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Abstract— This paper considers the problem of planning
trajectories for a team of sensor-equipped robots to reduce
uncertainty about a dynamical process. Optimizing the trade-
off between information gain and energy cost (e.g., control
effort, distance travelled) is desirable but leads to a non-
monotone objective function in the set of robot trajectories.
Therefore, common multi-robot planning algorithms based on
techniques such as coordinate descent lose their performance
guarantees. Methods based on local search provide perfor-
mance guarantees for optimizing a non-monotone submodular
function, but require access to all robots’ trajectories, making
it not suitable for distributed execution. This work proposes
a distributed planning approach based on local search and
shows how lazy/greedy methods can be adopted to reduce the
computation and communication of the approach. We demon-
strate the efficacy of the proposed method by coordinating
robot teams composed of both ground and aerial vehicles with
different sensing/control profiles and evaluate the algorithm’s
performance in two target tracking scenarios. Compared to
the naive distributed execution of local search, our approach
saves up to 60% communication and 80–92% computation on
average when coordinating up to 10 robots, while outperforming
the coordinate descent based algorithm in achieving a desirable
trade-off between sensing and energy cost.

SUPPLEMENTARY MATERIAL

https://www.youtube.com/watch?v=xWgFi6fwex0

I. INTRODUCTION

Developments in sensing and mobility have enabled effec-
tive utilization of robot systems in autonomous mapping [1]–
[4], search and rescue [5]–[7], and environmental monitor-
ing [8]–[11]. These tasks require spatiotemporal information
collection which can be achieved more efficiently and accu-
rately by larger robot teams, rather than relying on individual
robots. Robot teams may take advantage of heterogeneous
capabilities, require less storage and computation per robot,
and may achieve better environment coverage in shorter time
[12]–[15]. Task-level performance is usually quantified by a
measure of information gain, where typically the marginal
improvements diminish given additional measurements (sub-
modularity), and adding new measurements does not reduce
the objective (monotonicity). Although planning optimally
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Fig. 1. Overview of the proposed distributed planning approach for non-
monotone information gathering (see Sec. IV). Robots generate individual
candidate trajectories and jointly build a team plan via distributed local
search (DLS), by repeatedly proposing changes to the collective trajectories.

for multi-robot sensing trajectories is generally intractable,
these two properties allow for near-optimal approximation
algorithms that scale to large robot teams, while providing
worst-case guarantees. Additionally, practical implementa-
tions often need to consider various measures for energy
expenditure, such as control effort or distance travelled.
A common approach is to impose fixed budgets, which
preserves submodularity and monotonicity of the objective,
so that existing algorithms may still be used [16]–[18].

In this paper, we are motivated by scenarios where robots,
with potentially different sensing and control capabilities,
seek a desired trade-off between sensing and energy cost.
Specifically, we formulate an energy-aware active informa-
tion acquisition problem, where the goal is to plan trajec-
tories for a team of heterogeneous robots to maximize a
weighted sum of information gain and energy cost. One key
observation is that adding the energy cost breaks the mono-
tonicity of the objective, violating an assumption held by
existing approximation algorithms. Thus, we propose a new
distributed planning algorithm based on local search [19] (see
Fig. 1) that has a worst-case guarantee for the non-monotone
objective. We also show how to reduce the method’s com-
putation and communication to improve scalability.
Related Work. Our work belongs to the category of multi-
robot informative path planning, where robots plan sensing
trajectories to reduce uncertainty about a dynamic process
(e.g., [2], [4], [16], [18], [20]–[25]). To alleviate the compu-
tational complexity, which is exponential in the number of
robots, approximation methods have been developed to pro-



duce near-optimal solutions for a submodular and monotone
objective (e.g., mutual information). A common technique
is coordinate descent, where robots plan successively while
incorporating the plans of previous robots. Ref. [16] showed
that coordinate descent extends the near-optimality of a
single-robot planner to the multi-robot scenario. This result
was extend to dynamic targets by [26], achieving at least 50%
of the optimal performance regardless of the planning order.
Refs. [18], [22] decentralized the greedy method [27] by
adding the best single-robot trajectory to the team solution in
every round. Ref. [4] proposed distributed sequential greedy
algorithm to alleviate the inefficiency in sequential planning.

