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ABSTRACT

ACTIVE INFORMATION ACQUISITION WITH MOBILE ROBOTS

Nikolay A. Atanasov
George J. Pappas
Kostas Daniilidis

The recent proliferation of sensors and robots has potential to transform fields as diverse as
environmental monitoring, security and surveillance, localization and mapping, and struc-
ture inspection. One of the great technical challenges in these scenarios is to control the
sensors and robots in order to extract accurate information about various physical phenom-
ena autonomously. The goal of this dissertation is to provide a unified approach for active
information acquisition with a team of sensing robots. We formulate a decision problem
for maximizing relevant information measures, constrained by the motion capabilities and
sensing modalities of the robots, and focus on the design of a scalable control strategy for
the robot team.

The first part of the dissertation studies the active information acquisition problem in
the special case of linear Gaussian sensing and mobility models. We show that the classical
principle of separation between estimation and control holds in this case. It enables us
to reduce the original stochastic optimal control problem to a deterministic version and
to provide an optimal centralized solution. Unfortunately, the complexity of obtaining the
optimal solution scales exponentially with the length of the planning horizon and the number
of robots. We develop approximation algorithms to manage the complexity in both of these
factors and provide theoretical performance guarantees. Applications in gas concentration
mapping, joint localization and vehicle tracking in sensor networks, and active multi-robot
localization and mapping are presented. Coupled with linearization and model predictive
control, our algorithms can even generate adaptive control policies for nonlinear sensing
and mobility models.

Linear Gaussian information seeking, however, cannot be applied directly in the presence
of sensing nuisances such as missed detections, false alarms, and ambiguous data association
or when some sensor observations are discrete (e.g., object classes, medical alarms) or, even
worse, when the sensing and target models are entirely unknown. The second part of
the dissertation considers these complications in the context of two applications: active
localization from semantic observations (e.g, recognized objects) and radio signal source
seeking. The complexity of the target inference problem forces us to resort to greedy
planning of the sensor trajectories.

Non-greedy closed-loop information acquisition with general discrete models is achieved
in the final part of the dissertation via dynamic programming and Monte Carlo tree search
algorithms. Applications in active object recognition and pose estimation are presented.
The techniques developed in this thesis offer an effective and scalable approach for con-
trolled information acquisition with multiple sensing robots and have broad applications
to environmental monitoring, search and rescue, security and surveillance, localization and
mapping, precision agriculture, and structure inspection.
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Chapter 1

Introduction

1.1 Motivation

The heart of data-enabled science is the extraction and interpretation of information residing
in dynamic hard-to-predict phenomena. Classically, information is collected by static sen-
sors and is summarized in spatiotemporal models, represented in the language of Bayesian
filters and graphical models. The stance of this thesis is that going beyond static data
collection will enable intelligent sampling and will produce higher-fidelity models efficiently.
Autonomous sensor deployments are also adaptable to environment conditions and will re-
duce human supervision and allow access to dangerous areas. The effective coordination
of mobile sensing resources relies on and aims at improving the models produced at the
inference level. Due to this coupling, information-gathering problems are quite challenging
and necessitate the development of new principled approaches for dealing with the underly-
ing complexity. A small tweak in the existing body of work is unlikely to yield the desired
results. In particular, there is a need for breakthroughs in hierarchical representations, dis-
tributed inference, and adaptive planning algorithms, which are scalable both in the length
of the planning horizon and in the number of sensors and can handle heterogeneity both in
the environment models and in the vehicle dynamics. In exchange, the rewards are com-
pelling. Distributing the estimation and control will allow robust coordination of numerous
intelligent systems. Heterogeneity will enable collaboration among water, ground, and air
resources with various sensing capabilities, thereby dramatically improving the awareness
of the sensor team at metric, topological, and semantic levels. Such developments will have
a tremendous impact in the following fields:

• Environmental monitoring (Fig. 1.1): air, water, and soil quality, temperature, pres-
sure, magnetic forces, chemical concentration, diffusivity, bio-diversity

• Agriculture

• Construction and structure inspection (Fig. 1.2)

• Security and surveillance (Fig. 1.3 & Fig. 1.4)

• Search and rescue operations

• Object detection, classification, and pose estimation (Fig. 1.6)
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• Localization and mapping (Fig. 1.5)

• Mining

• Space exploration

Therefore, the focus of this dissertation is on active information acquisition with mobile
robots and configurable sensing systems. In the next section, we capture the characteristics
of the aforementioned scenarios in a precise problem formulation. The objective is to design
a scalable control strategy for the robot team in order to tracking evolving phenomena of
interest accurately and efficiently.

Figure 1.1: Autonomous water vehicle tracking radio-
emitter-tagged invasive carp species in Minnesota (courtesy
of Tokekar et al. 2013 and Choi 2009).

Figure 1.2: Autonomous inspection
of the hull integrity of a submerged
ship.

Figure 1.3: A military quadrotor pa-
trolling an area of interest.

Figure 1.4: Scheduling communication power, sensor use,
and operational parameters in sensor networks is crucial for
accurate and efficient tracking of physical phenomena (cour-
tesy of Huber 2009).

Figure 1.5: A robot can improve its localization and envi-
ronment map by planning an informative trajectory for its
future observations (courtesy of Vitus et al. 2012)

Figure 1.6: Planning the viewpoint of
an autonomous camera in order to im-
prove the results of object recognition
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1.2 The Active Information Acquisition Problem

Information acquisition is the process of estimating the state of an observed system of inter-
est by utilizing the available sensing modalities. Consequently, approaches from estimation
theory, such as filtering, smoothing, and belief propagation, form the basis of information
acquisition. Active information acquisition, on the other hand, is the process of planning
future trajectories and configurations for the sensing systems, over multiple time steps, in
order to improve the performance of the estimation process. It couples the estimation prob-
lem with a stochastic control problem, which requires making decisions based on anticipated,
not-yet-known sensor measurements.

The starting point of an active information gathering algorithm is a collection of three
dynamical models which capture mathematically the degrees of freedom of our sensors, the
evolution of the physical process, and relationship between the sensor observations and the
target process. Having designed these models, one can proceed with the construction of
an estimator which uses the sensor observations to refine the knowledge about the state of
the underlying physical process. The final step is to plan the motion and configurations
of the sensors in order to collect maximally-informative observations, thus optimizing the
estimation process. This requires a proper choice of a reward function to judge the infor-
mativeness of the planned sensor trajectories. Fig. 1.7 presents an overview of the active
information acquisition process.

Proceeding more formally, consider a team of n mobile sensors with states xi,t, i =
1, . . . , n at time t and dynamics governed by the following discrete-time continuous-state
sensor motion model :

xi,t+1 = fi(xi,t, ui,t, noise), (1.1)

where ui,t is the control input. To simplify notation, denote the collection of all sensor states
by xt := [xT1,t · · ·xTn,t]T, the collection of all inputs by ut := [uT1,t · · ·uTn,t]T, and the combined
sensor motion model by xt+1 = f(xt, ut, noise). In many applications, the sensor mobility
is due to the fact that the sensors are mounted on a vehicle or a robot. For example, the
kinematics of a ground robot with nonholonomic (car-like) constraints can be described by
a differential-drive model (Appendix B.1).

The task of the sensors is to track the evolution of a collection of targets (e.g., mobile
vehicles, visual landmarks, radio transmitters, gas concentration in different regions of the
environment, etc.) with joint state yt. The target evolution is governed by a target motion
model :

yt+1 = a(yt,noise). (1.2)

For example, the behavior of a mobile target in tracking scenarios is often described by a
constant-velocity motion model (Appendix B.2).

Each sensor receives measurements zi,t of the targets, governed by the following sensor
observation model :

zi,t = hi(xi,t, yt, noise). (1.3)

Again, to simplify notation, we use zt := [zT1,t · · · zTn,t]T and denote the combined observation
model by zt = h(xt, yt,noise). Some widely-used sensing models are provided in Appendix
B. For example, a laser scanner can be modeled as a range sensor (Appendix B.3), a
directional antenna - as a bearing sensor (Appendix B.4), a stereo camera - as a stereo sensor
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Figure 1.7: To formulate an active information acquisition problem, it is necessary to specify sensor
motion models (1.1), target motion models (1.2), sensor observation models (1.3), and an information
measure. The task is to design an estimator for the target states and to plan the motion of the sensors
in order to improve the estimation performance. The solution should handle heterogeneous sensing
systems and should allow for distributed computation and coordination among them.

(Appendix B.5), and an odometry sensor, such as a combination of an inertial measurement
unit (IMU) and wheel encoders, can be modeled as a 2-D relative-pose sensor (Appendix
B.6) because it estimates the transformation between two successive robot poses. Often
times, especially for more complicated systems, the motion and observation models can be
learned from training data via machine learning and system identification techniques.

In addition to the sensor and target models described above, there are several other
considerations for specifying the active information acquisition problem. We state the
problem formally first and discuss the additional ingredients afterwards.

Problem (Active Information Acquisition). Given initial sensor states x0, a prior p0 on
the target states, and a planning horizon T < ∞, choose control policies µt := {µi,t | i =
1, . . . , n} for t = 0, . . . , T −1 that map the history of control inputs and sensor observations
to new control inputs for the sensors and aim to maximize information about the target:

max
µ0:T−1

I(y1:T , x1:T , z1:T )

s.t. xt+1 = f(xt, µt,noise)

yt+1 = a(yt,noise)

zt = h(xt, yt,noise)

(1.4)

where I is an information measure.

Many variants of the above problem can be considered (e.g., linear or nonlinear models
f , a, h; discrete or continuous state and control spaces; various noise distributions and
information measures). For example, if f(x, u,noise) := u and we think of the control u as
choosing a subset of sensors to be activated, then (1.4) becomes a sensor scheduling problem
(Joshi and Boyd 2009, Vitus et al. 2012). A different type of information gathering problem
arises, if the task is to control the motion of a mobile sensor to detect a contamination source
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or to estimate unknown parameters of spatially-distributed systems (Rafajlowicz 1986). If
the maneuverability of the sensor is constrained, the future behavior of the target has to
be anticipated at an early stage in order to obtaining good sensor positioning. We discuss
the ingredients which determine the type of active information acquisition problem below.

Target state estimator

Before we even consider planning the motion of the sensors, we need to design an estimator
which uses sensor observations to refine the knowledge about the target. As stated in the
problem formulation, we are given a prior probability density (or mass) function (pdf) p0

of the target states y0. The task of the estimator is to propagate the pdf pt over time by
using incoming measurements and the motion and observation models. This is precisely
the topic of estimation theory and is addressed by filtering (Huber 2009), smoothing (Kaess
2008), or graphical-model inference (Koller and Friedman 2009) techniques. Appendix C
introduces Bayesian filtering and two of the most successful filters in practice - the Kalman
filter (Appendix C.1) and the particle filter (Appendix C.3). These filters, along with some
more sophisticated variants, are employed for target estimation in this dissertation.

While planning the sensor motion in problem (1.4), a target estimator has to be exe-
cuted multiple times to predict the target behavior, especially for long planning horizons.
Hence, the more accurate and complex the employed estimator is, the more computationally-
demanding and informative the resulting sensor control policies are. Here, it is important to
note that the estimator employed for informative planning does not necessarily have to be
the same as the one used for inferring the target state when the actual sensor measurements
arrive. A practical way to trade off estimation accuracy and computational resources is to
use a high-fidelty estimator during inference (since it has to be executed only once per time
step) and a less-complex estimator during planning (since it has to be executed many times
while solving problem (1.4)). This might be suboptimal but in practice inference needs to
be precise, while planning needs to be fast!

Information measure

The target state estimator provides a (usually finite-dimensional) representation of the
target pdf pt that can be used to judge the uncertainty (or information) contained in the
current estimate of the target state. The information measure I(y1:T , x1:T , z1:T ) in problem
(1.4) does precisely this - it captures the improvement in the target estimate along different
sensor trajectories. For example, we can think of the active information acquisition problem
as planning a sensor trajectory that will improve the uncertainty (captured by the covariance
matrix) of a Kalman filter the most. Hence, the design of an appropriate information
measure is an important consideration for active information gathering. This thesis relies on
information theory for suitable candidates such as conditional entropy H(y1:T , x1:T | z1:T ),
mutual information I(y1:T , x1:T ; z1:T ), and probability of error (see Appendix A for details).
The chosen information measure should not only lead to the desired sensor behavior but
should also be fast to compute, ideally in closed-form. The reason is that it needs to be
evaluated multiple times during the planning process, especially for long planning horizons,
and, as mentioned earlier, fast informative planning is requisite in many applications. As we
will discover in this dissertation, mutual information has a closed form for a Gaussian target
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pdf but might be notoriously difficult to evaluate for multimodal distributions (Ch. 3). In
the latter case, it might be more appropriate to use a measure such as Cauchy-Schwarz
mutual information (Charrow et al. 2015, Kampa et al. 2011) or quadratic Rényi entropy
(Rényi 1961, Carrillo et al. 2015a), which have a closed-form expression for mixtures of
Gaussians.

Planning horizon

Another determinant of the complexity of the active information acquisition problem is the
length T of the planning horizon. If the horizon is T = 1, we obtain a (greedy) next-
best-sensor-view problem. At the other extreme, if T =∞, we get a persistent monitoring
problem, in which attention can be restricted to periodic sensor trajectories (Zhao et al.
2014). In Ch. 2, we will observe that, for T <∞, the complexity of the active information
acquisition problem grows exponentially with the length of the planning horizon. Hence,
it is desirable to investigate approximate solutions that mitigate this complexity but retain
some performance guarantees. Finally, if the planning horizon T is subject to optimization
(not fixed), we get an optimal stopping problem, which will be considered in Ch. 4.

Optimization type

The active information acquisition problem has strong relations to stochastic optimal control
for dynamic systems. In fact, in its most general form (1.4) it can be considered an instance
of a partially observable Markov decision process (POMDP, Bertsekas (1995)). However,
instead of assuming a general value function (as done in POMDP planning), this thesis
exploits the properties of the information measure to offer a more scalable, efficient, and
precise solution than what is offered by a general POMDP solver.

As mentioned before, one of the factors that determines the complexity of the planning
problem is the horizon length T . Perhaps, the easiest instance of the problem is to compute
a greedy control policy, i.e., one that quantifies the sensing performance only at the next
time step. A solution to a longer-horizon problem can be constructed by committing to the
greedy policy in the first step and solving a series of such single-step optimizations. We call
this approach greedy planning. This is in contrast with nonmyopic planning which solves
(1.4) directly with a longer planning horizon (T > 1).

Planning approaches can also differ in their adaptability to future measurements. Open-
loop planning fixes some expected values for the future measurements and computes a
sequence of controls assuming that these most-likely observations will happen. At run time,
the same sequence of sensor inputs will be executed regardless of the actual measurement
realizations. Closed-loop planning, on the other hand, computes a sequence of functions (i.e.,
a policy) which map to an appropriate control input depending on the actual measurement
realizations. As a result, the closed-loop policy is adaptable to the actual measurements at
run time.

We can use an example to clarify the distinctions among the four types of optimization:
greedy closed-loop, nonmyopic closed-loop, greedy open-loop, and nonmyopic open-loop.
Consider a sensing system that can be in two states x ∈ {0, 1} and the control input
u ∈ {0, 1} selects the system state without noise. Suppose that the sensor is binary too,
z ∈ {0, 1}, and measures the target state directly. Let the planning horizon be T = 2. To
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(a) nonmyopic closed-loop planning (b) greedy closed-loop planning

(c) nonmyopic open-loop planning (d) greedy open-loop planning
Figure 1.8: Comparison among greedy, nonmyopic, open-loop, and closed-loop planning variants.
The blue nodes represent the sensor states in a tree of depth 2, corresponding to the planning horizon
length. Nonmyopic closed-loop planning considers all possible combinations of future observations
z and controls u. Nonmyopic open-loop planning, on the other hand, commits to some most-likely
observations beforehand and only considers the possible control input variations. The corresponding
greedy versions commit to a control policy (or input) at the first level of the tree and then explore
only the subtrees starting from it. Intuitively, we can expect nonmyopic closed-loop planning to be
the most computationally demanding, while greedy open-loop planning to be the least.

optimize the sensor performance, we need to explore a tree of possible control inputs and
measurement realizations of depth T = 2. See Fig. 1.8 for a visualization. Nonmyopic
closed-loop planning considers all possible control inputs, all possible measurement real-
izations, and the whole planning horizon (Fig. 1.8(a)). Greedy closed-loop planning, on
the other hand, explores a tree of depth 1 first and commits to a single-step control policy.
Afterwards, it explores the second level of the tree but, due to committing early, some of the
nodes are not reachable (Fig. 1.8(b)). Nonmyopic open-loop planning explores the whole
tree but commits to some most-likely observations beforehand. Essentially, it removes all
branching possibilities associated with the measurements and then searches the tree for a
control sequence, rather than a function of the possible measurements (Fig. 1.8(c)). Finally,
greedy open-loop planning commits to some most-likely observations and explores a tree of
depth 1 first. It commits to a single control input (not policy) and then explores only the
subtree starting from it (Fig. 1.8(d)).

It is clear from Fig. 1.8 that nonmyopic closed-loop planning is the most computation-
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ally demanding approach but provides the best sensor performance, since it explores all
future possibilities. At the other extreme, greedy open-loop planning is the fastest to com-
pute but might ignore lots of possible future realizations. It has been shown in the literature
(Williams 2007, Ch.3.5.1) that greedy closed-loop planning can be arbitrarily worse than
nonmyopic closed-loop planning. Greedy closed-loop planning may be competitive with
nonmyopic open-loop planning in some settings (Williams 2007, Thm.3.8). Further, non-
myopic open-loop planning may be arbitrarily worse than nonmyopic closed-loop planning
(Hollinger et al. 2013a, Thm.1). Interestingly, we will see in Ch. 2 that active information
acquisition with linear Gaussian sensing and motion models is an exception. In other words,
there is no gain in the performance of closed-loop planning over that of open-loop planning.
However, we will also show that greedy planning is worse than nonmyopic planning even
for static independent targets (Ch. 2).

A compromise between open-loop and closed-loop planning is open-loop feedback con-
trol (Bertsekas 1995). Like in open-loop planning, future measurements are fixed at some
most-likely values but when an actual measurement arrives it is used for computing an
updated plan. This idea of planning an open-loop sequence, applying the first control in-
put, and replanning after the next observation is also known as receding horizon control
or model predictive control (Morari and Lee 1999, Rawlings and Mayne 2009). It can be
shown that open-loop feedback control is no worse than open-loop planning but again its
performance may be arbitrarily worse than that of closed-loop planning (Bertsekas 1995).
We will combine nonmyopic open-loop planning with model predictive control in Ch. 2 to
obtain an adaptive control policy for nonlinear sensor and target models.

1.3 Related Work

Since many variants of the general formulation in (1.4) have been studied, this section
provides only a high-level overview of the related work. The closest approaches will be
discussed in more detail within the specific context of the later chapters.

The idea of optimizing the performance of configurable sensing systems dates back to the
60’s (Meier et al. 1967, Athans 1972). Earlier approaches to active information acquisition
considered stateless sensor systems (systems whose internal state is not affected by the
control and all controls are available at all times) in problems such as sensor selection
(Joshi and Boyd 2009), sensor placement (Krause 2008), sensor scheduling (Gupta et al.
2006, Le Ny et al. 2011, Vitus et al. 2012), and active hypothesis testing (Naghshvar and
Javidi 2013b,a, Nitinawarat and Veeravalli 2013a, Nitinawarat et al. 2013).

More recently, attention has shifted to dynamic sensors and complex estimation tech-
niques but, typically, greedy control. Examples include range-only target tracking (Mart́ınez
and Bullo 2006), the next-best-view problem in active object recognition (Bajcsy 1988,
Karasev et al. 2012, Denzler and Brown 2002, Sommerlade and Reid 2008, Eidenberger and
Scharinger 2010) and “information surfing” (Grocholsky 2002, Schwager et al. 2011), where
the sensors follow the gradient of mutual information. Despite the use of greedy control,
efficient computation in large sensor teams remains a challenge. Charrow et al. (2013, 2015)
proposed deterministic approximations to the classical mutual information and an alterna-
tive information measure, which can be computed in closed-form for some measurement
distributions. Research has also been focused on distributed information-seeking control
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(Hoffmann and Tomlin 2010, Julian et al. 2012, Meyer et al. 2014, Dames and Kumar
2013).

