degrades.
To this end, Fig. 15d plots the difference between filter-
estimated RMSEs (computed as the root mean of the trace of
the covariance matrices for the target positions) and the true
RMSEs. The fact that the differences eventually stay bounded
near 0 indicates that the filter correctly reports high uncertainty
when the tracking task becomes more challenging.

Overall, the proposed hierarchical approach that separates
planning and control allows both DLS and CD to achieve
reasonable target tracking performance in hardware with noisy
perception systems while satisfying collision-avoidance con-
straints. Moreover, the hardware trials have demonstrated that
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the proposed planner DLS is a feasible strategy for real-
world applications that can achieve better trade-off between
information gain and energy cost compared to CD, which
does not have any worst-case performance guarantee when
optimizing the trade-off objective.

VII. CONCLUSION

This work proposed a non-monotone information gathering
method which consists of a distributed planner that optimizes
the trade-off between sensing performance and energy expen-
diture and a decentralized controller that ensures safety and
encourages timely arrival at designated sensing configurations.
The proposed approach was analyzed in parts and as a whole
via simulations, hardware-in-the-loop benchmarks, and a real-
world dynamic target tracking mission, while outperforming
the state-of-the-art coordinate descent method. Although fea-
sible in practice, DLS still requires all-to-all communication
and its computation scales poorly with large number of robots.
An interesting future direction is to reduce the complexity of
DLS by exploiting spatial separation and analyze the impact
on the performance guarantee. Another promising direction
is to design approximation algorithms that ensure collision
avoidance during planning while still leveraging the submod-
ular property of the objective, which may further improve
the overall performance compared to the proposed method
that avoids collisions exclusively via the low-level controller.
Lastly, this work assumes that the robots know each other’s
states perfectly but this strong assumption may not hold in
practice. Therefore, it is important to handle imperfect state
estimation and analyze its impact on the performance and
safety guarantees of this work.

APPENDIX A
PROOF OF PROP. 2

Recall that ui = p
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ḣij = 4(∆2
x +∆2

y)(∆x∆̇x +∆y∆̇y) + 4∆3
z∆̇z (42)

= 4
[
(∆2

x +∆2
y)∆x, (∆

2
x +∆2

y)∆y,∆
3
z/c
]
·∆u, (43)

where Lfhij(xi, xj) = 0.
Next, assume that Prop. 2 holds for r = r̃ > 1, i.e.,
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Taking the (r̃ + 1)-th derivative of hij , we get
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