Our problem can be seen as non-monotone submodular
maximization subject to a partition matroid constraint (see
Sec. III), for which approximation algorithms already exist.
The first such algorithm was developed by [19] based on
local search, which can handle multiple matroid constraints.
Extending [19], ref. [28] proposed a greedy-based approach
that can handle multiple independence systems (more general
than matroids), but has a worse approximation ratio given
a single matroid. Other methods use multilinear relaxation
such as [29], [30] for better approximation ratios, but require
significant computation. Applying some of these ideas in
robotics, ref. [31] used the continuous greedy method by [29]
for decentralized multi-robot task assignment. In the same
domain, ref. [32] combined sampling, greedy method, and
lazy evaluation [33] to achieve fast computation. We decided
to build upon [19] for its simplicity and guarantees. We also
attempt to incorporate well-known techniques like greedy
method and lazy evaluation, but they are specialized in the
context of local search, as detailed in Sec. IV-B.
Contributions. The main limitation of the prior works is
the assumption of monotonicity of the objective function.
Problems without monotonicity, such as the energy-aware
problem we propose, cannot be solved by the above methods
while retaining their near-optimality properties. In contrast,
our proposed algorithm provides a theoretical performance
guarantee even for non-monotone objectives. In this work:
• We propose a distributed algorithm based on local

search where robots collaboratively build a team plan
by proposing modifications to the collective trajectories;

• We reduce its computation and communication require-
ments by prioritizing search orders of local search and
warm starting with greedy solutions, respectively;

• We show that the proposed algorithm outperforms a
state-of-the-art algorithm for multi-robot target tracking
in coordinating a team of heterogeneous robots, while
trading off sensing performance and energy expenditure.

II. PRELIMINARIES

We review some useful definitions. Let g : 2M → R be a
set function defined on the ground setM consisting of finite
elements. Let g(a|S) := g(S ∪ {a}) − g(S) be the discrete
derivative, or the marginal gain, of g at S with respect to a.

Definition 1 (Submodularity). Function g is submodular if
for any S1 ⊆ S2 ⊆M and a ∈M\S2, g(a|S1) ≥ g(a|S2).

Definition 2 (Monotonicity). Function g is monotone if for
any S1 ⊆ S2 ⊆M, g(S1) ≤ g(S2).

III. PROBLEM FORMULATION

Consider robots indexed by i ∈ R := {1, . . . , n}, whose
states are xi,t ∈ Xi at time t = 0, . . . , T , and dynamics are:

xi,t+1 = fi(xi,t, ui,t), (1)

where ui,t ∈ Ui is the control input and Ui is a finite set. We
denote a control sequence as σi = ui,0, . . . , ui,T−1 ∈ UTi .

The robots’ goal is to track targets with state y ∈ Rdy that
have the following linear-Gaussian motion model:

yt+1 = Atyt + wt, wt ∼ N (0,Wt), (2)

where At ∈ Rdy×dy and wt is a zero-mean Gaussian noise
with covariance Wt � 0. The robots have sensors that
measure the target state subject to an observation model:

zi,t = Hi,t(xi,t)yt+vi,t(xi,t), vi,t ∼ N (0, Vi,t(xi,t)), (3)

where zi,t ∈ Rdzi is the measurement taken by robot i in
state xi,t, Hi,t(xi,t) ∈ Rdzi×dy , and vi,t(xi,t) is a state-
dependent Gaussian noise, whose values are independent at
any pair of times and across sensors. The observation model
is linear in target states but can be nonlinear in robot states.
If it depends nonlinearly on target states, we can linearize it
around an estimate of target states to get a linear model.

We assume every robot i has access to Ni control tra-
jectories Mi = {σki }

Ni

k=1 to choose from. Denote the set
of all control trajectories as M = ∪ni=1Mi and its size as
N = |M|. Potential control trajectories can be generated by
various single-robot information gathering algorithms such
as [24], [34]–[36]. The fact that every robot cannot execute
more than one trajectory can be encoded as a partition
matroid (M, I), where M is the ground set, and I = {S ⊆
M | |S∩Mi| ≤ 1 ∀i ∈ R} consists of all admissible subsets
of trajectories. Given S ∈ I, we denote the joint state of
robots that have been assigned trajectories as xS,t at time t,
and their indices as RS := {i | |Mi ∩ S| = 1 ∀ i ∈ R}.
Also, denote the measurements up to time t ≤ T collected
by robots i ∈ RS who follow the trajectories in S by zS,1:t.