As may be expected, non-greedy active information acquisition is an even harder problem
(Le Ny 2008). Ryan and Karl Hedrick (2010) consider the impact of multiple measurements
over time in the context of information-theoretic mobile target tracking. Mutual information
is approximated using Monte Carlo sampling, which leads to a computationally-expensive
algorithm. There is a line of work which alleviates the complexity, associated with longer
planning horizons, by assuming linear Gaussian sensing models. Examples include sampling-
based (Hollinger and Sukhatme 2013, 2014, Lan and Schwager 2013), search-based (Le Ny
and Pappas 2009, Atanasov et al. 2014a) and submodularity-based approaches (Singh et al.
2009a,b) for open-loop informative planning in Gaussian random fields (Le Ny and Pappas
2009) and Gaussian process models (Marchant and Ramos 2014). Finally, there does not
exist a specialized information planner for nonmyopic closed-loop information gathering
with general sensing models (non-Gaussian and non-linear). However, the problem is an
instance of a partially-observable Markov decision process and work in POMDP planning
(Kaelbling and Lozano-Pérez 2013, Kurniawati et al. 2008, Silver and Veness 2010) and
belief-space planning (Hauser 2011, Indelman et al. 2014, Prentice and Roy 2009) is relevant.

Important applications of active information acquisition include environmental mon-
itoring (Choi 2009, Tokekar 2014), search and rescue (Kumar et al. 2004), security and
surveillance (Rybski et al. 2000), structure inspection (Hollinger et al. 2013b), source seek-
ing (Zhang et al. 2007, Ghods and Kristić 2011, Stanković and Stipanović 2010, Atanasov
et al. 2015b), active perception (Denzler and Brown 2002, Valente et al. 2014, Atanasov
et al. 2014b), and active simultaneous localization and mapping (SLAM, Carlone et al.
(2014), Sim and Roy (2005), Kontitsis et al. (2013), Atanasov et al. (2015a)).

1.4 Outline and Contributions

The long-term goals of the work described in this dissertation are:

• Improved representation: Before considering controlled information acquisition,
it is necessary to establish reliable target modeling and estimation techniques. In
most cases, traditional tools such as Gaussian processes, Bayes Nets, and Kalman
and particle filters suffice. However, it is desirable to develop inference methods that
can simultaneously handle continuous variables (e.g., target poses), discrete variables
(e.g., target classes), and sensing nuisances, such as false and missed detections and
ambiguous data association (the mapping between received measurements and visible
targets).

• Mature information-planning algorithms: The main goal is to provide a solution
to the active information acquisition problem in (1.4) that is comparable in maturity
to traditional planning algorithms such as ARA* (Likhachev et al. 2003) and RRT*
(Karaman and Frazzoli 2011). This involves proving theoretic performance guaran-
tees and allowing anytime execution (a valid solution can be provided at any time)
and incremental re-planning (information from previous planning episodes is reused).
Further, the algorithms should handle heterogeneous sensor and target models (e.g.,
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air and ground vehicles, linear and nonlinear sensing models, discrete and continuous
measurements, static and mobile targets).

• Scalability: Both the inference and the information-planning approaches need to
scale well with respect to the length of the planning horizon and the number of sensing
systems. This inevitably leads to considerations for distributed estimation and control
techniques that facilitate coordination and collaboration among the sensing systems.

• Experimental validation: The proposed algorithms should be validated in real-
world experiments and should be compared with alternative approaches.

Below is a brief overview of the chapters and their contributions with respect to the existing
work and the goals listed above.

Chapter 2: Dynamic optimization over a long time horizon is required to obtain a sensor
control policy that anticipates the target evolution and avoids local minima of the infor-
mation measure. To deal with the increasing complexity of longer planning horizons, this
chapter takes advantage of two key observations:

• An active information acquisition problem with nonlinear non-Gaussian motion and
observation models can be converted into a linear Gaussian one via statistical lin-
earization as long as the motion and observation models are continuous.

• The classical separation principle (Athans 1972, Meier et al. 1967) between estimation
and control holds for the linear Gaussian Active Information Acquisition problem. As
a result, the optimal estimator is the Kalman filter and the problem can be reduced
from a stochastic optimal control problem to a deterministic one, where open-loop
policies achieve the optimal solution. Still, the complexity of computing the optimal
nonmyopic open-loop policy scales exponentially with the planning horizon T and the
number of sensors n.

The chapter makes the following contributions.

• We prove the separation principle holds for the linear Gaussian Active Information
Acquisition problem.

• We develop an approximation algorithm with finite-time suboptimality guarantees for
nonmyopic open-loop planning that manages the complexity in T . The algorithm can
be used in combination with model predictive control to produce an adaptive policy
for nonlinear motion and observation models.

• We propose a decentralized control scheme to achieve linear complexity in the number
of sensors n. We prove that the approach obtains at least 50% of the (mutual)
information obtained by the optimal centralized solution.

• In addition to the control task, we decentralize the target inference process. We
develop a distributed Kalman filter for dynamic target tracking and a distributed
Jacobi algorithm for sensor self-localization. We prove that the two algorithms can
be used in conjunction to achieve joint localization and estimation in sensor networks
with arbitrarily small asymptotic mean square error.
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• We present applications in methane emission monitoring, mobile vehicle tracking,
distributed localization in sensor networks, and active multi-robot simultaneous lo-
calization and mapping.

Chapter 3: In the presence of sensing nuisances, such as missed detections and false
alarms, and discrete or strongly nonlinear observation models, the conversion into a linear
Gaussian information gathering problem is of limited fidelity. Even worse, sometimes the
target motion model and sensor observation model are completely unknown. The classical
estimation techniques, such as the Kalman filter and the particle filter, are not sufficient
here. The focus of this chapter is on target inference techniques that can deal with such
difficult situations. Due to the complexity of the inference process, the control in this
chapter is greedy. We make the following contributions.

• We develop a sensor observation model for set-valued measurements which incorpo-
rates missed detections, false alarms, and data association.

• We prove that obtaining the likelihood of a set-valued sensor observation is equivalent
to a matrix permanent computation. This allows a polynomial-time approximation
to a Bayes filter with set-valued observations.

• We develop a stochastic gradient ascent scheme for multi-sensor information gathering
with unknown sensor observation and target motion models. Gaussian radial basis
functions are used to calculate finite-difference weights which approximate the gradient
of the measured signal. We prove that our approach converges to a local maximum
of the measured signal.

• We present applications in vehicle localization in residential areas using semantically
meaningful landmarks, global localization of Google’s Project Tango phone (Google
ATAP group 2014), active robot localization using object detections, and wireless
radio source localization.

Chapter 4: The simplest case in which the linearization technique of Ch. 2 cannot be
applied is when some measurement or state variables are discrete. For example, we face
such complications in active vision problems where scene labels and object classes are dis-
crete. Unfortunately, removing the linear Gaussian assumptions invalidates the separation
principle and closed-loop planning is needed to solve the original stochastic optimal control
problem (1.4). Unlike Ch. 3 which uses greedy planning, this chapter focuses on nonmyopic
closed-loop planning for information gathering in discrete state and measurement spaces.
The chapter makes the following contributions.

• We formulate an active information acquisition problem with motion and observation
models described by arbitrary probability mass functions. This formulation is par-
ticularly suitable for active object recognition, classification, and hypothesis testing
problems.

• We develop an exact nonmyopic closed-loop planning algorithm via dynamic program-
ming (Bertsekas 1995). The algorithm obtains the optimal solution but scales poorly
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with the size of the state and measurement spaces. To provide scalability, we also
propose an approximate algorithm based on Monte Carlo tree search (Browne et al.
2012) with a rollout policy that exploits the structure of the information measure.

• We demonstrate that these ideas can improve object classification and pose estimation
with a mobile camera and can also speed up object recognition with deformable part
models (Felzenszwalb et al. 2010b).

The thesis closes with conclusions and possible extensions in Ch. 5.
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Chapter 2

Nonmyopic Information Acquisition
with Linear Gaussian Models

Sensor management (Hero III and Cochran 2011) offers a formal methodology to control
the degrees of freedom of sensing systems in order to improve the information acquisition
process. The earliest approaches date back to the 60’s (Meier et al. 1967, Athans 1972).
Efficient nonmyopic planning approaches have been proposed for sensors without internal
states in the context of sensor placement and scheduling (Gupta et al. 2006, Le Ny et al.
2011, Krause et al. 2008, Krause 2008, Vitus et al. 2012, Williams 2007, Joshi and Boyd
2009). However, when it comes to optimizing the trajectories of mobile sensors, which
possess internal states, the approaches are often greedy and rarely provide performance
guarantees. The main complication is that the evolution of the sensor states depends on
the control inputs and affects the measurements in the long run. Concretely, whereas in
radar management a sensor can switch instantaneously between targets (Krishnamurthy
and Evans 2001), a feasible and informative path needs to be designed for a sensing robot
(Singh et al. 2009a). Due to this complication, most approaches for information gathering
with mobile sensors are greedy (Grocholsky 2002, Chung et al. 2006) or use short planning
horizons (Kreucher 2005, Huber 2009). However, it is precisely the presence of internal states
that makes multi-step optimization important. The behavior of the observed phenomenon
needs to be predicted at an early stage to facilitate effective control of the mobile sensor.

This chapter exploits a key insight that under linear Gaussian assumptions on the target
and observation models the active information acquisition problem (1.4) can be formulated
as a deterministic optimal control problem (Le Ny and Pappas 2009). As a result, in-
formative sensing paths can be computed via open-loop planning and there is no loss in
performance with respect to closed-loop planning. The advantage is that the search space
of a deterministic control problem is significantly smaller than the stochastic version. The
problem can be solved forward in time, considering reachable states only, instead of discretiz-
ing the high-dimensional search space as required by backward value iteration (Bertsekas
1995). Still, the complexity of the optimal nonmyopic open-loop solution turns out to be
exponential in both the planning horizon T and the number of sensors n.

To manage the complexity in the planning horizon, this chapter develops an approxi-
mation algorithm with strong performance guarantees. The key idea is to discard future
sensor trajectories that are close in space and dominated in informativeness by other tra-
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jectories from the search space. We prove that this results in bounded suboptimality with
respect to the optimal centralized solution and allows much faster nonmyopic planning.
Coupled with linearization and model predictive control, this approach can even generate
adaptive policies for non-linear motion and observation models. Our work can be consid-
ered a search-based method for planning in information space. Related work in this area
includes (Zhou 2012, Vander Hook et al. 2014, Le Ny and Pappas 2009). Some successful
approaches for open-loop informative planning rely on a submodular function to quantify
the informativeness of the sensor paths (Singh et al. 2009a,b). The sensing locations are
partitioned into independent clusters. Submodularity is used to greedily select informative
locations within clusters. An orienteering problem is solved to choose the sequence of clus-
ters to visit. The drawback is that within clusters the movement of the sensor is restricted
to a graph, essentially ignoring the sensor dynamics. As a result, the cluster sizes cannot
be increased much without affecting the quality of the solution. We address this limitation
by considering the sensor dynamics and planning non-greedily. Sampling-based methods
have been proposed as well (Lan and Schwager 2013, Hollinger and Sukhatme 2013). Just
as in traditional planning, they are able to find feasible solutions quickly but provide no
finite-time guarantees on optimality. Approaches which do not make linear Gaussian as-
sumptions and use nonlinear filters exist as well (Charrow et al. 2013, Dames et al. 2012,
Hoffmann and Tomlin 2010, LaValle 2012, Julian et al. 2012, Meyer et al. 2014, Lauri and
Ritala 2014). Charrow et al. (2013) choose trajectories based on a fast and accurate ap-
proximation of the mutual information between nonlinear Gaussian measurements and a
particle representation of the target distribution. Dames et al. (2012) and Meyer et al.
(2014) have the sensors follow the gradient of mutual information and conditional entropy,
respectively. Lauri and Ritala (2014) use Monte Carlo tree search to solve a finite-horizon
stochastic control problem with MI as the reward. A common theme in these works is that
the length of the planning horizon is sacrificed in favor of using the (typically) nonlinear
sensor and target models during planning. We take the opposite stance and give up some
model accuracy (via linearization) in order to plan efficiently with long horizons. An addi-
tional benefit is that any sparsity in the target information matrix can be exploited during
the planning process. Recent advances in large-scale finite and infinite dimensional esti-
mation (e.g. Gaussian Processes (Quiñonero-Candela and Rasmussen 2005, Barfoot et al.
2014), graph-based SLAM (Dellaert and Kaess 2006, Kaess et al. 2012)) take advantage of
such structure inherent in a graphical-model representation of the environment. Since the
information planning process is based on the estimation layer, it is natural that it utilizes
a sparse representation too.

To address the scalability in the number of sensors, instead of solving the information
acquisition problem jointly over all sensors, we propose a decentralized control scheme
based on coordinate descent, which proceeds as follows. The first sensor plans its own
trajectory, without taking the others into account, and passes the information over to
the second sensor. The second sensor plans its own trajectory by solving a two-sensor
active information acquisition problem but with a known control sequence for the first
sensor. Then, sensor 2 passes its information along to sensor 3, which solves a 3-sensor
problem with known control sequences for the first two sensors and so on. In addition
to achieving linear complexity in the number of sensors, our approach obtains at least
50% of the (mutual) information obtained by an optimal centralized solution. To prove
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this property we rely on the fact that mutual information, when viewed as a function
of the sensor set, is submodular. To alleviate the computational burden of multi-robot
deployments, other approaches in the literature also decentralize the information-seeking
control task. Hoffmann and Tomlin (2010) compute mutual information only for pairs of
sensors, thus decreasing the dimension of the required integration. Similarly, Dames et al.
(2012) achieve scalability by assuming that mutual information approximately decouples
among robot cliques. Fully-distributed approaches based on belief consensus are proposed
by Julian et al. (2012) and Meyer et al. (2014). Decentralization based on coordinate
descent has been used by Singh et al. (2009a) and a similar approach based on Gauss-Seidel
Relaxation was proposed by Zhou and Roumeliotis (2011). Of these works, only Singh et al.
(2009a) provide guarantees on the performance of their approach, valid for static targets
and discrete sensing locations, without revisiting. Here, we allow revisiting and extend the
guarantees to dynamic targets.

Finally, in many applications it is necessary to decentralize the target inference process
in addition to the control task. To complicate matters, it is often the case that the sensors
need to know their own locations with respect to a common reference in order to utilize
the target measurements meaningfully. Hence, they face a joint localization and estima-
tion problem. Existing work in distributed target estimation assumes implicitly that the
localization problem is solved, while all the literature on localization does not consider the
effect of the residual errors on a common estimation task. Sec. 2.6 develops a distributed
Kalman filter for dynamic target tracking and a distributed Jacobi algorithm for sensor self-
localization. We prove that the two algorithms can be used in conjunction with arbitrarily
small asymptotic mean square error. Our distributed target tracking algorithm was inspired
by Rahnama Rad and Tahbaz-Salehi (2010), who propose an approach for distributed static
parameter estimation using nonlinear sensing models. We specialize their model to hetero-
geneous sensors with linear Gaussian observations, derive the update step of the resulting
linear estimator, and show stronger convergence results (mean-square consistency instead of
weak consistency). Finally, we add a prediction step to the filter in order to handle dynamic
targets. Our filter is similar to the Kalman-Consensus filter (Olfati-Saber 2007, 2009) and
the filter proposed by Khan et al. (2010) and Shahrampour et al. (2013) but uses different
gains in the update step and the performance guarantees (for static targets) we obtain are
stronger. Khan et al. (2010) show that their filter can track a dynamic target with bounded
error if the norm of the target system matrix is less than the network tracking capacity.
Shahrampour et al. (2013) quantify the filter’s estimation performance using a global loss
function and show that the asymptotic error depends on the loss function decomposition.
Kar et al. (2012) study distributed static parameter estimation with nonlinear observation
models and noisy inter-sensor communication. Related work also includes Cortés (2009),
which combines the Jacobi over-relaxation method with dynamic consensus to compute
distributed weighted least squares.

Our localization algorithm follows the lines of the Jacobi algorithm, first proposed for
localization in sensor networks by Barooah and Hespanha (2007), Barooah (2007). In
contrast to their approach, we consider repeated relative measurements and show strong
convergence guarantees for the resulting sequential algorithm. Other work in sensor network
localization typically considers nonlinear and less informative measurement models. For
instance Aspnes et al. (2006), Moore et al. (2004), So and Ye (2007), Priyantha et al. (2003)
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address range-only localization, which is challenging because a graph with specified edge
lengths can have several embeddings in the plane. Khan et al. (2009) introduce a distributed
localization algorithm, which uses the barycentric coordinates of a node with respect to its
neighbors and show convergence via a Markov chain. Diao et al. (2013) relax the assumption
that all nodes must be inside the convex hull of the anchors. Localization has also been
considered in the context of camera networks (Tron and Vidal 2009). None of the papers
mentioned above, however, consider state estimation and localization jointly. While the
joint problem can be cast as a large distributed estimation task and addressed with existing
methods (e.g. the Kalman-Consensus filter (Olfati-Saber 2007, 2009)), the resulting solution
will have each sensor estimate the locations of all other sensors in the network. This has
slow convergence and is infeasible for large networks as it requires repeated exchange of
information that scales with the size of the network. The proposed joint algorithm resolves
this challenge and in addition keeps the update rules linear.

This chapter is based on the papers (Atanasov et al. 2014a, 2015a, 2014c). It presents
applications in methane emission monitoring, mobile vehicle tracking, and multi-robot ac-
tive SLAM.

2.1 Linear Gaussian Active Information Acquisition

The active information acquisition problem (1.4) is challenging when we consider nonmyopic
planning. One approach to alleviate the complexity associated with longer planning horizons
is to linearize the sensor and target models and use model predictive control. In this chapter,
we will show that a version of the celebrated separation principle (Athans 1972, Meier et al.
1967) between estimation and control holds for the active information acquisition problem
under the following assumptions.

• The target motion model is linear in the target state and the noise is Gaussian.

• The sensor observation model is linear in the target state and the noise is Gaussian.
The model can still depend nonlinearly on the sensor state.

• The sensor motion model is deterministic.

• The information measure has the form: I(y1:T , x1:T , z1:T ) :=
∑T

t=1 ct(Σt, xt), where
Σt := E(yt − Eyt)(yt − Eyt)T is the target covariance matrix and ct is a per-stage
reward. For example, the mutual information between Gaussian random variables
can be written in this form (Williams 2007).

As mentioned earlier, these assumptions will allows us to restrict attention to open-loop
planning, which is significantly less demanding than closed-loop planning. We state the
linear Gaussian version of the active information acquisition problem formally. Let Xi ∼=
Rdxi be the state space of sensor i and let Ui be a finite space of admissible control inputs
(e.g., motion primitives). Also, let U := U1× . . .×Un and X := X1× . . .×Xn with associated
metric dX . The information available to the sensors at time t to compute the control inputs
ut ∈ Ut is:

H0 := (x0, z0), Ht := (x0:t, z0:t, u0:(t−1)), t > 0.
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Then, a control policy for sensor i is a sequence of functions µi,t(Ht) ∈ Ui for t = 0, . . . , T−1
that maps a history Ht of control inputs, sensor states, and sensor observations to a control
input in the set of admissible controls Ui.

Problem (Linear Gaussian Active Information Acquisition). Given initial sensor states
x0 ∈ X , a prior on the target states y0, and a finite planning horizon T , choose control
policies µt := {µi,t ∈ Ui | i = 1, . . . , n} for t = 0, . . . , T − 1 that minimize the differential
entropy (see Appendix A) of the target states conditioned on the measurement set z1:T :

min
µ0:T−1

h(yT | z1:T ) OR
T∑
t=1

h(yt | z1:t)

s.t. xt+1 = f(xt, µt)

yt+1 = At(xt, ut)yt + wt, wt ∼ N (0,Wt(xt, ut))

zt = Ht(xt)yt + vt, vt ∼ N (0, Vt(xt))

(2.1)

where vt is a sensor-state-dependent Gaussian measurement noise, whose values are inde-
pendent at any pair of times and across sensors, and wt is uncorrelated Gaussian noise on
the target process, which is independent of the measurement noise vt but might depend on
the sensor states xt and the control inputs ut.

In addition to the linear Gaussian assumptions on the target motion model and the
sensor observation model, we notice two other differences with respect to the general problem
(1.4) in Sec. 1.2. First, we have chosen conditional differential entropy as a particular
measure of uncertainty (here we minimize uncertainty instead of maximizing information).
This choice will be discussed in Sec. 2.3. We consider two types of cost functions: a terminal-
stage-only cost function and an additive stage cost. The first one is concerned only with the
performance at the terminal time, while the second one minimizes the uncertainty in the
target state along the whole sensor trajectory. Depending on the application, either cost
function might be effective. For example, in localization problems with high-speed vehicles
it is not desirable to have growing uncertainty at any time so the second cost function would
be more suitable. However, for search-and-rescue problems we might want to increase the
uncertainty while getting to a critical region and the first cost function would be more
appropriate.