Due to the linear-Gaussian assumptions in (2) and (3),
the optimal estimator for the target states is a Kalman filter.
The target estimate covariance ΣS,t at time t resulting from
robots RS following trajectories in S obeys:

ΣS,t+1 = ρeS,t+1(ρpt (ΣS,t), xS,t+1), (4)

where ρpt (·) and ρeS,t(·, ·) are the Kalman filter prediction
and measurement updates, respectively:

Predict: ρpt (Σ) := AtΣA
>
t +Wt,

Update: ρeS,t(Σ, xS,t) :=

(
Σ−1 +

∑
i∈RS

Mi,t(xi,t)

)−1
,

Mi,t(xi,t) := Hi,t(xi,t)Vi,t(xi,t)
−1Hi,t(xi,t)

>.

When choosing sensing trajectories, we want to capture
the trade-off between sensing performance and energy ex-
penditure, which is formalized below.



Problem 1 (Energy-Aware Active Information Acquisition).
Given initial states xi,0 ∈ Xi for every robot i ∈ R, a prior
distribution of target state y0, and a finite planning horizon
T , find a set of trajectories S ∈M to optimize the following:

max
S∈I

J(S) := I(y1:T ; zS,1:T )− C(S), (5)

where I(y1:T ; zS,1:T ) = 1
2

∑T
t=1

[
log det

(
ρpt−1(ΣS,t−1)

)
−

log det(ΣS,t)
]
≥ 0 is the mutual information between target

states and observations1, and C : 2M → R is defined as:

C(S) :=
∑
σi∈S

ri Ci(σi), (6)

where 0 ≤ Ci(·) ≤ cmax is a non-negative, bounded energy
cost for robot i to apply controls σi weighted by ri ≥ 0.

Remark 1. Robots are assumed to know others’ motion
models (1) and observation models (3) before the mission,
so that any robot can evaluate (5) given a set of trajectories.
Remark 2. The optimization problem (5) is non-monotone,
because adding extra trajectories may worsen the objective
by incurring high energy cost C(S). Thus, the constraint
S ∈ I may not be tight, i.e., some robots may not get
assigned trajectories. This property is useful when a large
repository of heterogeneous robots is available but only a
subset is necessary for the given tasks.
Remark 3. The choice of (5) is motivated by the energy-
aware target tracking application. However, the proposed
algorithm in Sec. IV is applicable to any scenario where
J(S) is a submodular set function that is not necessarily
monotone, but can be made non-negative with a proper offset.

Solving Problem 1 is challenging because adding energy
cost C(S) breaks the monotonicity of the objective, a prop-
erty required for approximation methods (e.g., coordinate de-
scent [2] and greedy algorithm [27]) to maintain performance
guarantees. This is because these methods only add elements
to the solution set, which always improves a monotone
objective, but can worsen the objective in our setting, and
may yield arbitrarily poor performance. We now propose a
new distributed algorithm based on local search [19].

IV. MULTI-ROBOT PLANNING

We first present how local search [19] can be used to solve
Problem 1 with near-optimal performance guarantee. Despite
the guarantee, local search is not suitable for distributed robot
teams, because it assumes access to all locally planned robot
control trajectories which can be communication-expensive
to gather. To address this problem, we propose a new
distributed algorithm that exploits the structure of a partition
matroid to allow robots to collaboratively build a team plan
by repeatedly proposing changes to the collective trajectories.
Moreover, we develop techniques to reduce its computation
and communication to improve scalability.

In the following subsections, we denote g : 2M → R as
the non-negative, submodular oracle function used by local
search, where the ground set M contains robot trajectories.

1Our problem differs from sensor placement problems that consider the
mutual information between selected and not selected sensing locations.

Algorithm 1 Centralized Local Search [19] (CLS)
1: require α > 0, ground set M, admissible subsets I, oracle g
2: N←|M|
3: S1, S2←∅
4: for k = 1, 2 do
5: Sk←{arg maxa∈M g({a})} // Initialize with best traj.
6: while resultant S′k from 1 , 2 or 3 satisfies S′k ∈ I and
g(S′k) ≥ (1+ α

N4 )g(Sk) do Sk←S′k // Repeat local operations
7: 1 Delete: S′k←Sk\{d}, where d ∈ Sk
8: 2 Add: S′k←Sk ∪ {a}, where a ∈M\Sk
9: 3 Swap: S′k←Sk\{d}∪{a}, where d ∈ Sk, a ∈M\Sk

10: M←M\Sk
11: return arg maxS∈{S1,S2} g(S)