The second difference from problem (1.4) is that the sensor motion model is deterministic
(i.e., not corrupted by noise), while the target motion model is subject to control. The
idea behind this choice is to separate the deterministic evolution of some sensor properties
from the uncertain dynamics. This simplifies the planning process but does not limit the
applicability of the models. In particular, even if the sensor transitions are nondeterministic,
the evolution of the (deterministic) mean sensor state can be captured in xt, while the
(nondeterministic) deviation from the mean can be captured in the (now controlled) target
state yt. For example, in Sec. 2.5.1 we will see an application to active SLAM, in which
the (deterministic) mean of the robot pose estimates will be captured by xt, while the
(nondeterministic) error in those estimates will be captured by yt.

Finally, note that problem (2.1) is still a multi-sensor multi-target problem with sensor
states xt := [xT1,t · · · xTn,t]T ∈ X . To emphasize its dependence on the number of sensors n
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and the planning horizon length T , we use the following shorthand notation:

min
µ1:n,0:(T−1)

J
(n)
T

(
µ1,0:(T−1), . . . , µn,0:(T−1)

)
. (2.2)

2.2 Separation Principle and Optimal Centralized Solution

When the models are linear Gaussian and the target prior is Gaussian, the optimal target
estimator is the Kalman filter (Appendix C.1). The target distribution remains Gaussian
over time and its covariance evolves according to the Riccati map and very importantly
is independent of the particular realization of the measurement sequence. As a result, the
differential entropy (Appendix A) of the Gaussian target distribution conditioned on the
Gaussian measurements is proportional to the log-determinant of the target covariance ma-
trix. In other words, the cost function in (2.1) is independent of the particular measurement
realization and, consequently, open-loop planning does just as well as closed-loop planning.
The following theorem formalizes this intuition.

Theorem 2.1. If the distribution of y0 is Gaussian with covariance Σ0 � 0, there exists an
open-loop control sequence σ ∈ UT that is optimal in (2.1). Moreover, (2.1) is equivalent to
the deterministic optimal control problem:

min
σ∈UT

J
(n)
T (σ) :=

T∑
t=1

ct(Σt, xt)

s.t. xt+1 =f(xt, σt), t=0, . . . , T−1,

Σt+1 =ρet+1(ρpt (Σt, xt, σt), xt+1), t=0, . . . , T−1,

(2.3)

where cT (ΣT , xT ) := log det(ΣT ) and for t = 1, . . . , T − 1:

ct(Σt, xt) :=

{
0 for the terminal-stage-only cost in (2.1)

log det(Σt) for the additive stage cost in (2.1)

Further, ρpt (Σ, x, u) is the Kalman filter covariance prediction:

ρpt (Σ, x, u) := At(x, u)ΣATt (x, u) +Wt(x, u) (2.4)

and ρet (Σ, x) is the Kalman filter covariance update:

ρet (Σ, x) := Σ− ΣHT
t (x)

(
Ht(x)ΣHT

t (x) + Vt(x)
)−1

Ht(x)Σ

= (Σ−1 +Mt(x))−1
(2.5)

where Mt(x) := HT
t (x)V −1

t (x)Ht(x) is called the sensor matrix.

Notation: In the reminder we suppress the dependence on x and u of At, Wt, Ht, Vt,
ρpt (Σ), ρet (Σ), and Mt when it is clear from context in order to simplify the notation. We
also define Rt(Σ) := I − Kt(Σ)Ht and the Kalman gain Kt(Σ) := ΣHT

t (HtΣH
T
t + Vt)

−1.
Further, given a control sequence σ := uτ , . . . , ut−1 ∈ U t−τ at time τ , the corresponding
sensor trajectory is denoted π(σ) := xτ , . . . , xt ∈ X T−τ+1.
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One computational bottleneck in problem (2.3) is the large dimension of the state
(xt,Σt). The significance of the separation principle1 (Thm. 2.1) is that search space can
be explored forward in time by building a set of reachable states rather than discretizing
the high-dimensional space of all possible covariance as required by a closed-loop approach
such as backward value iteration (Bertsekas 1995). As shown by Le Ny and Pappas (2009),
the optimal (nonmyopic) open-loop control sequence σ∗ in (2.3) can be obtained via for-
ward value iteration (FVI, Alg. 1). FVI constructs a search tree, Tt, with nodes at stage

Algorithm 1 Forward Value Iteration

1: J0 ← 0, S0 ← {(x0,Σ0, J0)}, St ← ∅ for t = 1, . . . , T
2: for t = 1 : T do
3: for all (x,Σ, J) ∈ St−1 do
4: for all u ∈ U do
5: xt ← f(x, u), Σt ← ρet+1(ρpt (Σ, x, u), xt)
6: Jt ← J + ct(Σt, xt)
7: St ← St ∪ {(xt,Σt, Jt)}
8: return min {J | (x,Σ, J) ∈ ST }

t ∈ [0, T ] corresponding to the reachable states (xt,Σt, Jt). At each node, there are edges,
one for each control in U , leading to nodes (xt+1,Σt+1, Jt+1), obtained from the dynamics
in (2.3). Unfortunately, FVI has exponential complexity, O(|U1 × . . . × Un|T ), in both the
time horizon T and the number of sensors n, since the number of nodes in Tt equals the
number of sensor trajectories of length t.

The other extreme is greedy open-loop planning, which discards all but the best (lowest
cost) node at level t of the tree Tt. The greedy policy σg is

σgt ∈ arg min
u∈U

(
log det

(
ρet+1(ρpt (Σt, xt, u), f(xt, u))

))
, t ∈ [0, T − 1] (2.6)

and has linear complexity in the length of the planning horizon, O(|U1 × . . . × Un|T ), but
no guarantees exist for its performance. Fig. 2.1 shows a graphical comparison between
greedy and nonmyopic planning in the context of problem (2.3). A natural question is if
a solution that does less work than FVI but has suboptimality guarantees can be found.
Our idea is to approximate FVI by discarding some nodes from the search tree. Unlike
the greedy approach which discards everything except the currently-best node, we should
discard nodes more intelligently in order to retain some performance guarantees. Before we
proceed, however, we need to be sure that the greedy policy is not optimal.

Example 2.1. Consider the following single-sensor linear Gaussian active information acqui-
sition problem with planning horizon T = 2.

min
σ∈{1,2,3}2

h(y2 | z1:2)

s.t. xt+1 =σt, t=0, 1,

yt+1 = yt, y0 ∼ N (0, I2) t=0, 1,

zt = H(xt)yt + vt, vt ∼ N (0, V (xt)) t=1, 2,

1Note that Thm. 2.1 guarantees the ability to plan open-loop which in general is stronger than the
separation principle. For example, linear quadratic Gaussian regulation satisfies the separation principle but
open-loop regulation cannot be achieved. Here, the cost function (2.3) is crucial in guaranteeing independence
from the particular measurement realizations.
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Figure 2.1: Forward value iteration (FVI) is a nonmyopic open-loop planning approach which con-
structs a search tree (right) with branching factor |U| and depth T . It is guaranteed to find the
optimal control sequence σ∗ in (2.3) but its complexity is exponential in T (and n). Greedy open-
loop planning, on the other hand, keeps only the best node per stage (left) and, hence, has linear
complexity in T (and exponential in n) but provides no performance guarantees.

Figure 2.2: Example that greedy planning is worse than nonmyopic planning even for static inde-
pendent targets and a planning horizon of T = 2. The control sequence chosen by greedy planning
is indicated in red, while the optimal two-step sequences are shown in green.

where the sensor observation model is defined by the sensor matrixM(x) :=HT(x)V −1(x)H(x)
as follows:

M(1) =

[
0.45 0

0 0.45

]
M(2) =

[
1 0
0 0

]
M(3) =

[
0 0
0 1

]
.

Let Ωt := Σ−1
t be the target information matrix at time t. Due to the separation principle

(Thm. 2.1), the problem is equivalent to:

max
σ∈{1,2,3}2

log det(Ω2)

s.t. Ωt+1 = Ωt +M(σt), t=0, 1.

Fig. 2.2 shows the search tree of depth 2 needed to compute the optimal open-loop policy
and the control inputs chosen by the greedy policy. We can see that the greedy policy
commits to a suboptimal input at the first stage and hence achieves a worse reward than
the optimal control sequence. It is noteworthy that greedy planning is not optimal even
in such a simple setting with static independent targets. Interestingly, this example also
shows that the optimal control policy is not unique.
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2.3 On the Choice of Cost Function

Before we proceed with an approximation of FVI, we discuss the choice of conditional dif-
ferential entropy as a cost function in problem (2.1). The theory of optimal designs (Kiefer
1974) proposes several efficiency measures (functionals of the eigenvalues of the target in-
formation matrix Ωt := Σ−1

t ), which can be used to quantifying the performance of the tar-
get estimator. The most widely-used information measures are A-optimality (− tr(Ω−1

t )),
D-optimality (det(Ωt)), T-optimality (tr(Ωt)), and E-optimality (λmin(Ωt)). Information
theory (Cover and Thomas 2012) provides another set of functions, such as mutual infor-
mation and conditional entropy (see Appendix A for details), which can be used to quantify
the uncertainty in the target state given the received measurements.

Without offering an exhaustive treatment of the subject, we present some evidence that
conditional entropy (proportional to D-optimality in the case of Gaussian variables) is su-
perior to the other information measures for the purposes of active information acquisition.
The first indication is provided by Carrillo et al. (2015b). The authors carry out a robot
pose estimation experiment in which the robot receives no measurements and uses only
its motion model to estimate the pose over time (dead reckoning). It is natural to expect
that the uncertainty of the robot pose estimate should grow monotonically when there is
no measurement feedback. However, the authors show that certain circular robot motions
may cause the A-opt and E-opt criteria to decrease. D-opt is the only criterion that does
not exhibit this undesirable behavior. A second indication that conditional entropy is a su-
perior criterion can be observed when the target transitions are controlled (i.e., the target
transition matrix A is a function of u as in (2.1)). Since the sensor motion model is assumed
deterministic in (2.1), controlled target transitions are needed to capture any uncertainty
in the sensor dynamics (see the active SLAM application in Sec. 2.5.1 for more details).
Table 2.1 below shows that mutual information might be inadequate as a value function in
this case. The conditional differential entropy criterion is more appropriate (note that the
two are equivalent if the target transitions are not controlled).

Table 2.1: Suppose that the sensor state is x0, the target covariance is Σ0 = 1, and there are
two available controls u(1), u(2). The table shows an example in which the target state is a lot more
uncertain after u(1) than after u(2) but nevertheless u(1) is considered more informative by the mutual
information value function. The problem arises because, while entropy measures the uncertainty in
absolute terms, mutual information measures the change in uncertainty after the prediction step.
As a result, mutual information encourages controls that create a lot of uncertainty if it can then be
reduced significantly via the measurement. In the SLAM context, mutual information might prefer
very uncertain (e.g., high velocity) controls even if they provide the same measurement information
(captured by the sensor matrix M(x) below) as more certain ones.

u(1) u(2)

A(x0, u) 1 1
W (x0, u) 99999 1

M(x1) := HT (x1)V −1(x1)H(x1) 0.01 0.01
Σ1|0 := ρp0(Σ0, x0, u) = AΣ0A

T +W 100000 2

Σ1 = ρe1(Σ1|0, x1) = ((Σ1|0)−1 +M(x1))−1 99.9 1.96

h(y1 | z1) := 1
2 (log(2πe) + log det(Σ1)) 3.72 1.76

I(y1; z1) := h(y1)− h(y1 | z1) 3.45 0.01
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2.4 Managing Complexity due to the Planning Horizon

The goal of this section is to provide an algorithm, with complexity lower than that of
forward value iteration (Alg. 1) and performance better than that of the greedy policy
(2.6). This can be achieved by discarding some but not all of the nodes at level t of the
search tree Tt. In short, we define notions of sensor trajectories being δ-close in space and
ε-close in informativeness and prove that if several sensor trajectories δ-cross at time t and
one is ε-dominated in informativeness by the rest, then it can be discarded from the future
search with minimal loss in performance.

2.4.1 Optimality-preserving Reductions

Intuitively, if two sensor trajectories cross, i.e., there are two nodes at level t of Tt with
the same sensor state x but different target covariances, and one is clearly less informative,
i.e., its uncertainty about the target is larger (in the positive semidefinite sense) than that
of the other one, then it is not necessary to keep it. In the same vein, the covariance of
a sensor path at time t may be dominated by a combination of the covariances of several
other paths. The following definition makes this notion precise.

Definition 2.1 (Algebraic redundancy (Vitus et al. 2012)). Let {Σi}Ki=1 be a finite set
of symmetric positive semidefinite matrices. A symmetric matrix Σ � 0 is algebraically
redundant with respect to {Σi}, if there exist nonnegative constants {αi}Ki=1 such that∑K

i=1 αi = 1 and Σ �
∑K

i=1 αiΣi.

The next theorem shows that when several sensor paths cross at time t, the algebraically
redundant ones can be discarded without removing the optimal one under the following
assumption.

Assumption. The stage cost ct(Σ, x) is concave and monotone in Σ.

Theorem 2.2 (Optimal reduction). For t ∈ [1, T ], let (x,Σ, J) ∈ St be a node in level t
of the search tree Tt. If there exist a set {xi,Σi, J i} ⊆ St \ {(x,Σ, J)} such that x = xi, ∀i
and diag(Σ, J) is algebraically redundant with respect to {diag(Σi, J i)}, then (x,Σ, J) can
be removed from St without eliminating the optimal trajectory.

Remark. If a terminal-stage-only cost is used, i.e., ct(Σ, x) = 0 for t < T , then it is not
necessary to keep track of the running cost Jt. It is sufficient to check Σ with respect to
{Σi} for algebraic redundancy.

2.4.2 ε-Suboptimal Reductions

At the expense of losing optimality, we can discard even more of the crossing trajectories
by using a relaxed notion of algebraic redundancy.

Definition 2.2 (ε-Algebraic redundancy (Vitus et al. 2012)). Let ε ≥ 0 and let {Σi}Ki=1

be a finite set of symmetric positive semidefinite matrices. A symmetric matrix Σ � 0 is
ε-algebraically redundant with respect to {Σi}, if there exist nonnegative constants {αi}Ki=1

such that
∑K

i=1 αi = 1 and Σ + εI �
∑K

i=1 αiΣi.

22



Denote the search tree at time t with all ε-algebraically redundant nodes removed by
T εt . Let πε = x0, x

ε
1, . . . , x

ε
T ∈ X T+1 be the trajectory obtained by forward value iteration

on the reduced tree T εT with a corresponding covariance sequence Σ0,Σ
ε
1, . . . ,Σ

ε
T and cost

J εT . To quantify its performance we focus on the terminal-stage-only cost in (2.1), i.e,
J εT := log det(Σε

T ). Let π∗ = x0, x
∗
1, . . . , x

∗
T ∈ X T+1 be the optimal sensor trajectory in TT

with covariance sequence Σ0,Σ
∗
1, . . . ,Σ

∗
T and cost J∗T := log det(Σ∗T ). The following theorem

provides an upper bound on the gap, (J εT − J∗T ), between the performances of πε and π∗.

Theorem 2.3 (ε-Suboptimal reduction). For t ∈ [1, T ], let β∗ <∞ be the peak estimation
error of the optimal policy, i.e., Σ∗t � β∗I and A∗tΣ

∗
tA
∗
t + W ∗t � β∗I, and let λ∗ > 0

be a lower bound on the information obtained per step along the optimal trajectory, i.e.,
λ∗I �

(
(W ∗t )−1 +M∗t+1

)−1
. Then,

0 ≤ J εT − J∗T ≤ ε∆, ∆ :=
dy
λ∗

(
1 +

β5
∗
λ5
∗

)
(2.7)

where dy is the target dimension.

Remark. If the peak estimation error β∗ remains bounded as T → ∞, i.e., the sensors
performs well when using the optimal policy, then ∆ <∞. In other words, the suboptimality
gap of πε is bounded regardless of the length T of the planning horizon and grows linearly
in ε!

2.4.3 (ε, δ)-Suboptimal Reductions

If the sensor motion is restricted to a graph, many of the possible future trajectories will
be intersecting and the results from Thm. 2.3 are very satisfactory. However, if the space
of sensor configurations, X , is continuous, depending on the sensor motion model (e.g.,
differential drive), it is possible that no two sensor states reachable at time t are exactly
equal. Then, the reductions from Thm. 2.3 cannot be applied. To avoid this case, we can
relax the notion of trajectory crossing at time t.

Definition 2.3 (Trajectory δ-Crossing). Trajectories π1, π2 ∈ X T+1 δ-cross at time t ∈
[1, T ] if dX (π1

t , π
2
t ) ≤ δ for δ ≥ 0.

Instead of discarding ε-algebraically redundant trajectories which cross, we can discard
those which δ-cross. Let T ε,δt be the reduced tree at time t, with all ε-algebraically redundant
δ-crossing nodes removed. Some continuity assumptions are necessary in order to provide
suboptimality guarantees for searching in T ε,δt .

Assumption 2.1 (Motion Model Continuity). The sensor motion model is Lipschitz
continuous in x with Lipschitz constant Lf ≥ 0 for every fixed u ∈ U :

dX (f(x1, u), f(x2, u)) ≤ LfdX (x1, x2), ∀x1, x2 ∈ X .

Assumption 2.2 (Target and Observation Model Continuity). Consider arbitrary
t ≥ 0, u ∈ U , x1, x2 ∈ X , and Σ � 0. Let ρi(Σ) := ρet+1(ρpt (Σ, xi, u), f(xi, u)) for i = 1, 2.
Assume that the matrices At(x, u), Wt(x, u), Ht(x), and Vt(x) in (2.1) are defined so that
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there exists a real constant Lm ≥ 0 such that for 0 < γ := (1 + LmdX (x1, x2))−1 ≤ 1, the
Riccati map satisfies the following continuity notion:

ρ1(Σ) � γρ2(Σ) + (1− γ)ρ1(0),

ρ2(Σ) � γρ1(Σ) + (1− γ)ρ2(0).

Assumption 2.1 says that when two sensor configurations are close and the same sequence
of controls is applied, then the resulting trajectories will remain close. Assumption 2.2 says
that sensing from similar configurations results in similar information gain. This gives the
intuition that when two trajectories δ-cross their future informativeness will be similar. We
make this intuition precise in the next theorem. Let πε,δ ∈ X T+1 be the sensor trajectory
obtained by searching the reduced tree T ε,δT with corresponding cost J ε,δT := log det(Σε,δ

T ).

The gap, (J ε,δT − J∗T ), between the performances of πε,δ and π∗ is bounded as follows.

Theorem 2.4 ((ε, δ)-Suboptimal reduction). For t ∈ [1, T ], let β∗ <∞ be the peak estima-
tion error of the optimal policy, i.e., Σ∗t � β∗I and A∗tΣ

∗
tA
∗
t + W ∗t � β∗I, and let λ∗ > 0

be a lower bound on the information obtained per step along the optimal trajectory, i.e.,
λ∗I �

(
(W ∗t )−1 +M∗t+1

)−1
. Then,

0 ≤ J ε,δT − J
∗
T ≤ (ζT − 1)

[
J∗T − log det(λ∗I)

]
+ ε∆T , (2.8)

where ζt :=

t−1∏
τ=1

(
1 +

τ∑
s=1

LsfLmδ

)
≥ 1, ∆T :=

dy
λ∗

(
1 +

β∗
λ∗

T−1∑
τ=1

ζT
ζτ
ηT−τ∗

)
,

η∗ :=
β4
∗

β4
∗ + λ4

∗
< 1, and dy is the target dimension.

Notice that Thm. 2.3 is a special case of Thm. 2.4 because if δ = 0, then ζt = 1,∀t ∈
[1, T ] and (2.8) reduces to (2.7). Then, the suboptimality gap remains bounded regardless
of the time horizon and grows linearly with ε. If δ > 0, then limT→∞ ζT = ∞ and the
suboptimality gap grows with T and δ. The bound is loose, however, because it uses a
worst-case analysis. The worst case happens when a trajectory, which was discarded from
T ε,δT , persistently obtains more information than a trajectory, which remains very close in
space and is still in the search tree. Even then, if the optimal policy performs well, the term
J∗T − log det(λ∗I) gets smaller as ζT increases and the suboptimality gap remains small.