A. Centralized Local Search (CLS)

We present the original local search [19] in our setting with
a single partition matroid constraint. We refer to it as cen-
tralized local search (CLS, Alg. 1) because it requires access
to trajectories M from all robots. The algorithm proceeds
in two rounds to find two candidate solutions S1, S2 ∈ I.
In each round k = 1, 2, solution Sk is initialized with a
single-robot trajectory maximizing the objective (Line 5).
Repeatedly, Sk is modified by executing one of the Delete,
Add or Swap operations, if it improves the objective by
at least (1 + α

N4 ) of its original value (Lines 6–9), where
α > 0 controls run-time and performance guarantee. This
procedure continues until Sk is no longer updated, and the
next round begins without considering Sk in the ground set
M (Line 10). Lastly, the better of S1 and S2 is returned.

One important requirement of CLS is that the objective
function g is non-negative. With the objective from Prob-
lem 1, this may not be true, so we add an offset O. The next
proposition provides a worst-case performance guarantee for
applying Alg. 1 to Problem 1 after properly offsetting the
objective to be non-negative.

Proposition 1. Consider that we solve Problem 1 whose
objective is made non-negative by adding a constant offset:

max
S∈I

g(S) := J(S) +O, (7)

where O :=
∑n
i=1 ric

max. Denote S∗ and Sls as the optimal
solution and solution obtained by CLS (Alg. 1) for (7), by
using g(·) as the oracle. We have the following worst-case
performance guarantee for the objective:

0 ≤ g(S∗) ≤ 4(1 + α)g(Sls). (8)

Proof. In (5), mutual information is a submodular set func-
tion defined on measurements provided by selected trajecto-
ries [2]. Moreover, C(S) is modular given its additive nature:

C(S) =
∑
σi∈S

riCi(σi) ≥ 0. (9)

Since mutual information is non-negative, (7) is a submod-
ular non-monotone maximization problem with a partition
matroid constraint. Setting k = 1 and ε = α in [19, Thm. 4],
the proposition follows directly after rearranging terms.



Remark 4. Having the constant O term in (7) does not change
the optimization in Problem 1, but ensures that the oracle
used by CLS (Alg. 1) is non-negative so that the ratio (1 +
α
N4 ) correctly reflects the sufficient improvement condition.

Besides the communication aspect that CLS requires ac-
cess to all robot trajectories, running it naively can incur
significant computation. In the worst case, CLS requires
O( 1

αN
6 log(N)) oracle calls2, where N is the total number

of trajectories [19]. Even on a central server, run-time may be
greatly reduced by using our proposed method (see Sec. V).

B. Distributed Local Search (DLS)

This section proposes a distributed implementation of local
search (see Algs. 2 and 3 written for robot i). Exploiting the
structure of the partition matroid, DLS enables each robot
to propose local operations based on its own trajectory set,
while guaranteeing that the team solution never contains
more than one trajectory for every robot. All steps executed
by CLS can be distributedly proposed, so DLS provides the
same performance guarantee in Theorem 1. By prioritizing
search orders and starting with greedy solutions, we reduce
computation and communication of DLS, respectively.

1) Distributed Proposal: Every proposal consists of two
trajectories (d, a), where d is to be deleted from and a is to be
added to the solution set. We also define a special symbol
“NOP” that leads to no set operation, i.e., Sk ∪ {NOP} =
Sk\{NOP} = Sk. Note that (d, NOP), (NOP, a) and (d, a) are
equivalent to the Delete, Add and Swap steps in CLS.

Every robot i starts by sharing the size of its trajectory set
|Mi| and its best trajectory a∗i ∈Mi in order to initialize Sk
and N collaboratively (Alg. 2 Lines 5–7). Repeatedly, every
robot i executes the subroutine FindProposal (Alg. 3) in
parallel, in order to propose changes to Sk (Alg. 2 Lines 8–
13). Since any valid proposal shared by robots improves the
objective, the first (d, a) 6= (NOP, NOP) will be used by all
robots to update Sk in every round (Alg. 2 Lines 10–12). We
assume instantaneous communication, so robots always use a
common proposal to update their copies of Sk. Otherwise, if
delay leads to multiple valid proposals, a resolution scheme
is required to ensure robots pick the same proposal.

In FindProposal (Alg. 3), an outer loop looks for
potential deletion d ∈ Sk (Alg. 3 Lines 2–6). Otherwise,
further adding a ∈Mi is considered, as long as the partition
matroid constraint is not violated (Alg. 3 Lines 7–8). Next,
we discuss how to efficiently search for trajectories to add.

2) Lazy Search: Instead of searching over trajectories in
an arbitrary order, we can prioritize the ones that already
perform well by themselves, based on g(a|∅) for all a ∈Mi

(Alg. 2 Line 2). In this fashion, we are more likely to find tra-
jectories that provide sufficient improvement earlier (Alg. 3
Lines 12–13). Note that g(a|∅) is typically a byproduct of the
trajectory generation process, so it can be saved and reused.

This ordering also allows us to prune unpromising trajec-
tories. Given the team solution after deletion S−k := S\{d},

2For 2 solution candidates, each requires O( 1
α
N4 log(N)) local opera-

tions, and N2 oracle calls to find each local operation in the worst case.

Algorithm 2 Distributed Local Search (DLS)
1: require α > 0, trajectories Mi, oracle g
2: Sort Mi in descending order based on g(a|∅) for all a ∈Mi

3: S1, S2 ← ∅
4: for k = 1, 2 do
5: Broadcast |Mi| and a∗i ∈Mi that maximizes g({a∗i })
6: Sk ← {a∗}, where a∗ ∈ {a∗i }ni=1 maximizes g({a∗})
7: N ←

∑n
i=1 |Mi|

8: repeat
9: Run FindProposal(Sk,Mi, α,N, g) in background

10: if Receive (d, a) 6= (NOP,NOP) then
11: Terminate FindProposal if it has not finished
12: Sk ← Sk\{d} ∪ {a}
13: until Receive (d, a) = (NOP,NOP) from all robots
14: Mi ←Mi\Sk
15: return arg maxS∈{S1,S2} g(S)

Algorithm 3 Find Proposal (FindProposal)
1: require Sk, Mi, α > 0, N , g
2: for d ∈ Sk or d = NOP do // Delete d, or no deletion
3: S−k ← Sk\{d}
4: ∆← (1 + α

N4 )g(Sk)− g(S−k ) // ∆: deficiency of S−k
5: if ∆ ≤ 0 then
6: broadcast (d,NOP)

7: if ∃ a ∈ S−k planned by robot i then
8: continue // Cannot add due to partition matroid
9: for a ∈Mi in sorted order do // Add a

10: if g(a|∅) < ∆ then
11: break // No a ∈Mi will improve S−k enough
12: if g(a|S−k ) ≥ ∆ then
13: broadcast (d, a)

14: broadcast (NOP,NOP)

the required marginal gain for later adding trajectory a is

g(a|S−k ) ≥ ∆ := (1 +
α

N4
)g(Sk)− g(S−k ). (10)

We can prune any a ∈ Mi, if g(a|∅) < ∆ based on the
diminishing return property: because ∅ ⊆ S−k , we know that
∆ > g(a|∅) ≥ g(a|S−k ), violating condition (10). Similarly,
all subsequent trajectories a′ can be ignored, because their
marginal gains g(a′|∅) ≤ g(a|∅) < ∆ due to ordering (Alg. 3
Lines 10–11). Lastly, if an addition improves S−k sufficiently,
the proposal is broadcasted (Alg. 3 Lines 12–13).

3) Greedy Warm Start: We observe empirically that a
robot tends to swap its own trajectories consecutively for
small growth in the objective, increasing communication
unnecessarily. This can be mitigated by a simple technique:
when finding local operations initially, we force robots to
only propose additions to greedily maximize the objective,
until doing so does not lead to enough improvement or vio-
lates the matroid constraint. Then robots resume Alg. 3 and
allow all local operations. By warm starting the team solution
greedily, every robot aggregates numerous proposals with
smaller increase in the objective into a greedy addition with
larger increase, thus effectively reducing communication.



V. SIMULATION RESULTS

We evaluate DLS in two target tracking scenarios based
on objective values, computation, communication, and ability
to handle heterogeneous robots. Its performance is com-
pared against coordinate descent (CD [2]), a state-of-the-
art algorithm for multi-robot target tracking that, however,
assumes monotonicity of the objective. Planning for robots
sequentially, CD allows every robot to incorporate the plans
of previous robots. We also allow CD to not assign anything
to a robot if it worsens the objective. Reduced value itera-
tion [34] is used to generate trajectories for both algorithms.
Comparisons between CLS and DLS are omitted because
the two algorithms empirically achieve the same average
performance. We set α = 1 arbitrarily, because tuning it
was not effective due to the large number of trajectories N .