2.4.4 (ε, δ)-Reduced Value Iteration

The approaches for reducing the search tree, developed in the previous subsections, can
be used to significantly decrease the complexity of the FVI algorithm (Alg. 1), while
providing suboptimality guarantees (Thm. 2.4). The (ε, δ)-Reduced Value Iteration (RVI) is
summarized in Alg. 2. Note again that if a terminal-stage-only cost is used, i.e., ct(Σ, x) = 0
for t < T , then it is not necessary to keep track of the running cost Jt and is sufficient to
check if Σ is algebraically redundant.

An appealing property of Alg. 2 is that at stage t at least the node with currently
lowest cost is retained (Line 8). This guarantees that the control sequence obtained from
RVI performs at least as well as the greedy policy (2.6). RVI is a powerful technique because
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Algorithm 2 (ε, δ)-Reduced Value Iteration

1: J0 ← 0, S0 ← {(x0,Σ0, J0)}, St ← ∅ for t = 1, . . . , T
2: for t = 1 : T do
3: for all (x,Σ, J) ∈ St−1 do
4: for all u ∈ U do
5: xt ← f(x, u), Σt ← ρet+1(ρpt (Σ, x, u), xt)
6: Jt ← J + ct(Σt, xt)
7: St ← St ∪ {(xt,Σt, Jt)}
8: Sort St in ascending order according to max{Jt, cT (Σt, xt)}
9: S′t ← St[1] . State with lowest cost

10: for all (x,Σ, J) ∈ St \ St[1] do
11: % Find all nodes in S′t, which δ-cross x:
12: Q← {diag(Σ′, J ′) | (x′,Σ′, J ′) ∈ S′t, dX (x, x′) ≤ δ}
13: if isempty(Q) or not( diag(Σ, J) is ε-alg. red. wrt Q ) then
14: S′t ← S′t ∪ (x,Σ, J)

15: St ← S′t
16: return min {J | (x,Σ, J) ∈ ST }

it provides a trade-off between complexity and optimality which can be controlled via the
parameters (ε, δ). In particular, if both parameters are zero, we obtain the optimal solution
with exponential complexity in T , while if both are infinite, we obtain the greedy solution
with linear complexity in T , which keeps only the best node at level t of the tree Tt.

The bottleneck of Alg. 2 is checking ε-algebraic redundancy (Line 13), which requires
solving a linear matrix inequality (LMI) feasibility problem in dy dimensions. It is a convex
feasibility problem and off-the-shelf solvers exist (MATLAB 2012). However, if a solution
for a short planning horizon is needed quickly (e.g., in applications with nonlinear mod-
els, it is necessary to re-linearize the models and re-plan the trajectories after every few
measurements), the algebraic redundancy can be verified only approximately, i.e., for a
finite number of values for {αi}Ki=1. In particular, choosing αj = 1 and αi = 0, i 6= j for
j=1, . . . ,K, requires verifying only K positive-semidefinite inequalities:

Σ + εI � Σi, i = 1, . . . ,K, (2.9)

instead of solving the LMI feasibility problem. As a result, some dominated nodes might
not be removed but this does not affect the performance guarantees in Thm. 2.2, Thm.
2.3, and Thm. 2.4.

2.4.5 Exploiting Sparsity

A fact that does not play a role in the problem formulation but is important for the solution
is that if the interactions among the target states are local (e.g. static landmarks), the
information matrix, Ω0 := Σ−1

0 , is sparse, whereas the covariance matrix is not (Le Ny
and Pappas 2009). For example, the information structure in SiLAM is naturally sparse
(Dellaert and Kaess 2006), since it encodes constraints from measurements that connect
only two variables (two robot poses or a robot pose and a landmark location). Since the
planning process (2.3) uses prior information from the estimation layer, it is natural that it
utilizes a sparse representation too. Yet, Alg. 2 does not exploit this.
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The sparsity of Ωt can be leveraged by replacing the Kalman filter in Alg. 2 with a
square-root information filter (SRIF, Bierman (1974)). We take a closer look at the target
motion model and decompose the state yt into a static part (ys) and dynamic part (yd):

ydt+1 = Adt (xt, ut)y
d
t + wdt , wdt ∼ N (0,W d

t (xt, ut)),

yst+1 = yst ,
(2.10)

so that At(x, u) := diag(Adt (x, u), I) and Wt(x, u) := diag(W d
t (x, u), 0). Since most exist-

ing SRIF formulations require invertible noise covariances, we derive SRIF equations that
specifically handle the case that part of the target state is static and the associated covari-
ance is zero. Let the Cholesky factor (informally, square root2) of the information matrix
be the upper triangular matrix Ct, such that Ωt = CTt Ct, and decompose it into blocks:

Ct =

[
Dt Ft
0 Gt

]
, (2.11)

where Dt corresponds to the dynamic target states (ydt ) and Gt - to the static target states
(yst ).

Proposition 2.5. The square-root information filter equations, with prior square-root ma-
trix Ct in (2.11), process model in (2.10), measurement model in (2.1), and known xt, xt+1,
ut, are:

Predict:

(W d
t )−1/2 0 0

Dt(A
d
t )
−1 Dt(A

d
t )
−1 Ft

0 0 Gt

=Q

[
∗ ∗
0 Ct+1|t

]

Update:

[
Ct+1|t

V
−1/2
t+1 Ht+1

]
=Q̄

[
Ct+1

0

]

Combined:


(W d

t )−1/2 0 0
Dt(A

d
t )
−1 Dt(A

d
t )
−1 Ft

0 0 Gt

0 V
−1/2
t+1 Ht+1

=Q̂

∗ ∗
0 Ct+1

0 0


where Q, Q̄, Q̂ are orthogonal matrices such that the other matrices on the right-hand sides
are upper triangular. The dependence of Adt ,W

d
t on xt, ut and of Ht+1, Vt+1 on xt+1 is not

explicit to simplify notation.

Proposition 2.5 states that the update and prediction steps can be computed via QR
decomposition. To use the SRIF and avoid computing the covariance matrices in the reduced
value iteration algorithm (Alg. 2), we express the cost ct and the approximate algebraic
redundancy condition (2.9) in terms of C. The cost becomes:

ct(Σ, x) = log det(Σ) =−log
(
det(C)2

)
=−2

∑dy
i=1 log |Cii|,

2The Cholesky factorization of a positive definite matrix can be interpreted as its square root but it is
not necessarily the same as the unique nonnegative square root of the matrix.
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while (2.9) can be modified via a Schur complement:

Ωi − (Σ + εI)−1 � 0, i = 1, . . . ,K,

CTi Ci − CT (I + εCCT )−1C � 0, i = 1, . . . ,K,[
I + εCCT C

CT CTi Ci

]
� 0, i = 1, . . . ,K.

2.4.6 Linearization and Model Predictive Control

In this section, we will show that the solution we developed for the linear Gaussian active
information acquisition problem, coupled with linearization and model predictive control,
can generate an adaptive policy for the general active information acquisition problem (1.4)
with nonlinear models. The only requirement is that the nonlinear models can be linearized
(differentiability is sufficient but a high-fidelity linear approximation can be obtained even
without it in some cases (Huber 2009, 2015)). In particular, consider the general active
information acquisition problem:

max
µ0:T−1

h(xT , yT | z1:T )

s.t. xt+1 = f(xt, µt, ηt), Eηt = 0, EηtηTt = E0

yt+1 = a(yt, wt), Ewt = 0, EwtwTt = W0

zt = h(xt, yt, vt), Evt = 0, EvtvTt = V0

(2.12)

where ηt, wt, vt are noise terms with finite second moments and we assume a prior on
the sensor and target states with mean (x̂T0 , ŷ

T
0 )T and covariance Σ0 is given. For t ∈

[0, T−1] and some fixed control sequence u0, . . . , uT−1 ∈ UT , define the predicted trajectory
of the (deterministic) mean (x̂T0 , ŷ

T
0 )T of the joint sensor-target state and the predicted

measurements as follows:

x̂t+1 = f(x̂t, ut, 0)

ŷt+1 = a(ŷt, 0)

ẑt+1 = h(x̂t+1, ŷt+1, 0).

Further, let δxt := xt − x̂t, δyt := yt − ŷt, and δzt := zt − ẑt be the (nondeterministic)
prediction errors. Assuming that f, a, h are differentiable, we can linearize them around the
predicted trajectories:

δxt+1 ≈
[
∂f

∂x
(x̂t, ut, 0)

]
δxt +

[
∂f

∂η
(x̂t, ut, 0)

]
ηt

δyt+1 ≈
[
∂a

∂y
(ŷt, 0)

]
δyt +

[
∂a

∂w
(ŷt, 0)

]
wt

δzt+1 ≈
[
∂h

∂x
(x̂t+1, ŷt+1, 0)

∂h

∂y
(x̂t+1, ŷt+1, 0)

](
δxt+1

δyt+1

)
+

[
∂h

∂v
(x̂t+1, ŷt+1, 0)

]
vt

If these approximate models are used in place of the original nonlinear models in (2.12),
we obtain a linear Gaussian active information acquisition problem and can solve it via the
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techniques developed in this chapter. In particular, we get an instance of problem (2.3)
with sensor state (x̂Tt , ŷ

T
t )T , target state (δxTt , δy

T
t )T and models defined as follows:

f(x̂, ŷ, u) :=

[
f(x̂, u, 0)
a(ŷ, 0)

]
A(x̂, ŷ, u) :=

[ ∂f
∂x(x̂, u, 0) 0

0 ∂a
∂y (ŷ, 0)

]

W (x̂, ŷ, u) :=

[ ∂f∂η (x̂, u, 0)
]
E0

[
∂f
∂η (x̂, u, 0)

]T
0

0
[
∂a
∂w (ŷ, 0)

]
W0

[
∂a
∂w (ŷ, 0)

]T


H(x̂, ŷ) :=
[
∂h
∂x(x̂, ŷ, 0) ∂h

∂y (x̂, ŷ, 0)
]

V (x̂, ŷ) :=

[
∂h

∂v
(x̂, ŷ, 0)

]
V0

[
∂h

∂v
(x̂, ŷ, 0)

]T
As mentioned earlier, higher-fidelity linearizations are possible and since (2.1) allows for
time-varying matrices in the models, we can use very precise linear versions of the equations
in (2.12). Another important note is that the presence of noise in the original sensor
dynamics in (2.12) does not prevent us from using the techniques of this chapter.

The linearization quality depends on the predicted target trajectory, which in turn
depends on the measurements obtained online. As a result, it is necessary to re-plan the
sensor trajectories online after every new measurement. In general, re-planning would be
feasible only for a short horizon T < Tmax before the plan is needed. Alg. 3 shows how to use
the (ε, δ)-RVI and model predictive control to generate an adaptive policy. We emphasize

Algorithm 3 Model predictive control via the (ε, δ)-RVI

1: Input: Tmax, x̂0, ŷ0,Σ0,U , f, a, h, E0,W0, V0, T, ε, δ
2: for t = 0 : Tmax do
3: Predict a target trajectory of length T : ŷt, . . . , ŷt+T
4: Linearize the models (f, a, h, E0,W0, V0) to get f , {Aτ ,Wτ , Hτ , Vτ}Tτ=0

5: Plan a sensor trajectory of length T :
6: σ ← (ε, δ)-RVI(x̂t, ŷt,Σt, f,U , {Aτ ,Wτ , Hτ , Vτ}Tτ=0, T )
7: Move the sensors: xt+1 ← f(xt, σ1, ηt)
8: Get a new observation: zt+1 ← h(xt+1, yt+1, vt+1)
9: Update the sensor and target estimates: (x̂t+1, ŷt+1, Σ̂t+1)← Filter(x̂t, ŷt, Σ̂t, zt+1)

that the linearized motion and observation models are utilized merely for determining the
next set of control inputs (Line 6), while the state inference (Line 9) can still be performed
with any nonlinear filter.

2.4.7 Application: Methane Emission Monitoring

To motivate the discussion so far, we consider a methane emission monitoring problem,
originally addressed by the Best Service Robotics paper (Hernandez Bennetts et al. 2013)
at ICRA 2013. The task is to estimate the gas concentration in a landfill using a remote
methane leak detector (RMLD) based on tunable diode laser absorption spectroscopy (Fig.
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Figure 2.3: Mobile robot equipped with a remote methane leak detector (RMLD) sensor based
on tunable diode laser absorption spectroscopy. The RMLD sensor returns a gas concentration
measurement in parts-per-million (ppm) integrated along the distance in meters (m) traveled by the
laser beam (courtesy of Hernandez Bennetts et al. (2013)).

2.3). The RMLD sensor is mounted on a robotic platform, Gasbot, which follows an explo-
ration path pre-specified by hand. The techniques proposed in this chapter can automatically
generate the most informative trajectory for the Gasbot.

In detail, suppose that state of the Gasbot consists of its 2D position (x1, x2) ∈ R2

and the orientation of the RMLD sensor θ ∈ SO(2) so that x := (x1, x2, θ)T . At each
time period, the Gasbot can move on a grid and choose the orientation of its sensor in 30◦

increments: Θ := {−π,−5π/6, . . . , 5π/6},

U :=

{
(u1, u2, u3)T

∣∣∣∣ (u1

u2

)
∈ {0,±e1,±e2}, u3 ∈ Θ

}
,

where e1 and e2 are the standard basis vectors in R2. With ut ∈ U , the sensor motion model
is:

xt+1 = f(xt, ut) := (x1
t + u1

t , x
2
t + u2

t , u
3
t )
T .

Given a time horizon T , we would like to choose a control policy for the Gasbot in order to
obtain a good map yT ∈ Rdy of the gas concentration in the landfill. The i-th component,
yiT , represents the estimate of the concentration in parts per million (ppm) in the i-th cell
of the map. We assume a static methane field so that A = Idy ,W = 0. It was verified
experimentally by Hernandez Bennetts et al. (2013) that a good sensor observation model
is:

zt = H(xt)yt + vt =

dy∑
i=1

li(xt)y
i
t + vt, vt ∼ N (0, V ),

where the i-th component of H(xt) ∈ R1×dy is the distance li(xt) traveled by sensor laser
beam in cell yit for the given sensor pose xt. Solving problem (2.1) will provide an automatic
and informative way to control the Gasbot in order to obtain an accurate map of the
methane concentration. We apply the (ε, δ)-RVI algorithm (Alg. 2).

Since the movement of the Gasbot is restricted to a grid, the possible sensor trajectories
will be crossing frequently and we can use δ = 0. The dimension dy of the target is the
number of cells in the gas concentration map and would typically be very large. Checking
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Figure 2.4: Comparison of the sensor trajectories (white) obtained by the greedy algorithm (top
left) and the reduced value iteration algorithm (top right) with ε =∞ and δ = 0 after 40 time steps.
A typical realization of the methane field is shown on top, while the diagonal of the prior covariance
matrix is shown on the bottom left. The red lines indicate the orientation of the gas sensor during
the execution. On the bottom right, the log number of nodes maintained in the search tree by the
two approaches is compared to the complete tree maintained by forward value iteration.

algebraic redundancy requires solving an dy-dimensional LMI feasibility problem, which is
computationally very demanding. To avoid this, we let ε =∞ (alternatively, we could use
the approximate redundancy verification in (2.9)). This means that when several paths

cross at time t, only the most informative one is kept in T ε,δt . Thus, the number of nodes

in T ε,δt remains bounded by the number of reachable sensor states. Trajectories of length
T = 40 were planned using RVI and the greedy policy (2.6, GREEDY). The results (Fig.
2.4) reveal an important drawback of GREEDY. It remains trapped in a local region of
relatively high variance and fails to see that there are more interesting regions which should
be explored during the limited available time. This observation resembles the outcome we
already saw in example 2.1. Fig. 2.4 also shows that the number of nodes maintained
in the search tree grows much slower with RVI than with forward value iteration, while
the quality of the RVI solution is better than the greedy one. We can conclude that the
parameters (ε, δ) allow us to manage the complexity in T and choose the operating point
on the complexity-optimality curve shown in Fig. 2.1. In particular, if both parameters are
zero, we obtain the optimal solution with exponential complexity in T , while if both are
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Figure 2.5: The Landshark differential-drive robot (left) tracks a mobile target through a wooded
area via range and bearing measurements. The plots on the right show the dependence of the sensor
performance on the robot speed, the distance to the target, and the target visibility, which can be
obstructed by trees.

infinite, we obtain the greedy solution with linear complexity in T .

2.4.8 Application: Mobile Vehicle Tracking

In this section, we apply the (ε, δ)-RVI algorithm in a mobile vehicle tracking application
that involves nonlinear models. Suppose that the sensor is mounted on a vehicle with
position (x1

t , x
2
t ) ∈ R2, orientation θt ∈ SO(2), and differential-drive dynamics discretized

with a sampling period τ = 0.5 s as described in Appendix B.1. The vehicle is controlled
using the motion primitives U = {(ν, ω) | ν ∈ {0, 1, 2, 3} m/s, ω ∈ {0,±π/2,±π} rad/s}.
The task is to track the position (y1

t , y
2
t ) ∈ R2 and velocity (ȳ1

t , ȳ
2
t ) ∈ R2 of another vehicle

with double integrator dynamics, discretized with a sampling period τ = 0.5 s and driven
by Gaussian noise with diffusion strength q = 0.2 m2/s3. The target motion model is
described in Appendix B.2. The sensor takes noisy range and bearing measurements of the
target’s position:

h(xt, yt) :=

[ √
(y1
t − x1

t )
2 + (y2

t − x2
t )

2

arctan
(
(y2
t − x2

t )/(y
1
t − x1

t )
)
− θ

]
. (2.13)

The target needs to be tracked during a period Tmax in a wooded area (Fig. 2.6), which
affects the covariance of the measurement noise (see Fig. 2.5). The noise in the range
measurement grows linearly with the distance between the sensor and the target but trees
along the way make the growth faster. The bearing measurement noise increases linearly
with the speed of the sensor. Thus, good range measurements require that the sensor is
close to the target and not blocked by trees, while good bearing measurements require that
the sensor moves slowly. The sensor has a maximum range of 15 meters, after which the
noise covariance is infinite.

To employ the reduced value iteration algorithm (Alg. 2), the observation model (2.13)
needs to be linearized about a predicted target trajectory during planning as described in
Sec. 2.4.6. The Jacobian ∇yh(x, y) of the observation model is presented in Appendix B.3
and B.4. As the linearization depends on the predicted target trajectory, it is necessary to
re-plan the sensor trajectory online via model predictive control as shown in Alg. 3. The
algorithm was implemented with Tmax = 100, T = 7, ε = 0.1, δ = 1 and 100 Monte-Carlo
simulations were carried out. Fig. 2.6 compares the tracking performance obtained via
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Figure 2.6: Simulation results from 100 Monte-Carlo runs of the target tracking scenario. Typical
realizations are shown on the left. The average root-mean-square error (RMSE) of the estimated
target position and velocity is shown on the right, along with the log det of the predicted target
covariance on the bottom right.

reduced value iteration to that of the greedy policy (2.6). We can see that the greedy policy
goes in straight line to keep the speed low, i.e., the bearing noise small, but cannot predict
in advance that the range noise will increase as the target goes further away. As a result,
the greedy solution is likely to lose the target.

2.5 Managing Complexity due to the Number of Sensors

So far we focused on managing the scalability of forward value iteration (Alg. 1) in T but
neglected that the size |U| = |U1× . . .×Un| of the control set still grows exponentially with
the number of sensors n. In this section, we develop a method to reduce the complexity
in n to linear, which complements the (ε, δ)-reduced value iteration algorithm (Alg. 2) and
leads to an effective and scalable approach for controlled information acquisition.

Before decentralizing the sensor control, we note that not all target states are of interest
to all sensors. In particular, as we saw in Sec. 2.4.6, sometimes the state uncertainty of
sensor i should be included in the target states and is of interest to sensor i only. To
capture this, we decompose the target motion model in (2.10) further. Suppose that the

dynamic part of the target state decomposes as ydt :=
[
(yd0,t)

T (yd1,t)
T · · · (ydn,t)

T
]T

,

where yd0,t captures the evolution of an exogenous process, which the sensors need to track

collaboratively, and ydi,t captures the evolution of an endogenous process, only of interest to
sensor i. The decomposition of the dynamics is:

yd0,t+1 = Ad0,ty
d
0,t + wd0,t, wd0,t ∼ N (0,W d

0,t),

ydi,t+1 = Adi,t(xi,t, ui,t)y
d
i,t + wdi,t, wdi,t ∼ N (0,W d

i,t(xi,t, ui,t)).
(2.14)
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The target states that are of interest to sensor i are yi,t :=
[
(yd0,t)

T (ydi,t)
T (yst )

T
]T

.
Instead of solving the active information acquisition problem (2.2) jointly over all sen-

sors, consider the following coordinate descent idea. Suppose that sensor 1 plans its own
trajectory, individually, without taking the other sensors into account. In other words, it
solves a single-sensor active information acquisition problem:

µc1,0:(T−1) ∈ arg min
µ̂∈UT1

J
(1)
T (µ̂) .