Both DLS and CD are implemented in C++ and evaluated
in simulation on a laptop with an Intel Core i7 CPU. For
DLS, every robot owns separate threads, and executes Alg. 3
over 4 extra threads to exploit its parallel structure. Similarly,
CD allows every robot to use 4 threads and additionally
incorporates accelerated greedy [33] for extra speed-up.

A. Characteristics of Robots

Given initial state xi,0 ∈ Xi for robot i ∈ RS who follows
the control sequence ui,0, . . . , ui,T−1 = σi ∈ S, the resultant
states are xi,1, . . . , xi,T based on dynamics (1). The energy
cost C(S) may also be state-dependent. We define it as:

C(S) :=
∑
i∈RS

ri

T−1∑
t=0

(
cctrli (ui,t) + cstatei (xi,t)

)
, (11)

where the state-dependent cost cstatei (·) and control-
dependent cost cctrli (·) are defined based on robot types—
in our case, robot i is either an unmanned ground vehicle
(UGV) or an unmanned aerial vehicle (UAV). Note that
decomposition between state and control is not required for
our framework to work. The setup for robots are summarized
in Table I. For simplicity, all robots follow differential-drive
dynamics3 with sampling period τ = 0.5 and motion primi-
tives consisting of linear and angular velocities {u = (ν, ω) |
ν ∈ {0, 8} m/s, ω ∈ {0,±π2 } rad/s}. We consider muddy
and windy regions that incur state-dependent costs for UGVs
and UAVs, respectively. The robots have range and bearing
sensors, whose measurement noise covariances grow linearly
with target distance. Within limited ranges and field of views
(FOVs), the maximum noise standard deviations are 0.1 m
and 5◦ for range and bearing measurements, respectively.
Outside the ranges or field of views, measurement noise
becomes infinite. Please refer to [20] for more details.

B. Scenario 1: Multi-Robot Dynamic Target Tracking

Here we show the computation and communication sav-
ings for DLS, and compare the performance of DLS and CD

3We note that any dynamically feasible model can be used for the specific
robot which is being planned for. We use the same kinematic model for the
quadrotor and ground vehicle for implementation convenience, and because
the quadrotors are restricted to a plane to avoid collisions.

Fig. 2. Computation and communication savings afforded by lazy search
(Lazy) and greedy warm start (Warm) for DLS. Computation is measured by
total oracle calls divided by the number of trajectories N , where N reaches
around 12500 for 10 robots. Communication is measured by the number of
proposal exchanges. Combining lazy search and greedy warm start (green)
leads to 80–92% computation reduction, and up to 60% communication
reduction compared to the naive implementation (blue) on average.

Fig. 3. Objective values and computation time (s) for variants of DLS and
CD, where the lines and shaded areas show the mean and standard deviation,
respectively. The time excludes the trajectory generation time (< 2 s), which
is the same for every algorithm. DLS (solid green) consistently outperforms
CD in optimizing the objective, where it is better for CD to plan from cheaper
to more expensive robots (brown), rather than the reverse order (orange). The
performance gap between DLS and CD widens as more costly robots increase
non-monotonicity of the problem. However, DLS requires longer run-time,
which in practice can be alleviated by using a portion of all trajectories.
This invalidates the worst-case guarantee, but DLS solution based on the
best 10% of each robot’s trajectories (green crosses) still outperforms CD.

(see Figs. 2 and 3). The scenario involves 2, . . . , 10 UGVs
trying to estimate the positions and velocities of the same
number of dynamic targets. The targets follow discretized
double integrator models corrupted by Gaussian noise, with
a top speed of 2 m/s. Robots and targets are spawned in a
square arena whose sides grow from 40 m to 60 m, and 50
random trials are run for each number of robots.

Non-monotonicity in the problem is accentuated by an
increasing penalty for control effort of additional robots, by
setting ri = i for each robot i as defined in (11) (i.e., the

TABLE I
ROBOT SETUP IN TWO EXPERIMENTAL SCENARIOS.

cctrl(u), u given as cstate(x), x in FOV (◦) Range (m)
0, 0 0, ±π

2
8, ±π

2
Mud Wind Exp.1&2 Exp.1&2

UGV 0 1 2 3 / 160 6 & 15
UAV 2 2 4 / 3 360 / & 20



Fig. 4. Trade-off between sensing performance (mutual information (5))
and the true energy expenditure C(S)/r in heterogeneous robot experiments
produced by DLS and CD, where it is better to be in the upper left. Each
point is an average obtained over 50 trials for a fixed r, where we set ri = r
for each robot i to penalize the team energy expenditure per (11).

10-th added robot is 10 times more expensive to move than
the first). Note that state-dependent cost is set to 0 only
for this experiment. Trajectory generation has parameters
ε = 1 and δ = 2 for horizon T = 10. As the planning
order is arbitrary for CD, we investigate two planning orders:
first from cheaper to more expensive robots, and then the
reverse. Intuitively and shown in Fig. 3, the former should
perform better, because the same amount of information
can be gathered while spending less energy. While other
orderings are possible (e.g., [18], [22]), we only use two
to show CD’s susceptibility to poor planning order. For a
fair comparison between DLS and CD, we use a fixed set of
trajectories generated offline, but ideally trajectories should
be replanned online for adaptive dynamic target tracking.

Proposed methods for improving naive distributed execu-
tion of local search, namely lazy search (Lazy) and greedy
warm start (Warm), are shown to reduce computation by 80–
92% and communication by up to 60% on average, as shown
in Fig. 2. As expected, when there are few robots with similar
control penalties, the objective is still close to being mono-
tone, and DLS and CD perform similarly as seen in Fig. 3.
However, as more costly robots are added, their contributions
in information gain are offset by high control penalty, so
the problem becomes more non-monotone. Therefore, the
performance gap between DLS and CD widens, because CD
requires monotonicity to maintain its performance guarantee,
but DLS does not. From Fig. 3, we can see that planning
order is critical for CD to perform well, but a good ordering
is often unknown a priori. Compared to CD which requires
only n−1 communication rounds for n robots, DLS requires
more for its performance. For practical concerns to save more
time, DLS with down-sampled trajectories (e.g., keeping the
best 10% of each robot’s trajectories) still produces better
solution than CD, but the guarantee of DLS no longer holds.

C. Scenario 2: Heterogeneous Sensing and Control

Now consider a heterogeneous team with 2 UGVs and
1 UAV with different sensing and control profiles (Table I)
tracking 10 static targets in a 100 m × 100 m arena over a

Fig. 5. Example solutions from CD (left) and DLS (right) for 2 UGVs and
1 UAV with r = 0.2 that penalizes energy cost C(S) in (11). The arena is
both windy and muddy, which is costly for the UAV and UGVs, respectively.
(Left) CD performs poorly due to its fixed planning order: the UAV plans
first to hover near the targets on the left, rather than venturing over the mud.
Thus, the UGVs are under-utilized because they are unwilling to go into
the mud to observe the targets on the bottom right. For similar reasons, CD
with reversed order under-utilizes the UAV, which is not visualized due to
limited space. (Right) In contrast, DLS deploys the UAV over the muddy
regions, leading to a better value of J(S) in (5).

longer horizon T = 20 (see Fig. 5). The UAV has better
sensing range and field of view compared to UGVs, but
consumes more energy. The arena has overlapping muddy
and windy regions, so robots must collaboratively decide
which should venture into the costly regions. To explore the
trade-off between sensing and energy objectives as a team,
we set ri = r, ∀i and then, as we vary r from 0 to 0.5, we
run 50 trials for each value. Robots are spawned in the non-
muddy, non-windy region, but targets may appear anywhere.
We set δ = 4 to handle the longer horizon, and evaluate two
CD planning orders: from UAV to UGVs, and the reverse.

As shown in Fig. 4, DLS consistently achieves better
sensing and energy trade-off than CD on average. To gain
intuitions on why CD under-performs, a particular trial given
r = 0.2 is shown in Fig. 5. Due to the non-monotone
objective, the robot who plans first to maximize its own
objective can hinder robots who plan later, thus negatively
affecting team performance.

VI. CONCLUSION

This work considered a multi-robot information gathering
problem with non-monotone objective that captures the trade-
off between sensing benefits and energy expenditure. We
proposed a distributed algorithm based on local search and
reduced its computation and communication requirements by
using lazy and greedy methods. The proposed algorithm was
evaluated in two target tracking scenarios and outperformed
the state-of-the-art coordinate descent method. Future work
will focus on scaling the algorithm to larger robot teams by
exploiting spatial separation, formalizing heterogeneity, and
carrying out hardware experiments.
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