Then, it passes its chosen control sequence (and if necessary the motion and observation
models (2.1), (2.14) evaluated along it) on to sensor 2. Sensor 2 takes this information into
account and plans its own trajectory by solving a two-sensor active information acquisition
problem but with a fixed policy for sensor 1:

µc2,0:(T−1) ∈ arg min
µ̂∈UT2

J
(2)
T

(
µc1,0:(T−1), µ̂

)
.

Then, sensor 2 passes its information along to sensor 3, which solves a 3-sensor problem
with fixed policies for the first 2 sensors. In general, sensor i needs the control sequences
(and the motion and observation models (2.1), (2.14) evaluated along them), chosen by
sensors 1 to i− 1, and solves an i-sensor active information acquisition problem with fixed
policies for the first i− 1 sensors

µci,0:(T−1) ∈ arg min
µ̂∈UTi

J
(i)
T

(
µc1:(i−1),0:(T−1), µ̂

)
. (2.15)

Since the sensor labels are arbitrary, the coordinate descent can be carried out in any
order. Because subproblem i in (2.15) has a search space of size |Ui|T , the coordinate
descent scheme reduces the complexity in n from exponential to linear, i.e., from O(|U1 ×
. . . × Un|T ) to O(

∑n
i=1 |Ui|T ). Note that the approach is not fully-distributed because

multihop communication is needed to pass the information but all-to-all communication is
not required either because the optimization naturally occurs in communication hops. Each
of the subproblems (2.15) can be solved via the (ε, δ)-RVI algorithm.

To gain intuition about the performance of the coordinate descent scheme with respect
to the optimal centralized policy, we temporarily change the cost function in the active
information acquisition problem (2.1) from

∑T
t=1 h(yt | z1:t) to the more-commonly-used

mutual information, I(y1:T ; z1:T ).

Theorem 2.6. Let the cost function in problem (2.1) be negative mutual information,
−I(y1:T ; z1:T ). Let µ∗ be the optimal policy with associated cost J∗T . Let µc be the coordinate
descent policy with arbitrary sensor order and cost JcT . Suppose that the subproblems (2.15)
are solved optimally. Then, the following guarantee holds for the performance of µc:

JcT ≥ J∗T ≥ 2JcT . (2.16)

Since the cost is negative, this means that µc obtains at least 50% of the optimal value −J∗.

Remark : The proof relies on the fact that mutual information, when viewed as a function
of the sensor set, is submodular. This result is different from (Singh et al. 2009a, Thm.1) be-
cause it applies to controlled dynamic Gaussian-Markov random fields and allows revisiting
sensor states.
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Although the coordinate descent has a theoretically appealing guarantee with respect
to mutual information, Table 2.1 in Sec. 2.3 showed that when the target transitions are
controlled (e.g., as in the active SLAM application in Sec. 2.5.1), mutual information might
be inadequate as a value function. Next, we provide performance guarantees with respect
to the additive conditional differential entropy cost function.

Corollary 2.7. Consider problem (2.1) with additive conditional differential entropy,
∑T

t=1 h(yt |
z1:t), as cost function. Let µ∗ be the optimal policy with associated cost J∗T . Let µc be a coor-
dinate descent policy with arbitrary sensor order and cost JcT . Suppose that the subproblems
(2.15) are solved optimally. Then:

JcT ≥ J∗T ≥ 2JcT −
T∑
t=1

h(yt)−∆T ,

where ∆T :=
∑n

i=1

(∑T
t=1 h(y1:i,t)− h(y1:i,1:T )

)
≥ 0. If the dynamic target states are

controlled (i.e., Adi,t,W
d
i,t depend on xi,t, ui,t), then ∆T depends on µ∗.

2.5.1 Application: Multi-robot Active SLAM

To demonstrate the performance of our algorithms, we consider the multi-robot active
SLAM problem. Trajectory optimization in SLAM is particularly challenging due to the
coupling between the localization accuracy of the robots, the quality of the map, and the
exploration of the environment. Leung et al. Leung et al. (2006) propose a nonmyopic
approach for active SLAM with a single robot. They use attractors for exploration and an
exhaustive search for trajectory optimization. Sim et al. Sim and Roy (2005) improve the
efficiency by discretizing the environment and planning only for trajectories without self-
intersections. There are also information-theoretic approaches which rely on non-Gaussian
models (e.g. occupancy grids) but typically resort to greedy planning Bourgault et al.
(2002), Tovar et al. (2006), Carlone et al. (2014). Recently, attention has been devoted to
active visual SLAM as well Vidal-Calleja et al. (2006), Forster et al. (2014). When it comes
to multi-robot active SLAM, there are very few approaches (Kontitsis et al. 2013, Pham
and Juang 2013, Meyer et al. 2014) and most use greedy control.

We show that the active SLAM problem with n robots can be reduced to an instance
of the active information acquisition problem (2.1) via linearization. Consequently, the
combination of coordinate descent and (ε, δ)-reduced value iteration (Sec. 2.4.4) enable a
decentralized nonmyopic solution that exploits sparsity. Since the focus is on the selection
of informative controls, rather than the estimation aspect of the problem, we use an existing
graph SLAM approach along the lines of Dellaert and Kaess (2006) for inference. In our
simulations, the estimation is centralized but the control is decentralized. Decentralized
estimation can be achieved as well, via Cunningham et al. (2013) or the techniques discussed
in Sec. 2.6.

Let the robot states at time t be ri,t for i = 1, . . . , n and let the dynamics of the i-th
robot be:

ri,t+1 = fi(ri,t, ui,t, ηi,t), ui,t ∈ Ui, (2.17)

where ηi,t is zero-mean Gaussian noise with covariance Ei. The robots evolve in an envi-
ronment with M landmarks with positions m := [mT

1 , . . . ,m
T
M ]T . The task is to explore the

34



environment, autonomously and efficiently, and create an accurate map of the landmark
locations while staying well-localized. Each robot, depending on its pose ri,t can obtain
measurements zi,t (typically nonlinear, e.g., range (Appendix B.3) and bearing (Appendix
B.4)) of the visible landmarks according to the sensing model:

zi,t = hi(ri,t,m) + vi,t, vi,t ∼ N (0, Vi) (2.18)

where vi,t is a Gaussian measurement noise, whose values are independent at any pair of
times and across robots. We assume that the SLAM estimation layer provides a Gaussian
prior on the robot poses r0 and on the locations m0 of the landmarks that have been
discovered so far : [

r0

m0

]
∼ N

([
r̄0

m̄0

]
,

[
Σrr

0 Σrm
0

Σmr
0 Σmm

0

])
.

Problem (Multi-Robot Active SLAM). Given a planning horizon T , choose a sequence of
functions µt(Ht) ∈ U for t = 1, . . . , T − 1, which optimizes:

min
µ0:(T−1)

1

T

T∑
t=1

h(rt,mt | z1:t)

s.t. rt+1 = f(rt, µt(Ht), ηt), t = 0, . . . , T − 1,

mt+1 = mt, t = 0, . . . , T − 1,

zt = h(rt,mt) + vt, t = 1, . . . , T,

(2.19)

where H0 := z0, Ht := (z0:t, u0:(t−1)), t > 0 is the control and measurement history.

Because the robots neither know the total number M of landmarks, nor have prior in-
formation about the locations of the undiscovered landmarks, it is necessary to encourage
them to explore the environment. We introduce dummy “exploration” landmarks with
locations l := [lT1 , . . . , l

T
Nl

]T at the current map frontiers (Yamauchi 1997) and specify a

Gaussian prior on their locations with mean l̄ := l and block diagonal covariance Σl with
Nl blocks (see Fig. 2.7). This fake uncertainty in the exploration-landmark locations
promises information gain to the robots. If it happens that there are no exploration land-
marks within the reachable fields of view of the robots, the exploration process will stop
because the algorithm we developed so far is unable to perceive information about the en-
vironment (even if known to the robots) beyond the planning horizon. Following Leung
et al. (2006), we include attractor landmarks (see Fig. 2.7), which incorporate global in-
formation about the environment in the local planning process. For each robot we use a
state machine as discussed in (Leung et al. 2006, Sec.V) to decide the attractor state from
{None, Explore, Improve Map, Improve Localization}, with None having the lowest prior-
ity and Improve Localization - the highest. For instance, if the entropy of robot i’s pose is
larger than a threshold, we place localization attractors along the shortest path from the
robot’s estimated pose to the best localized landmark (see Fig. 2.7). We specify a Gaussian

prior on the attractor locations a :=
[
aT1 · · · aTNa

]T
with mean ā := a and block diagonal

covariance Σa with Na blocks. To simplify notation, let q0 :=
[
mT

0 lT aT
]T

be the com-
bined locations of the discovered landmarks, the exploration landmarks, and the attractors
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Figure 2.7: A snapshot of the multi-robot active SLAM simulation. The cyan circles show the
true landmark positions, the blue squares and ellipses show the estimated landmark positions and
covariances, the green triangles show the true robot poses, the red ellipses show the estimated robot
position covariances, the dotted red sectors indicate the robots’ fields of view, the yellow squares
show the exploration landmarks, and the magenta stars show localization attractors associated with
the top robot. The gray area represents unexplored space.

with prior: [
r0

q0

]
=


r0

m0

l
a

 ∼ N


r̄0

m̄0

l̄
ā

 ,


Σrr
0 Σrm

0 0 0
Σmr

0 Σmm
0 0 0

0 0 Σl 0
0 0 0 Σa




Finally, to reduce the active SLAM problem (2.19) to an instance of the active in-
formation acquisition problem (2.1), we use linearization and model predictive control as
described in Sec. 2.4.6. The models in (2.19) are linearized about an open-loop predicted
trajectory of the (deterministic) mean (r̄t, q̄t) of the joint robot-landmark state (rt, qt). Let
δrt := rt − r̄t, δqt := qt − q̄t, and δzt := zt − h(r̄t, q̄t) be the deviations from the mean. We
obtain the following linearized version of (2.19):

min
µ0:(T−1)

1

T

T∑
t=1

h(rt, qt | z1:t)

s.t. for t = 0, . . . , T − 1

r̄t+1 =f(r̄t, µt(It), 0), q̄t+1 = q̄t, δqt+1 = δqt (2.20)

δrt+1≈
[
∂f

∂r
(r̄t, µt(It), 0)

]
δrt +

[
∂f

∂η
(r̄t, µt(It), 0)

]
ηt

δzt+1≈
[
∂h

∂r
(r̄t+1, q̄t+1)

]
δrt+1+

[
∂h

∂m
(r̄t+1, q̄t+1)

]
δqt+1+vt,

which is an instance of problem (2.1) with target state yt := (δrTt δqTt )T and sensor state
xt := (r̄Tt q̄Tt )T . Our solution to the active SLAM problem is summarized in Alg. 4 and is
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Algorithm 4 Multi-Robot Active SLAM

repeat:



1) Receive measurements and update the SLAM estimate

2) Remove any exploration landmarks within the robots’

fields of view and add new ones at the map frontiers

3) Remove the old attractors and add new ones if necessary

4) Plan T -step trajectories by solving (2.20) via coordinate

descent (2.15) and reduced value iteration (Alg. 2)

5) Apply the first control inputs to move each robot

Time Step: 161
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Figure 2.8: Two instances of a four-robot active SLAM simulation which demonstrate the estimation
quality and the exploration progress in an environment with 200 landmarks. The red dotted curves
show the estimated robot trajectories, while the other symbols are described in the caption of Fig.
2.7. The robots have differential drive dynamics with maximum velocity 3 m/s, standard deviations
0.1 m/s and 5◦/s in linear and angular velocities, respectively, 10 m sensing ranges, 94◦ fields of view,
and used range and bearing measurements with standard deviations 0.15 m and 5◦, respectively.
See Appendix D.16 Extension 1 for a video of the simulation.

illustrated in Fig. 2.8. Cooperation among the robots is achieved via the coordinate descent
scheme, which allows the robots to take information from their teammates into account
during the planning process. Details about the robot motion and measurement models are
presented in the caption of Fig. 2.8. The performance is quantified in Fig. 2.9. Importantly,
the entropy in the landmark positions is decreasing over time, although new landmarks are
continuously being discovered. The robot pose entropies fluctuate because the robots need
to repeatedly sacrifice localization accuracy in order to explore the environment. The plots
indicate that the robots successfully explore the environment, create an accurate map of
the landmark positions, and remain localized well in the process. The performance with
a 12-step planning horizon is, as expected, better than greedy planning. However, the
message here is not that our algorithm is better than a greedy approach, but that, if time
for computation is available, it should be used to improve the planned trajectories. The
(ε, δ) parameters of the reduced value iteration algorithm allow us to utilize the computation
time effectively and the extra work is guaranteed to improve the performance, compared to
the greedy approach baseline.
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Figure 2.9: The top three plots show the root mean square error (RMSE) in the robot position
estimates, the RMSE in the robot orientation estimates, and the entropy of the robot pose estimates,
average over 15 repetitions of the four-robot active SLAM scenario in Fig. 2.8. The middle row
shows the RMSE in the landmark position estimates, the average entropy in the landmark position
estimates, and the entropy of the joint robot-landmark-pose estimate. The last two plots show
the percentage of the environment covered by the robots and the number of detected landmarks
over time. The robot trajectories were planned using RVI (Alg. 2) with planning horizon T = 12,
ε =∞, and δ = 1.5. The red dotted curves on the last three plots show the performance when the
trajectories are obtained via a greedy policy (RVI with T = 1).

2.6 Distributed Estimation

This chapter discussed information-seeking control and how to manage the computational
complexity in the planning horizon T via reduced value iteration (Sec. 2.4.4) and in the
number of sensors n via decentralized control (Sec. 2.5). Due to the linear Gaussian
assumptions on the motion and observation models, the target inference was handled by
the Kalman filter. In many applications, however, decentralized control goes hand in hand
with decentralized target inference. In the final section of this chapter, we focus solely
on the estimation aspect and discuss algorithms for distributed target tracking and sensor
self-localization.

Consider a team of sensors with states (informally, locations) {x1, . . . , xn} ⊂ X ∼= Rdx .
Assume that the sensors are static and connected by a communication network, represented
by an undirected graph G = ({1, . . . , n}, E) with vertices corresponding to the sensors and
|E| = m edges. An edge (j, i) ∈ E from sensor j to sensor i exists if they can communicate.
The set of nodes (neighbors) connected to sensor i is denoted by Ni. As before, the task of
the sensors is to estimate and track the state yt ∈ Y ∼= Rdy of mobile target(s), where Y is
a convex set. The target evolves according to the motion model:

yt+1 = Ayt + wt, wt ∼ N (0,W ). (2.21)

Sensor i, depending on its location xi, obtains measurements zi,t of the target state according
to the model:

zi,t = Hi(xi)yt + vi,t, vi,t ∼ N (0, Vi(xi)). (2.22)
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As before, the measurement noise is independent at any pair of times and across different
sensors. It is also independent of the target process noise wt. Individual measurements, zi,t,
although potentially informative, do not reveal the target state completely, i.e. each sensor
faces a local identification problem. We assume, however, that the target is observable if
one has access to the measurements received by all sensors.

To use the measurements zi,t for target inference, the sensors need to know their loca-
tions. However, it is common, especially in large networks, that they have only a rough
estimate (prior). We suppose that each sensor has access to relative measurements of the
locations of its neighbors, which can be used to localize it. In particular, at time t sensor i
receives the following noisy relative state measurement from its neighbor j:

sijt = xj − xi + εijt , εijt ∼ N (0, Eij), (2.23)

where εijt is a measurement noise, which is independent at any pair of times and across
sensor pairs. The relative measurement noises are independent of the target measurement
and motion noises too. Since there is translation ambiguity in the measurements (2.23) we
assume that all sensors agree to localize themselves in the reference frame of sensor 1. The
location estimates can then be used in place of the unknown sensor positions during the
target estimation procedure. The joint localization and estimation problem is summarized
below.

Problem (Joint Estimation and Localization). The task of each sensor i is to construct
estimators x̂i,t and ŷi,t of its own location xi and of the target state yt in a distributed

manner, i.e., using information only from its neighbors and the measurements {sijt | j ∈ Ni}
and {zi,t}.

2.6.1 Distributed Target Tracking

We begin with the task of distributed target tracking, assuming that the sensors know
their locations. We specialize the general parameter estimation scheme of Rahnama Rad
and Tahbaz-Salehi (2010) to linear Gaussian observation models such as (2.22). We show
that the resulting distributed linear filter is mean-square consistent3 when the target is
stationary. This result is stronger than the weak consistency3 shown in the general non-
Gaussian case in Rahnama Rad and Tahbaz-Salehi 2010, Thm. 1.

To introduce the estimation scheme from Rahnama Rad and Tahbaz-Salehi (2010),
suppose that the target is static, i.e., y := y0 = y1 = . . . and that, instead of the linear
Gaussian measurements in (2.22), the sensor receive measurements, zi,t, drawn from a
general distribution with conditional probability density function li(·|y). As before, the
signals observed by sensor i are i.i.d. over time and independent from the observations of
all other sensors. In order to aggregate the information provided to it, each sensor i holds
and updates a pdf pi,t over the target state space Y. Consider the following distributed

3A distributed estimator of a parameter y is weakly consistent if all estimates, ŷi,t, converge in probability
to y, i.e., lim

t→∞
P
(
‖ŷi,t − y‖ ≥ ε

)
= 0 for any ε > 0 and all i. It is mean-square consistent if all estimates

converge in L2 to y, i.e., lim
t→∞

E
[
‖ŷi,t − y‖2

]
= 0, ∀i.
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estimation algorithm:

pi,t+1(y) = ξi,tli(zi,t+1 | y)
∏

j∈Ni∪{i}

(
pj,t(y)

)κij
ŷi,t ∈ arg max

y∈Y
pi,t(y)

(2.24)

where ξi,t is a normalization constant ensuring that pi,t+1 is a proper pdf and κij > 0 are
weights such that

∑
j∈Ni∪{i} κij = 1. The update is the same as the standard Bayes rule

except that sensor i does not just use its own prior but a geometric average of its neighbors’
priors. Given a connected graph, Rahnama Rad and Tahbaz-Salehi (2010) show that (2.24)
is weakly consistent under broad assumptions on the observation models li.

Next, we specialize the estimator in (2.24) to the linear Gaussian measurement model in
(2.22). Let G(ω,Ω) denote a Gaussian distribution (in information space) with mean Ω−1ω
and covariance matrix Ω−1. The quantities ω and Ω are conventionally called information
vector and information matrix, respectively. Suppose that the pdfs pi,t of all sensors i ∈
{1, . . . , n} at time t are that of Gaussian distributions G(ωi,t,Ωi,t). We claim that the
posteriors resulting from applying the update in (2.24) remain Gaussian.

Lemma 2.8 (Barker et al. 1995, Thm. 2). Let Yi ∼ G(ωi,Ωi) for i = 1, . . . , n be a collection
of random Gaussian vectors with associated weights κi. The weighted geometric mean,∏n
i=1 p

κi
i , of their pdfs pi is proportional to the pdf of a random vector with distribution

G (
∑n

i=1 κiωi,
∑n

i=1 κiΩi).

Lemma 2.9 (Barker et al. 1995, Thm. 2). Let Y ∼ G(ω,Ω) and V ∼ G(0, V −1) be random
vectors. Consider the linear transformation Z = HY + V. The conditional distribution of
Y | Z = z is proportional to G(ω +HTV −1z,Ω +HTV −1H).

Lemma 2.8 states that if the target priors are Gaussian, then after the geometric aver-
aging in (2.24), the average distribution will also be Gaussian and its information vector
and information matrix will be weighted averages of the prior ones. Lemma 2.9 says that
after applying Bayes rule the distribution remains Gaussian. Combining the two allows us
to derive the following linear Gaussian version of the estimator in (2.24):

ωi,t+1 =
∑

j∈Ni∪{i}

κijωj,t +HT
i V
−1
i zi,t,

Ωi,t+1 =
∑

j∈Ni∪{i}

κijΩj,t +HT
i V
−1
i Hi,

ŷi,t := Ω−1
i,t ωi,t,

(2.25)

where Hi := Hi(xi) and Vi := Vi(xi). We prove a strong result about the quality of the
estimates in this linear Gaussian case.

Theorem 2.10. Suppose that the communication graph G is connected and the matrix[
HT

1 · · · HT
n

]T
has rank dy. Then, the estimates in (2.25) of all sensors converge in

mean square to y, i.e., lim
t→∞

E
[
‖ŷi,t − y‖22

]
= 0 for all i.
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Algorithm 5 Distributed Linear Estimator

Input: Prior (ωi,t,Ωi,t), messages (ωj,t,Ωj,t), ∀j ∈ Ni, and measurement zi,t
Output: (ωi,t+1,Ωi,t+1)

Update Step: ωi,t+1 =
∑

j∈Ni∪{i}

κijωj,t +HT
i V
−1
i zi,t

Ωi,t+1 =
∑

j∈Ni∪{i}

κijΩj,t +HT
i V
−1
i Hi

ŷi,t+1 = Ω−1
i,t+1ωi,t+1

Prediction Step: Ωi,t+1 = (AΩ−1
i,t+1A

T +W )−1

ωi,t+1 = Ωi,t+1Aŷi,t+1

The procedure in (2.25) can be extended to track dynamic targets as in (2.21) by adding
a local prediction step, same as that of the Kalman filter, at each sensor. The resulting
distributed linear filter is summarized in Alg. 5 and Thm. 2.10 guarantees its mean square
consistency for static targets. Its performance on dynamic targets is studied in a vehicle
tracking scenario in Sec. 2.6.4.

2.6.2 Node Localization from Relative Measurements

Target tracking via the distributed estimator in Alg. 5 requires that the true sensor locations
are known. As mentioned earlier this is typically not the case, especially for large sensor
networks. This section describes a method for localization from relative measurements
(2.23), whose strong convergence guarantees can be used to analyze the convergence of a
joint localization and estimation procedure. The relative measurements, received by all
sensors at time t, can be written in matrix form as follows:

st = (B ⊗ Idx)Tx+ εt,

where B ∈ Rn×m is the incidence matrix of the communication graph G. All sensors agree
to localize relative to node 1 and know that x1 = 0. Let B̃ ∈ R(n−1)×m be the incidence
matrix with the row corresponding to sensor 1 removed. Further, define E := E[εtε

T
t ] =

diag(E1, . . . , Em), where {Ek} is an enumeration of the noise covariances associated with
the edges of G. Given t measurements, the least squares estimate of x leads to the classical
best linear unbiased estimator:

x̂t :=
(
B̃E−1B̃T

)−1
B̃E−1

t−1∑
τ=0

sτ , (2.26)

where the inverse of B̃E−1B̃T exists as long as the graph G is connected (Barooah and
Hespanha 2007). The computation in (2.26) can be distributed via a Jacobi algorithm for
solving a linear system as follows. At time t, each sensor maintains an estimate x̂i,t of

its own state and a history of the averaged measurements, σi,t := 1
t+1

∑t
τ=0

∑
j∈Ni E

−1
ij s

ij
τ ,

received up to time t. Given prior estimates (x̂i,t, σi,t), the update of the distributed Jacobi
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Figure 2.10: Initial and final (after 20 steps) node locations (red) estimated by the distributed
localization algorithm on a randomly generated graph with 300 nodes (blue) and 1288 edges (blue
dotted lines)
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Figure 2.11: Root mean squared error of the location estimates obtained from averaging 50 simulated
runs of the distributed localization algorithm with randomly generated graphs with 300 nodes (e.g.,
Fig. 2.10), connectivity radius 10 m, and measurement covariances Eij = I2

algorithm at sensor i is:

x̂i,t+1 =

(∑
j∈Ni

E−1
ij

)−1(∑
j∈Ni

E−1
ij x̂j,t − σi,t

)
,

σi,t+1 =
1

t+ 1

(
tσi,t +

∑
j∈Ni

E−1
ij s

ij
t

)
.

(2.27)

Barooah and Hespanha (2007), Barooah (2007) show that, with a single round of mea-
surements, the Jacobi algorithm provides an unbiased estimate of x. Here, we incorporate
sequential measurements and prove a stronger performance guarantee.

Theorem 2.11. Suppose that the communication graph G is connected. Then, the estimates
x̂i,t of the sensor states in (2.27) are mean-square and strongly consistent estimators of the
true sensor states, i.e., for all i:

lim
t→∞

E
[
‖x̂i,t − xi‖22

]
= 0, P

(
lim
t→∞
‖x̂i,t − xi‖2 = 0

)
= 1

The performance of the distributed localization algorithm was analyzed on randomly
generated graphs. An instance of the localization task is illustrated in Fig. 2.10, while
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the estimation error is shown in Fig. 2.11. The location priors were chosen from a normal
distribution with standard deviation of 5 meters from the true node positions.

2.6.3 Joint Localization and Estimation

Having derived separate estimators for the sensor locations and the target state, we are ready
to return to the original problem of joint localization and estimation. At time t, the location
estimates {x̂i,t} in (2.27) can be used in the target estimator (2.25) instead of the true sensor
positions. It is important to analyze the evolution of the coupled procedure because it is
not clear that the convergence result in Thm. 2.10 will continue to hold. A regularity
assumption which stipulates that nearby sensing locations provide similar information gain
is necessary.

Assumption. The sensor matrices4 Mi(x) := Hi(x)TVi(x)−1Hi(x) are bounded continuous
functions of x for all i.

The following theorem ensures that the target state estimator retains its convergence
properties when used jointly with the distributed localization procedure.

Theorem 2.12. Let {x̂i,t} be strongly consistent estimators of the sensor states, i.e.,

x̂i,t
a.s.−−→ xi, ∀i. Suppose that the communication graph G is connected and the matrix[

H1(x1)T · · · Hn(xn)T
]T

has rank dy. Let δ > 0 be arbitrary. If each sensor i updates
its target estimate (ωi,t,Ωi,t) as follows:

ωi,t+1 =
∑

j∈Ni∪{i}

κijωj,t + ĤT
i,tV̂

−1
i,t zi,t,

Ωi,t+1 =
∑

j∈Ni∪{i}

κijΩj,t + ĤT
i,tV̂

−1
it Ĥi,t,

ŷi,t+1 =
(
Ωi,t+1 + (t+ 1)δIdx

)−1
ωi,t+1,

(2.28)

where Ĥi,t := Hi(x̂i,t) and V̂i,t := Vi(x̂i,t), then the asymptotic mean square error of target
estimates is O(δ2):

lim
t→∞

E
[
‖ŷi,t − y‖22

]
= δ2yT

( n∑
j=1

πjMj(xj) + δI

)−2

y, for all i,

where y is the true target state, xj is the true position of sensor j, and π ∈ Rn is the unique
stationary distribution of the aperiodic irreducible Markov chain with transition matrix K :=
[κij ].

According to Thm. 2.12, the combined procedure for estimating the sensor locations
and the target state, specified by (2.27) and (2.28), has an arbitrarily small mean square
error.

4It is natural to describe sensor properties in terms of the sensor matrix because, in an analogy with the
Kalman filter, it captures the amount of information added to the information matrix during an update step
of the Riccati map.
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Figure 2.12: The left plot shows a realization of the vehicle tracking scenario in which a sensor
network with 40 nodes (grey) tracks 10 mobile vehicles via range and bearing measurements. The
true and estimated vehicle trajectories are shown by solid curves and red dotted curves, respectively.
The root mean squared error of the estimated vehicle positions and velocities obtained from averaging
50 simulated runs of the distributed linear estimator are shown on the right. The error increases
because as the vehicles move away from the sensor network the covariance of the measurement noise
grows with the distance (V (dij) = diag((0.07dij + 0.04)2 m2, (dij + 2)2 deg2) for dij := ‖xi− yj‖2).
The errors of node 1 (blue) are lower because its location is known (x1 = 0) and always close to the
starting vehicle positions. The rest of the parameters were: n = 40, q = 1.5, τ = 0.2, Eij = 0.5I2.

2.6.4 Application: Mobile Vehicle Tracking via a Sensor Network

First, we study the performance of the distributed linear filter (Alg. 5) in a vehicle tracking
scenario. We consider tracking several mobile vehicles via a sensor network using range and
bearing measurements (see Fig. 2.12). Similar to Sec. 2.4.8, the position (y1

j , y
2
j ) ∈ R2 and

velocity (ȳ1
j , ȳ

2
j ) ∈ R2 of the j-th target have discretized double-integrator dynamics driven

by Gaussian noise:

yj,t+1 =

[
I2 τI2

0 I2

]
yj,t + ηj,t, W := q

[
τ3

3 I2
τ2

2 I2
τ2

2 I2 τI2

]
,

where yj = [y1
j , y

2
j , ȳ

1
j , ȳ

2
j ]
T is the j-th target state, τ is the sampling period is sec, and q is

a diffusion strength measured in ( m
sec2

)2 1
Hz . Each sensor in the network takes noisy range

and bearing measurements of each target’s position:

zi,j,t =

[ √
(y1
j − x1

i )
2 + (y2

j − x2
i )

2

arctan
(
(y2
j − x2

i )/(y
1
j − x1

i )
)]+ v(t, xi, yj),

where xi := (x1
i , x

2
i ) ∈ R2 is the sensor’s location and the noise v grows linearly with the

distance between the sensor and the target. The observation model is nonlinear in this case
so we resort to linearization with respect to yj in order to apply the distributed linear filter
(Alg. 5). The tracking error is presented in Fig. 2.12.

2.6.5 Application: Methane Emission Monitoring via a Sensor Network

The performance of the joint procedure for estimating the sensor locations and the target
state, specified by (2.27) and (2.28), was evaluated on the methane emission monitoring
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problem introduced in Sec. 2.4.7. In this case, a static sensor network of remote methane
leak detectors (see Fig. 2.3 for details) is deployed to estimate the methane concentration
in the landfill. As before, the sensor observation model is linear and fits the form in (2.22).
Also, the methane field is assumed static (A = Idy ,W = 0) and is modeled by discretizing
the environment into cells and representing the gas concentration with a Gaussian random
field, y ∈ Rdy . The estimation results are summarized in Fig. 2.13 and show that the
continuity assumption on the sensor matrices in Sec. 2.6.3 is important.
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Figure 2.13: Methane emission monitoring via a sensor network. The true (unknown) sensor loca-
tions (red nodes), the sensing range (red circle), and a typical realization of the methane field are
shown on the left. The gas concentration varies from 0 to 800 parts per million (ppm) and the stan-
dard deviation of the measurements is 5 ppm. The root mean squared error of the location estimates
and of the field estimates obtained from averaging 50 simulated runs of the joint localization and
estimation algorithm with continuous sensor observation models are shown in the top two plots on
the right (for Eij = I2). In an additional experiment, the sensors were placed on the boundaries of
the cells of the discretized field. As the observation model for each sensor was defined in terms of the
proximal environment cells, this made the observation models discontinuous. The bottom right plot
illustrates that the concentration estimation error does not vanish when discontinuities are present.

2.7 Summary

This chapter considered active information acquisition under the assumption that the sen-
sor observation models and the target motion models are linear in the target state and
perturbed by Gaussian noise. We discussed that conditional entropy is an appropriate mea-
sure of uncertainty and proved that the classical separation principle between estimation
and control holds for the linear Gaussian information acquisition problem. As a result,
we managed to reduce the original stochastic optimal control problem to a deterministic
version but still the complexity of the optimal centralized algorithm turned out to be expo-
nential both in the length of the planning horizon and in the number of sensors. First, we
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proposed a reduced value iteration algorithm that mitigates the complexity in the planning
horizon by discarding uninformative sensor trajectories from the search space and exploits
sparsity in the target information matrix. We proved that the suboptimality of the algo-
rithm is bounded regardless of the length of the planning horizon. Second, we developed a
decentralized control strategy that achieves linear complexity in the number of sensors and
offers performance guarantees with respect to the optimal centralized algorithm. Finally,
we focused on distributed target inference and sensor self-localization. We developed a dis-
tributed Kalman filter for tracking mobile targets and a distributed Jacobi algorithm for
sensor localization and proved that the combined localization and target estimation pro-
cedure has arbitrarily small asymptotic mean square error. We presented applications in
methane emission monitoring, mobile vehicle tracking, and active exploration, localization,
and mapping with multiple robots. The techniques developed in this chapter offer a scalable
nonmyopic approach for active information gathering and, most importantly, coupled with
linearization and model predictive control, they can generate closed-loop control policies for
a broad variety of practical applications with nonlinear observation and motion models.
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Chapter 3

Greedy Information Acquisition
with Unknown Data Association or
Unknown Observation Models

Ch. 2 presented one approach for approximately solving the general active information
acquisition problem. The approach uses statistical linearization to convert the original
problem into a linear Gaussian one and model predictive control to incorporate information
about the measurement realizations into the otherwise open-loop plan. Consequently, it
provides good results when the motion and sensing models are accurate and the uncertain-
ties are unimodal. However, the framework requires external handling of sensing nuisances
such as missed detections, false alarms, or unknown data association (i.e., the assignment
of visible targets to received measurements) and is not applicable at all in cases when the
models cannot be linearized (e.g., the state or measurement spaces are discrete) or are com-
pletely unknown. This chapter considers two specific applications of practical importance
in which the aforementioned complications arise. A more general view of active information
acquisition in discrete state and measurement spaces is presented in the next chapter.

In the first part of this chapter, we revisit the active localization problem from Sec. 2.5.1,
in which a sensor plans informative actions in order to improve the uncertainty in its own
location, but this time we add a twist. Instead of using low-level geometric features such
as points, lines, and planes, we recognize objects in the sensor’s surroundings and consider
localizing it within a prior map of semantically-meaningful landmarks. As object classes are
discrete observations and the association between detected and visible objects is unknown,
we cannot use the Kalman filter for inference and hence cannot apply the techniques from
Ch. 2. Instead of the traditional vector-based representation, we propose a sensor obser-
vation model that encodes the (discrete) semantic observations via random finite sets and
enables a unified treatment of missed detections, false alarms, and data association. The
advantage of localizing against semantically-meaningful landmarks is that it is less ambigu-
ous and can be used for global localization1 and loop-closure2. Also, semantically-annotated

1Visual-odometry and SLAM techniques typically do not use an absolute world reference and do not
provide global localization. The initial robot pose is chosen as the map origin and is tracked over time.

2Loop-closure is the process of detecting that a mobile sensor is at a previously visited location and
updating the localization (and map in the case of SLAM) uncertainty accordingly.
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maps can be constructed for GPS-denied environments via the mapping approaches that
received significant attention in recent years (Kostavelis and Gasteratos 2013, Galindo et al.
2005, Pronobis 2011, Nüchter and Hertzberg 2008, Civera et al. 2011).

Existing landmark-based localization and SLAM techniques require external solutions to
the problems of data association and clutter rejection (Bailey 2002, Montemerlo and Thrun
2003). Moreover, state-of-the-art approaches nowadays are based on factor graphs (Kaess
et al. 2008, Kummerle et al. 2011) and rely heavily on continuous Gaussian random variables.
Hence, they cannot handle (discrete non-Gaussian) object labels in the estimation. There
is a line of work addressing visual localization, which matches observed image features to
an image database, whose images correspond to the nodes of a topological map (Wolf et al.
2005, Se et al. 2005, Angeli et al. 2009, Wang et al. 2006, Mariottini and Roumeliotis 2011,
Košecká and Li 2004). Wang et al. (2006) represent each location in the topological map by a
set of interest points that can be reliably detected in images and use nearest neighbor search
to match observed SIFT features to the database. Košecká and Li (2004) also characterize
scale-invariant key points by the SIFT descriptor and find nodes in the topological map,
whose features match the observed ones the best. The drawback of this most likely data
association approach is that when it is wrong it quickly causes the estimation procedure to
diverge. Hesch et al. (2013) study the effects of unobservable directions on the estimator
consistency in vision-aided inertial navigation systems. In the SLAM context, bad data
association can be mitigated by a two-stage approach, in which the back-end optimizer
(e.g., factor graph) is allowed to reject or alter associations proposed by the front-end (e.g.,
appearance-based place recognition) (Sünderhauf and Protzel 2011). As object recognition
algorithms miss detections and produce false alarms, correct data association is crucial for
semantic localization and semantic world modeling (Wong et al. 2013).

In recent years, random-finite-set-based solutions to SLAM gained popularity due to
their unified treatment of filtering and data association. Mahler (2007) derived the Bayesian
recursion with random-finite-set-valued observations and proposed a first-moment approx-
imation, called the probability hypothesis density (PHD) filter. The PHD filter has been
successfully applied to SLAM by Kalyan et al. (2010), Lee et al. (2013), and Mullane et al.
(2011). In these works, the vehicle trajectory is tracked by a particle filter and the first mo-
ment of a trajectory-conditioned map for each particle is propagated via a Gaussian-mixture
PHD filter. Bishop and Jensfelt (2010) address global geometric localization by formulating
hypotheses about the robot state and tracking them with the PHD filter. Zhang et al.
(2012) propose an approach for visual odometry using a PHD filter to track SIFT features
extracted from observed images. Most of the random-set approaches rely on a first-moment
approximation via the PHD filter. Only few deal with the full observation model (Dames
et al. 2013, Ma et al. 2006, Sidenbladh and Wirkander 2003) and none have applied the
model in a semantic setting or studied its computational complexity. There are also several
semantic localization approaches that do not rely on random finite sets. Anati et al. (2012)
match histogram-of-gradient-energies and quantized-colors features to the expected features
from a prior semantic map. Yi et al. (2009) and Ko et al. (2013) use semantic descriptions of
distance and bearing in a contextual map for active semantic localization. Bao and Savarese
(2011) propose a maximum-likelihood-estimation formulation for semantic structure from
motion. In addition to recovering camera parameters (motion) and 3-D locations of im-
age features (structure), the authors recover the 3-D locations, orientations, and categories
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of objects in the scene. A Markov-chain-Monte-Carlo algorithm is used to solve a batch
estimation problem by sampling from the likelihood of the collected measurements.

In the second part of the chapter, we look at an even more extreme case, in which
the observation models are completely unknown. This is relevant when the sensor signals
are difficult to model or the environment is unknown a priori. Online identification of the
observation model requires time and computational resources and might not be feasible,
especially on small sensing platforms and in time-critical missions. Due to these complica-
tions we also consider a somewhat simpler objective - to control a sensor team in order to
localize the source (a single static target) of a physical signal of interest, such as magnetic
force, heat, radio signal, or chemical concentration. We assume that the strength of the
measured signal is maximal at the location of the source and have the sensors follow its
gradient by using a stochastic approximation technique to deal with the underlying noise.
We present a single-sensor strategy and a distributed formation-based multi-sensor strategy,
which is robust to deformations in the geometry of the sensor team and can be applied to
sensors with limited computational resources and no global localization capabilities. Recent
model-free source-seeking work which uses a sensor formation to ascend the gradient of a
signal field includes Ögren et al. (2004), Wu and Zhang (2011), Li and Guo (2012), and
Brinón-Arranz and Schenato (2013). Choi et al. (2009) and Jadaliha et al. (2012) present a
general distributed learning and control approach for sensor networks and apply it to source
seeking. The sensed signal is modeled by a network of radial basis functions and recursive
least squares are used to obtain the model parameters. Ögren et al. (2004) use artificial
potentials to decouple the formation stabilization from the gradient ascent. Centralized
least-squares are used to estimate the signal gradient. A distributed approach for exploring
a scalar field using a cooperative Kalman filter is presented in Zhang and Leonard (2010).
The authors design control laws to achieve a formation, which minimizes the estimation
error. Similarly, in Brinón-Arranz and Schenato (2013) a circular formation is used to es-
timate the signal gradient in a distributed manner, based on a Newton-Raphson consensus
method. A drawback of these works is the assumption that the sensor formation is main-
tained perfectly throughout the execution of the algorithm which is hardly possible in a real
environment. Our method uses a finite difference scheme to estimate the signal gradient
correctly, even when the sensor formation is not maintained well. The correct weights nec-
essary to combine the sensor observations into a gradient approximation are recomputed
at every measurement location. Instead of a sensor network, a single vehicle may travel to
several sensing locations in order to collect the same measurements but this requires costly
maneuvers to climb the signal gradient effectively (Azuma et al. 2012, Zhang et al. 2007,
Liu and Krstić 2010, Stanković and Stipanović 2010, Ghods and Kristić 2011).

This chapter is based on the papers Atanasov et al. (2014d, 2015c, 2012, 2015b) and
presents applications in vehicle localization in residential areas, global localization of Google’s
Project Tango phone (Google ATAP group 2014), active robot localization using object de-
tections, and wireless radio source localization with an unknown sensing model.
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Figure 3.1: A mobile robot (left) localizes itself within a semantic map of the environment by
detecting chairs and doors in images (top middle), obtained from its surroundings. A semantic
observation received by the robot (top right) consists of a detected class, a detection (confidence)
score, and a bearing angle to the detected bounding box. Due to the fact that object recognition
misses detections (only one of the two visible chairs is detected) and produces false positives (there
is an incorrect door detection), it is appropriate to model the collection of semantic observations
via a set with randomly-varying cardinality. Finally, correct data association between the object
detections (top right) and the landmarks on the prior map (bottom right) plays a key role in the
robot’s ability to estimate its location.

3.1 Localization from Semantic Observations with Unknown
Data Association

In this section, we revisit the active localization problem but this time the robot uses
object detections from its surroundings to localize in a prior map of semantically-annotated
landmarks. The main challenges are to incorporate the discrete semantic observations
in the inference process, to handle the unknown data association between detected and
visible objects, and to design a control strategy for active localization, which can handle
the nonlinear non-Gaussian inference process. Consider a mobile robot, whose dynamics
are governed by the motion model xt+1 = f(xt, ut, vt), where xt := (xpt , x

r
t , x

a
t ) is the robot

state, containing its position xpt , orientation xrt , and other variables xat , such as velocity and
acceleration, ut is the control input, and vt is the motion noise. Alternatively, the model
can be specified by the probability density function (pdf) of xt+1 conditioned on xt and ut:

pf (· | xt, ut). (3.1)

The robot has access to a semantic map of the environment, containing n objects with known
poses and classes. Let the set Y = {y1, . . . , yL} represent the map, where yi := (ypi , y

r
i , y

c
i )

consists of the position ypi , orientation yri , and class yci of the i-th object. Depending on the
application, the object state yi may capture other observable properties of interest, such as
shape priors (Dame et al. 2013).

At each time t, the robot receives data from its sensors and runs an object recognition
algorithm, capable of detecting instances from the set of object classes C, present in Y . If
some object y ∈ Y is visible and detected from the current robot pose xt, then a semantic
measurement zt is obtained. In the remainder, we assume that a semantic measurement,
zt := (ct, st, bt), consists of a detected class ct ∈ C, a detection score st ∈ S, and an estimate
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bt ∈ B of the bearing from the sensor to the detected object, where S is the range of possible
scores and B is the range of bearings, usually specified by the sensor’s field of view (e.g., a
camera with B = [−47◦, 47◦] was used in our experiments). Depending on the sensors and
the visual processing, zt could also contain bounding box, range, color, or other information
about the detected object. Detections might also be generated by clutter, which includes
the background and any objects not captured on the map Y . Fig. 3.1 illustrates the object
recognition process and the challenges associated with it. Due to false alarms and missed
detections, a randomly-sized collection of measurements is received at time t. Instead of the
traditional vector representation, it is more appropriate to model the collection of semantic
observations via a random finite set3 Zt. For any t, denote the pdf of the robot state xt
conditioned on the map Y , the past semantic observations Z0:t, and the control history
u0:t−1 by pt|t and that of xt+1 | Y,Z0:t, u0:t by pt+1|t.

Problem (Semantic Localization). Suppose that control ut is applied at time t ≥ 0 and,
after moving, the robot obtains a random finite set Zt+1 of semantic observations. Given a
prior pdf pt|t and the semantic map Y , compute the posterior pdf pt+1|t+1 which takes Zt+1

and ut into account.

Remark. Semantic localization is an inference problem, in which, from the point of view
of information acquisition, the robot state is actually the target state to be estimated.
However, to be consistent with existing literature we use the notation xt, instead of the
previously-used notation yt.

It is natural to approach the problem via recursive Bayesian estimation (Appendix
C). This, however, requires a sensor observation model, which quantifies the likelihood of a
random set Zt+1 of semantic observations, conditioned on the set of objects Y and the robot
state xt+1. In Sec. 3.1.1, we model the likelihood of an observation received from a single
object in the environment. Then, in Sec. 3.1.2, we combine the single-object observation
models into an observation model for multiple objects, which captures data association,
missed detections, and false alarms. In Sec. 3.1.3, we prove that obtaining the likelihood
of a set-valued observation is equivalent to a matrix permanent computation. It is this
crucial transformation that enables an efficient polynomial-time solution to the semantic
localization problem in Sec 3.1.4 via particle filtering with set-valued observations. Finally,
in Sec. 3.1.5, we address the active version of the problem, in which the robot optimizes its
trajectory to improve to localization performance.

3.1.1 Semantic Observation Model for a Single Object

The probabilistic model of a semantic observation obtained from a single object consists of
three ingredients: a detection model, an observation likelihood, and a clutter model.

The detection model quantifies the probability of detecting an object y ∈ Y from a
given robot state x. Let β(x, y) be the true bearing angle from the robot’s sensor to the
object y in the sensor frame4. Let the field of view of the sensor5 be described by the set

3See Mahler (2007, Appendix F) for a formal definition of a random finite set
4For example, in 2-D, assuming the robot and the sensor frames coincide, β(x, y) := | tan−1((xp(2) −

yp(2))/(xp(1) − yp(1)))− xr|.
5The field of view of a camera in 2-D, assuming its frame coincides with the robot’s, can be represented
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Figure 3.2: Probability of detecting an object within the sensor field of view (not accounting for
visibility)

FoV (x). Objects outside the field of view cannot be detected. For the ones within, we use
a distance-decaying probability of detection:

pd(y, x) :=

{
p0 exp

{
− |m0−‖yp−xp‖2|

v0

}
if yp ∈ FoV (x),

0 else,
(3.2)

where p0,m0, v0 are constants specifying the dependence of the detection probability on
distance and are typically learned from training data. The constants might depend on the
object’s class yc but this is not explicit to simplify notation. Fig. 3.2 illustrates the detection
model. A more complex model which depends on the relative orientation between x and
y or uses a different function of their distance is also possible. If visibility information is
available from the prior map, it should also be considered when calculating the probability
of detection.

When an object y ∈ Y is detected, the probability of the resulting measurement z =
(c, s, b) is quantified by the observation likelihood. Assuming that conditioned on the true
object state y, the bearing measurement b is independent of the class c and score s, it
is appropriate to model its conditional pdf pβ(· | y, x) as that of a truncated Gaussian
distribution over the bearing range B with mean β(x, y) and covariance Σβ. The covariance
can be learned from training data and can be class dependent. Since object recognition
algorithms aim to be scale- and orientation-invariant, we can also assume that the class and
score measurements are independent of the robot state x. Then, the observation likelihood
of a semantic measurement z can be decomposed as:

pz(z | y, x) := pc(c | yc)ps(s | c, yc)pβ(b | y, x), (3.3)

where pc(c | yc) is the confusion matrix of the object detector and ps(s | c, yc) is a score
likelihood. The latter can be learned, for example, by recording the scores from the detected
positive examples in a training set and using kernel density estimation (see Fig. 3.9). A more
complicated generative model can be used to approximate the observation likelihood pz. For
example, FAB-Map (Cummins and Newman 2008) uses a Chow Liu tree to approximate a
probability distribution over visual words learned from SURF descriptors.

by {w ∈ R2 | ‖xp −w‖2 ≤ rd, β(x,w) ≤ αd}, where αd is the angle of view and rd is the maximum range at
which an object can be detected.
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Finally, a model of the pdf, pκ(z), of a false positive measurement generated by clutter
is needed. For example, FAB-Map (Cummins and Newman 2008) models the probability
that an observation is generated from a place not in the prior map. In our case, pκ(z) is a
product of three terms as in (3.3) but it is realistic to assume that the bearing measurement
is independent of the robot state and uniformly distributed, i.e., with pdf 1/|B|. The class
and score likelihoods should be learned from data. Note that the clutter model might
also depend on the robot state x and object state y but we suppress this for notational
convenience. Our results apply directly to clutter models of the form pκ(z | y, x).

3.1.2 Semantic Observation Model for Multiple Objects

In this section, we combine the single-object observation models into a model of the like-
lihood of a set Z = {z1, . . . , zm} of semantic observations. Given a robot pose x, let
Yd(x) := {y ∈ Y | pd(y, x) > 0} be the set of objects, detectable from x. In the reminder,
we denote the cardinality of Z by m and that of Yd(x) by n. As mentioned earlier, the data
association π between the semantic observations in Z and the visible objects in Yd(x) is
important for constructing the multi-object observation model. The following assumptions
are necessary:
(A1) Each measurement z ∈ Z is generated either by a single object y or by clutter.
(A2) An object y ∈ Y generates either a single detection with probability pd(y, x) in (3.2)

or a missed detection with probability 1− pd(y, x).
(A3) The process of receiving false-positive measurements is distributed according to the

pdf pκ(z) in the measurement space and according to a Poisson distribution with
expected value λ over time.

(A4) The false-positive process and the object-detection process are independent and all
detections are conditionally independent given the robot and object states.

(A5) Any two measurements in Z are independent conditioned on the robot state x, the
detectable objects Yd(x), and the data association π (a mapping from the visible
objects Yd(x) to the measurement set Z).

We specify the pdf of Z, conditioned on x and Yd(x), in five steps of increasing complexity.

All measurements are false positive

The simplest case is when there are no objects in proximity to the sensor, i.e., Yd(x) = ∅.
Then, any generated measurements would be from clutter. The correct observation model
in this case is due to assumption (A3) of a Poisson false-positive process:

p(Z | ∅, x) =
e−λλ|Z|

|Z|!
∏
z∈Z

pκ(z). (3.4)

This integrates to 1 if we use the set integral definition in Mahler (2007, Ch.11.3.3):∫
p(Z)dZ :=

∞∑
m=0

∫
p({z1, . . . , zm})dz1 . . . dzm.
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No missed detections and no false positives

Next, suppose that there are detectable objects in proximity to the sensor but let the
detection be perfect. In other words, assume that every detectable object generates a
measurement, i.e., pd(y, x) = 1 for any y ∈ FoV (x), and no measurements arise in any
other way, i.e., λ = 0. If the number of measurements m is not equal to the cardinality n of
the set of detectable objects Yd(x), then p(Z | Yd(x), x) = 0. Otherwise, the main challenge
is identifying the correct data association π. In other words, it is not clear which of the
detectable objects Yd(x) on the map produced which of the measurements in Z.

More formally, let Πn,m be the set of one-to-one functions g : {1, . . . , n} → {1, . . . ,m}
with n ≤ m. Due to the “perfect detection” assumption, m = n and a particular data
association can be represented by a mapping π ∈ Πn,n from the set of detectable objects to
the set of measurements. The data association π is just a permutation of {1, . . . , n} but it
is not clear which of the possible |Πn,n| = n! associations is the correct one. If a particular
data association π is chosen, it is straightforward to combine the single-object observation
likelihoods in (3.3) via the independence assumptions (A4), (A5) to obtain the pdf of Z:

p(Z | Yd(x), x, π) =
n∏
i=1

pz(zπ(i) | yi, x),

where {y1, . . . , yn} is an enumeration of Yd(x). Assuming a uniform prior6 on the possible
data associations:

p(π | Yd(x), x) =
1

n!
, π ∈ Πn,n,

existing work (e.g., FastSLAM by Montemerlo and Thrun (2003)) resorts to maximum-
likelihood estimation and computes the likelihood of Z as follows:

p(Z | Yd(x), x) =
1

n!
max
π∈Πn,n

(
n∏
i=1

pz(zπ(i) | yi, x)

)
.

The above equality, however, disagrees with the law of total probability, which states that
the data association should be marginalized. The observation model in the “perfect detec-
tion” case is:

p(Z | Yd(x), x) =
∑

π∈Πn,n

p(Z | Yd(x), x, π)p(π | Yd(x), x) =
1

n!

∑
π∈Πn,n

n∏
i=1

pz(zπ(i) | yi, x). (3.5)

Intuitively, (3.5) is quantifying the likelihood of Z by averaging the likelihoods of the in-
dividual measurements over all possible data associations. The reason, why existing work
avoids this marginalization, is that the summation over all n! data associations is com-
putationally demanding. However, in Sec. 3.1.3, we will present an efficient method for
computing (3.5). Before that, we relax the perfect-detection assumption.

6It is possible to track the data association distribution over time (Bar-Shalom et al. 2009).

54



No false positives but missed detections are possible

Now, suppose that some of the objects in proximity to the sensor might not be detected.
Assuming no false positives still, the number of measurements m should be at most the
number of detectable objects n, i.e., if m > n, then p(Z | Yd(x), x) = 0. In the case
that m ≤ n, we have π ∈ Πm,n and there are |Πm,n| = nPm := n!

(n−m)! possible data

associations. Let D(π) := ∪mj=1{π(j)} be the set of true-positive detections according to π
and M(π) := {1, . . . , n} \ D(π) be the set of missed detections. Finally, let A(π) be the
event that the true-positive detections D(π) are assigned to the measurements in Z in the
way specified by π. Then, we can quantify the likelihood of π ∈ Πm,n, using the detection
model (3.2), as follows:

p(π | Yd(x), x) = P(A(π))×P({yi | i ∈ D(π)} are detected)×P({yi | i ∈M(π)} are missed)

=
1

m!

m∏
j=1

pd(yπ(j), x)
∏

i∈M(π)

(1− pd(yi, x)).

See Appendix D.11 for a verification that p(π | Yd(x), x) is a valid pdf. As before, we can
derive the likelihood of Z by marginalizing the data association:

p(Z | Yd(x), x) =
∑

π∈Πm,n

p(Z | Yd(x), x, π)p(π | Yd(x), x)

=
∑

π∈Πm,n

 m∏
j=1

pz(zj | yπ(j), x)

 1

m!

m∏
j=1

pd(yπ(j), x)
∏

i∈M(π)

(1− pd(yi, x))


=

1

m!

n∏
i=1

(1− pd(yi, x))
∑

π∈Πm,n

m∏
j=1

pd(yπ(j), x)pz(zj | yπ(j), x)

1− pd(yπ(j), x)
(3.6)

The observation model is similar to the “perfect detection” case in (3.5) but the single-
object-measurement likelihoods need to be scaled by the probabilities of detection. If no
measurements are received but Yd(x) 6= ∅, the above simplifies to:

p(∅ | Yd(x), x) =
n∏
i=1

(1− pd(yi, x)) (3.7)

No missed detections but false positives are possible

In this case, n ≤ m (otherwise p(Z | Yd(x), x) = 0) and π ∈ Πn,m. Again, let A(π) be the
event that the true-positive detections (Yd(x)) are assigned to the measurements in Z in
the particular way specified by π. The likelihood of π is:

p(π | Yd(x), x) = P(A(π))× P({n true positives})× P({m− n false positives})

=
1

mPn
× 1× e−λλm−n

(m− n)!
,
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Figure 3.3: Consider a localization scenario with 16 possible poses, indicated by the arrows on the
left-most plot. There are three objects in the environment: a yellow square (class 1), a cyan circle
(class 2), and a blue triangle (class 3). Initially, the 16 poses are equally likely (each has weight 1).
Suppose that only one set of semantic observations is received. The four plots to the right show
how the likelihoods of the 16 locations change, depending on the received set. At each location,
the likelihood of the semantic observation set is computed via (3.9) and normalized, so that the
sum of the likelihoods is 16. The parameters, used in the semantic observation model, are listed at
the top of the plots. For simplicity, the semantic observations here contain only bearing and class
information. In the top right plot since the field of view is only 5◦ it is not possible to observe a
yellow square at a 45◦ bearing from poses 9 − 12. Also, since the sensing range is 10 m and there
are no missed detections, poses 1− 8 and 14− 15 are not possible.

which is a valid pdf (see Appendix D.11). The likelihood of Z is obtained by marginalizing
the data association:

p(Z | Yd(x), x) =
∑

π∈Πn,m

p(Z | Yd(x), x, π)p(π | Yd(x), x)

=
∑

π∈Πn,m

n∏
i=1

pz(zπ(i) | yi, x)
∏

j∈{1,...,m}\∪ni=1{π(i)}

pk(zj)
e−λλm−n

m!

=
e−λλm

m!

m∏
j=1

pk(zj)
∑

π∈Πn,m

n∏
i=1

pz(zπ(i) | yi, x)

λpk(zπ(i))
(3.8)

Both missed detections and false positives are possible

Finally, consider the most general case that captures all nuisances of object recognition:
missed detections, false positives, and unknown data association. If there are no detectable
objects close by (n = 0), then the pdf of Z is given by (3.4). If no measurements are received
(m = 0), then the pdf of Z is given by (3.7). Otherwise, π ∈ Π̄n,m, where Π̄n,m is the set of
functions g : {1, . . . , n} → {0, 1, . . . ,m} with the property: g(i) = g(i′) > 0⇒ i = i′, which
ensures that (A1) is satisfied. The index ‘0’ in the range of g represents the case of missing
a detectable object. For example, it allows for the possibility that all detectable objects
are missed (associated with ‘0’), in which case we obtain the term in (3.7). The number of
possible data associations now is

|Π̄n,m| =
min{n,m}∑
k=0

(
n

k

)
mPk,
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where the index k indicates the number of true-positive assignments made by a particular
data association π. The likelihood of π ∈ Π̄n,m with k true-positive assignments is:

p(π | Yd(x), x) = P(A(π))× P({yi | π(i) > 0} are detected)×
P({yi | π(i) = 0} are missed)× P({m− k false positives})

=
1

mPk

∏
i:π(i)>0

pd(yi, x)
∏

i:π(i)=0

(1− pd(yi, x))
e−λλm−k

(m− k)!
,

where, as before, A(π) is the event that the k true-positive detections are assigned to
the measurements in Z in the particular way specified by π. See Appendix D.11 for a
verification that p(π | Yd(x), x) is a valid pdf. As before, we can derive the likelihood of Z
by marginalizing the data association:

p(Z | Yd(x), x) =
∑

π∈Π̄n,m

p(Z | Yd(x), x, π)p(π | Yd(x), x)

=
∑

π∈Π̄n,m

 ∏
i:π(i)>0

pz(zπ(i) | yi, x)
∏

j∈{1,...,m}\∪ni=1{π(i)}

pκ(zj)

 p(π | Yd(x), x)

= p(Z | ∅, x)p(∅ | Yd(x), x)
∑

π∈Π̄n,m

∏
i:π(i)>0

pd(yi, x)pz(zπ(i) | yi, x)

(1− pd(yi, x))λpκ(zπ(i))
. (3.9)

To gain intuition about the observation model in this most general case, refer to Fig. 3.3.

3.1.3 Connection with the Matrix Permanent

As mentioned earlier, it is not apparent how to efficiently compute the sum over all data
associations π required in multi-object semantic observation model (3.9). To gain intuition
we begin with the simpler case of “perfect detection” in (3.5). Fix a robot state x and con-
sider the nontrivial case when the received measurements Z and the detectable landmarks
Yd(x) have the same cardinality m. We can think about the data association between Z
and Yd(x) from a graph-theoretic perspective. Represent the sets V1 := Yd(x) and V2 := Z
by the vertices of a complete balanced bipartite graph and let E be the edge set. Associate
the weight we := pz(z | y, x) with every edge e := (z, y) ∈ E and consider the weighted
bipartite graph G := (V1, V2, E, w). The data associations π, between the objects V1 and
the measurements V2, in the “perfect detection” case (3.5), in fact, correspond to perfect
matchings7 in G. Given a perfect matching π, the product term inside the sum in (3.5)
corresponds to its weight. Then, the sum over all π corresponds to the sum of the weights
of all perfect matchings in G, which notably is equal to the permanent of the adjacency
matrix of G.

7A matching in graph G is a subgraph of G in which no two edges share a common vertex. The weight
of a matching is the product of all its edge weights. A matching is perfect if it contains all of G’s vertices.
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Permanent. The permanent of an n×m matrix A = [A(i, j)] with n ≤ m is defined as:

per(A) :=
∑
π

n∏
i=1

A(i, π(i)),

where the sum is over all one-to-one functions π : {1, . . . , n} → {1, . . . ,m}. If n > m, then
per(A) := per(AT ).

It is now clear that the likelihood of a set of semantic observations in the “perfect
detection” case can be obtained by computing the permanent of a matrix.

Theorem 3.1. The likelihood in (3.5) of a random finite set of semantic observations,
Z = {z1, . . . , zm}, in the case of no false positives and no missed detections, with n :=
|Yd(x)| = m detectable objects, satisfies:

p(Z | Yd(x), x) =
1

n!
per(Q),

where Q is a n× n matrix with Q(i, j) := pz(zj | yi, x) and {y1, . . . , yn} is an enumeration
of the set Yd(x) of detectable objects.

The general case in (3.9), where both false positives and missed detections are possible,
can be analyzed using the same graph-matching intuition.

Theorem 3.2. Given a robot state x and set of detectable objects Yd(x) with n := |Yd(x)| >
0, the likelihood of a random finite set Z = {z1, . . . , zm} of semantic observations, with
m > 0, when both false-positive and missed detections are possible satisfies:

p(Z | Yd(x), x) =
e−λλm

m!

∏
z∈Z

pκ(z)
∏

y∈Yd(x)

(1− pd(y, x))

×



1
m! per

([
Q In

1m,m 1m,n

])
, n ≤ m

1
n! per

([
QT Im

1n,n 1n,m

])
, m ≤ n

(3.10)

where pd(y, x) is the probability of detecting object y ∈ Yd(x), λ is the expected number of
false-positive detections with spatial pdf pκ(·), 1n,m is a n×m matrix of all ones, and Q is
a matrix with elements:

Q(i, j) :=
pd(yi, x)pz(zj | yi, x)

(1− pd(yi, x))λpκ(zj)
,

i = 1, . . . , n,
j = 1, . . . ,m.

Connections between the matrix permanent and data association have been identified
in the target tracking community (Oh et al. (2009), Collins and Uhlmann (1992), Pasula
et al. (1999), Morelande (2009), Liggins et al. (2008, Ch.11)) but this is the first connection
with the random-finite-set observation model. Thm. 3.2 maps the problem of determining
the pdf of Z in the general case in (3.9) to the problem of finding the permanent of a
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(m+n)× (m+n) square matrix. The problem is still computationally challenging because
computing the permanent of a matrix is #P-complete8 (Valiant 1979). However, Thm. 3.2
allows us to leverage the extensive literature on approximation algorithms for computing
the matrix permanent. The proof of Thm. 3.2 (see Appendix D.12) reduces the problem
of summing the weights of all matchings in an unbalanced bipartite graph to the problem
of summing the weights of all perfect matchings in an unbalanced bipartite graph and then
to the problem of summing the weights of all perfect matchings in a balanced bipartite
graph. We could stop at the first reduction, which would require calculating the permanent
of a rectangular matrix. The reason for the second reduction is that existing permanent-
approximation algorithms are much better for square than for rectangular matrices.

An exact method for computing the permanent of a d × d matrix, proposed by Ryser
(1963) and later improved by Nijenhuis and Wilf (1978, Ch.23), is summarized in Alg.
6. Its time complexity is Θ(d2d−1). The dimension of the matrix in (3.10) is equal to
the number of detections returned by the vision algorithm plus the number of detectable
objects within the sensor field of view, which in some cases is often small enough to enable
a real-time implementation of Alg. 6. Otherwise, there are a number of polynomial-time
arbitrarily-close approximations to the permanent computation. For example, Jerrum et al.
(2004) show that for any ε ∈ (0, 1] and δ > 0, there exists a randomized algorithm whose
output comes within a factor (1±ε) of per(A) with probability at least 1−δ with a random
running time T such that E(T ) = O(d10(log d)3). The running time was later improved by
Bezáková et al. (2006) to O(d7(log d)4). Also, when A ∈ [0, 1]d×d is a matrix such that
all row and column sums are at least γd for γ ∈ (0.6, 1], Law (2009, Ch.2.2) provides an
algorithm with expected running time O(d4(log d+ ε−2 log δ−1)).

Proposition 3.3. Given m object detections and n visible objects, the complexity of comput-
ing the likelihood in (3.9) of the semantic observation set is O((m+n)2(m+n)), if computed
exactly via Alg. 6, and O((m+n)7(log(m+n))4) in expectation, if computed approximately
via the randomized method of Bezáková et al. (2006).

Using the idea of Thm 3.2, similar results can be obtained for the simpler cases with no
false-positives or no missed detections. Appendix D.13 shows the link between the likelihood
of a set of semantic observations and the matrix permanent for all cases.

3.1.4 Semantic Localization

Now that we have a sensor observation model for multiple objects (3.9) and an efficient way
to compute it (Prop. 3.3), we can return to the semantic localization problem.

Proposition 3.4. The Bayesian recursion that solves the semantic localization problem is:

Predict: pt+1|t(x) =

∫
pf (x | x′, ut)pt|t(x′)dx′

Update: pt+1|t+1(x) = ηt+1p(Zt+1 | Yd(x), x)pt+1|t(x),

(3.11)

where p(Zt+1 | Yd(x), x) is the random finite set observation model in (3.9) and ηt+1 is a
normalization constant.

8A #P-complete problem is equivalent to computing the number of accepting paths of a polynomial-time
nondeterministic Turing machine and #P contains NP.
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Algorithm 6 Permanent (Nijenhuis and Wilf 1978, Ch.23)

1: Input: d× d matrix A Output: per(A)
2: for i = 1, . . . , d do
3: x(i)← A(i, d)− 1

2

∑d
j=1 A(i, j)

4: s← −1, g ← false(d, 1), p← s
∏d
i=1 x(i)

5: for k = 2, . . . , 2d−1 do
6: if k is even then j ← 1 . Obtain next gray code subset
7: else { j ← 2
8: while gj−1 is false do
9: j ← j + 1 }

10: s← −s, z ← 1− 2gj , gj ← not gj
11: for i = 1, . . . , d do
12: x(i)← x(i) + zA(i, j)

13: p← p+ s
∏d
i=1 x(i)

14: return 2(−1)dp

Like its vector-based counterpart, an exact implementation of the Bayes filter with set-
valued observations is intractable. The particle filter (Appendix C.3) is an approximation to
the Bayes filter with vector-valued observations, which has been very successful in practice
for geometric localization (Thrun et al. 2005, Ch.4). It can be applied in this case too,
with the exception that, instead of the conventional vector-based measurement update, the
particle weights need to be updated with the likelihood of the received semantic observation
sets Zt. Since the robot state is still vector-valued, we represent its pdf pt|t at time t with

a set of particles {wkt|t, x
k
t|t}

N
k=1:

pt|t(x) ≈
N∑
k=1

wkt|tδ(x− x
k
t|t),

where δ(·) is a Dirac delta function. The particle-filter implementation of (3.11), with the
motion model (3.1) as a proposal distribution and the semantic observation model (3.9) as
a measurement update, is summarized in Alg. 7. A matrix permanent algorithm, such as
Alg. 6, is needed to update the particle weights in line 6.

Algorithm 7 Set-based Particle Filter

1: Input: Particle set {wkt|t, xkt|t}Nk=1, motion model pdf pf , observation model pdf p, semantic map Y ,
control input ut, detection set Zt+1

2: Output: Particle set {wkt+1|t+1, x
k
t+1|t+1}Nk=1

3: for k = 1, . . . , N do
4: Predict : Draw xkt+1|t from pdf pf (· | xkt|t, ut)
5: wkt+1|t ← wkt|t
6: Update: wkt+1|t+1 ← p

(
Zt+1 | Yd(xkt+1|t), x

k
t+1|t

)
wkt+1|t

7: xkt+1|t+1 ← xkt+1|t

8: Normalize the weights {wkt+1|t+1}Nk=1 and re-sample if necessary
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3.1.5 Active Semantic Localization

In this section, we return to the active information acquisition theme and emphasize that the
robot can plan its motion in order to improve the performance of the semantic localization.
As before, the main idea is to choose a sequence σ := ut, . . . , ut+T−1 of control inputs for
the next T time steps in order to minimize some measure of uncertainty in the pose. To
simplify the notation going forward, assume, without loss of generality, that the current
time is t = 0. As before, we use the entropy H(x0:T | Z1:T ) of the current and future poses
x0:T conditioned on the future semantic observations Z1:T as the uncertainty criterion. Note
that the problem is different from the discussion in Ch. 2, since now the target inference
is done via a particle filter instead of a Kalman filter. The main complication is that the
entropy criterion is no longer independent of the measurement realization and the separation
principle (Thm. 2.1) does not hold anymore. Hence, closed-loop planning is needed to solve
the resulting stochastic active information acquisition problem. In this chapter, we resort
to greedy planning to avoid the difficult nonmyopic closed-loop planning problem. We will
return to nonmyopic closed-loop information acquisition in Ch. 4.

Instead of computing a control policy that depends on the measurement realizations, we
choose a set Σ of admissible control sequences, evaluate the entropy criterion for each se-
quence, and pick the control sequence that minimizes entropy. As we show below, evaluating
the entropy criterion for the set-based particle filter even a single time is computationally
very challenging. This is in contrast with Ch. 2, where, due to the Kalman filter inference
process, the entropy criterion was proportional to the log-determinant of target covariance
matrix and was much easier to evaluate.

Problem (Active Semantic Localization). Given a prior pdf of the pose x0, the semantic
map Y , and a space Σ := {σi | σi := ui0, . . . , u

i
T−1}Mi=1 of possible control sequences of length

T , choose the sequence σ∗, which minimizes the entropy of the current and future poses
x0:T , conditioned on the future semantic observations Z1:T :

σ∗ ∈ arg min
σ∈Σ

H(x0:T | Z1:T )

s.t. xs+1 ∼ pf (· | xs, σs), s = 0, . . . , T − 1

Zs ∼ p(· | Yd(xs), xs), s = 1, . . . , T

(3.12)

where pf is the motion model (3.1) and p(· | Yd(x), x) is the semantic observation model
(3.10).

We assume that Σ has been designed offline and consists of motion primitives, each with
T sampling poses, that can provide reasonable coverage of the robot’s surroundings. Sixty
locations with outward facing orientations were chosen on the perimeter of a circle of radius
10 m. A differential-drive controller was used to to generate a control sequence of length
T = 5, which would lead a robot at the origin to each of the selected locations. Fig. 3.4
shows the resulting set of motion primitives.

While accuracy is very important for the inference process, speed is crucial during
planning. At each time step, the inference process needs to be carried out for a single
set of observations (the actual one) but the planning process needs to envision various
measurement realizations. Real-time planning requires very efficient computation of the
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Figure 3.4: The set of motion
primitives used for active lo-
calization. Each segment con-
tains 5 measurement poses in-
dicated by the red triangles.

Figure 3.5: The left plot shows a simulation of a 2-D localization
scenario with two object classes (circle, square). The prior density
of the observer’s pose is represented by the dark red particle set,
which is concentrated in 3 locations (green). The observer has a field
of view of 360◦ and a sensing range of 4m. The other parameters
of the observation model were p0 = 0.73,m0 = 2.7, v0 = 35,Σβ =
4◦, λ = 0.5. The right plot shows the entropy of the observer’s
location (in the local frame of reference) conditioned on one set of
semantic observations. As the summarized particle set contains only
3 particles, the entropy varies from 0 to 1.099 nats.

objective function in (3.12). Given a control sequence u0:T−1, the conditional entropy is
defined as follows:

H(x0:T |Z1:T )=

∫ [∫
−g(x0:T , Z1:T , u0:T−1) log g(x0:T , Z1:T , u0:T−1)dx0:T

]
p(Z1:T )dZ1:T (3.13)

where p(Z1:T ) is the (not conditional) pdf of the semantic observations and we have defined:

g(x0:T , Z1:T , u0:T−1) :=
p0|0(x0)

∏T
s=1 pf (xs | xs−1, us−1)

∏T
s=1 p(Zs | Yd(xs), xs)

p(Z1:T )
, (3.14)

using the assumption that the sets Z1:T are conditionally independent, given the set of
detectable objects

⋃T
s=1 Yd(xs) and the trajectory x1:T . Even if the measurement sets

Z1:T were given, the inside integral in (3.13) would need to be evaluated for each of
the M control sequences with NT+1 future particle evolutions, each requiring T evalua-
tions (permanent computations) of the semantic observation likelihood. Assuming exact
permanent computations, this makes the complexity of obtaining just the inside integral:
O(MNT+1

∑T
s=1(|Y | + |Zs|)2|Y |+|Zs|)! In order to address the complexity of this planning

problem we will use several approximations.

Maximum likelihood data association

First, we resort to maximum likelihood data association during planning to avoid expensive
permanent computations. Given a set Z of semantic observations with m := |Z|, for each
particle x, we construct an association function π : {1, . . . ,m} → {0, 1, . . . , |Yd(x)|} by
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processing the measurements zj , j = 1, . . . ,m sequentially. For zj , we compute:

max

{
max

i∈{1,...,|Yd(x)|}
pd(yi, x)pz(zj | yi, x),

λ

|Z| − q
pκ(zj)

}
,

where q is the number of measurements already assigned to clutter, and let π(j) = i, if
the max is achieved at a detectable object yi ∈ Yd(x), and π(j) = 0, otherwise. Then, the
likelihood of Z is:

p(Z | Yd(x), x, π) =
e−λ

|Z|!
∏

j|π(j)=0

λpκ(zj)
∏
y∈D

(1− pd(y, x))
∏

j|π(j)>0

pd(yπ(j), x)pz(zj | yπ(j), x),

where D is the set of unassigned detectable objects. The use of maximum likelihood data
association in (3.14) replaces the O(

∑T
s=1(|Y |+ |Zs|)2|Y |+|Zs|) cost of permanent computa-

tions by O(
∑T

s=1 |Zs||Y |).

Noiseless motion

Another problematic term in the complexity characterization of the inner integral in (3.13)
is NT+1. It is due to the evolution of the set of N particles over the planning horizon T .
The integral can be simplified significantly by neglecting the noise in the motion model
(3.1). In other words, the robot can be optimistic and plan its future trajectories with a
“perfect motion” assumption (albeit not satisfied in reality):

pf (xs+1 | xs, us) = δ(xs+1 − f(xs, us, 0)). (3.15)

For the given control sequence u0:T−1, let the (now) deterministic evolution of the particles
in the initial particle set {wk0|0, x

k
0|0} over the time horizon s = 0, . . . , T − 1 be xks+1|s+1 :=

f(xks|s, us, 0). Then, the “perfect motion” assumption implies that

g(x0:T , Z1:T , u0:T−1) =

N∑
k=1

wk0|0
∏T
s=1 p(Zs | Yd(xks|s), x

k
s|s)

p(Z1:T )

T∏
s=0

δ(xks|s − xs),

which in turn reduces the integral in (3.13) to:

H(x0:T | Z1:T ) =

∫ [
−

N∑
k=1

w̃k(Z1:T ) log w̃k(Z1:T )

]
p(Z1:T )dZ1:T , (3.16)

where

w̃k(Z1:T ) :=
wk0|0

∏T
s=1 p(Zs | Yd(xks|s), x

k
s|s)

p(Z1:T )
(3.17)

are the normalized weights of the (updated) particle set at time T . Note that p(Z1:T ) is
a normalization factor and does not need to be computed explicitly. Combining the result
in (3.16) with maximum likelihood data association, reduces the computational complexity
of the inner integral (now a sum) in (3.13) from O(MNT+1

∑T
s=1(|Y | + |Zs|)2|Y |+|Zs|) to

O(MN |Y |
∑T

s=1 |Zs|). Most importantly, the new complexity does not have an exponential
dependence on the problem parameters.
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Particle set summarization

A final reduction in complexity can be obtained by decreasing the number of particles that
represent the prior pose distribution. For planning purposes, it is not crucial to represent
the distribution accurately but rather it is important that it contains the competing hy-
potheses. Charrow et al. (2013) proposed replacing subsets of similar particles with their
average, in the context of target tracking with range-only sensing. The authors prove that,
for Gaussian measurement noise, the approximation introduces a bounded error in the mu-
tual information between the observations and the target state. We adopt the same idea
here, despite that the measurement noise (except for the bearing noise) is not Gaussian.
Specifically, we partition the robot state space with a regular square grid and replace parti-
cles, contained in the same cell, with their weighted average. Depending on the size of grid
cells, this approximation can reduce the number of particles significantly (see Fig. 3.5). We
emphasize that all these approximations (particle summarization, noiseless motion, max-
imum likelihood data association) are used only in the planning process. The inference
process still uses the full particle set, the full semantic observation model in (3.10), and
considers motion noise.

Now that the evaluation of the inner integral in (3.13) has been simplified significantly,
we consider the outside integration over the set-valued variables Z1:T . Since not even the
cardinality of the measurement sets is known, an exact computation would be hopeless.
However, given a robot trajectory and the semantic map Y , the semantic observation model
(3.10) can be used to simulate measurements from the detectable objects and, in turn, obtain
a Monte Carlo approximation to (3.13).

Monte Carlo integration

The key to a fast and accurate Monte Carlo approximation of (3.13) is to simulate mea-
surement sets from p(Z1:T ) in a way that the samples are concentrated in regions that make
large contributions to the integral. Observe that, due to the particle set approximation of
the prior p0|0 and the “perfect motion” assumption, p(Z1:T ) is a finite mixture model:

p(Z1:T ) =

∫
p(Z1:T , x0:T )dx0:T =

∫ T∏
s=1

p(Zs | Yd(xks|s), x
k
s|s)δ(x

k
s|s − xs)p0|0(x0)dx0:T

=
N∑
k=1

wk0|0

T∏
s=1

p(Zs | Yd(xks|s), x
k
s|s).

An efficient way to sample from the mixture model p(Z1:T ) is to first sample the mixture
component, according to the weight wk, and then sample each Zs from the conditional
densities. This has the additional benefit of sampling observation sets that are likely to be
encountered by the robot and should provide a large contribution to the integral. Thus, for
a given control sequence u0:T−1, we follow the following steps to estimate H(x0:T | Z1:T ):

1. Sample a particle xl0|0 from the prior particle set according to the weights wk0|0, k =
1, . . . , N

2. Compute the particle trajectory xls+1|s+1 := f(xls|s, us, 0) for s = 0, . . . , T − 1
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3. Sample Z ls from the semantic observation model p(Z ls | Yd(xls|s), x
l
s|s) for s = 1, . . . , T

4. Compute the normalized updated particle weights w̃k(Z l1:T ) via (3.17) for k = 1, . . . , N

5. Evaluate the inner sum: Hl := −
∑N

k=1 w̃
k(Z l1:T ) log w̃k(Z l1:T )

6. Repeat the above steps Nz times to obtain the Monte Carlo approximation:

H(x0:T | Z1:T ) ≈ 1
Nz

∑Nz
l=1Hl

Fig. 3.5 shows a Monte Carlo approximation of the entropy of the robot pose, condi-
tioned on a single future observation set, in a simulated 2-D environment. The results hint
at several important considerations regarding active localization. In particular, there is a
correlation among the landmark distribution in the environment, the sensing range and field
of view of the robot, and the length of the planning horizon T that affects the performance.
On one hand, if the sensing range and the field of view are unrestricted, there would be no
need to for active localization. The filtering process alone will be able to uniquely identify
the robot pose. On the other hand, since the planning process is inherently local, if the
horizon T is not long enough to reach perceptually-distinct areas in the environment, the
robot can get stuck in a local maximum (the flat red region in Fig. 3.5) of the entropy
surface. Then, all considered motions will have the same cost and no progress will be made.
Active localization becomes particularly attractive when the sensing range and the field of
view are limited but the environment contains distinct landmarks within the reachable (in
T steps) sensing perimeter. In such scenarios, the planning process can improve both the
efficiency and accuracy of the localization filter.

Localization as a Secondary Objective

Often times, localization is a requisite but secondary objective for a mobile robot. A robot
typically needs to avoid collisions and reach a primary objective, such as a goal pose in
the environment. As discussed by Fox et al. (1998), an additional term can be added to
the cost function in order to minimize the probability that a control sequence leads to
a collision. Dealing with obstacles in the environment correctly also requires that object
visibility is accounted for both in the probability of detection pd(y, x) and in the sampling
of measurement sets for the Monte Carlo evaluation of the conditional entropy. Once the
robot is localized well, it can plan a global path P = {ρ}, consisting of a sequence of poses
ρ, which leads the robot to its ultimate goal. Along the way, if re-localization is necessary
the robot should not deviate significantly from the intended path P. Thus, we consider the
following three-fold objective:

σ∗ ∈ arg min
σ∈Σ

α1H(x0:T | Z1:T ) + α2E
[
min
ρ∈P

d(xT , ρ)

]
+ α3

T
max
s=1

P(xs ∈ Collision)

s.t. xs+1 ∼ pf (· | xs, σs), s = 0, . . . , T − 1

Zs ∼ p(· | Yd(xs), xs), s = 1, . . . , T

where E [minρ∈P d(xT , ρ)] is the expected minimum deviation of the final pose xT from the
global path P and maxTs=1 P(xs ∈ Collision) is the maximum probability of collision along
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the chosen trajectory. The constants α1, α2, α3 specify the relative importance of the three
objectives. Due to the “perfect motion” assumption, the last two terms in the cost function
can be computed as follows:

T
max
s=1

P(xs ∈ Collision) =
T

max
s=1

(
N∑
k=1

1{xks|s ∈ Collision}wk0|0

)

E
[
min
ρ∈P

d(xT , ρ)

]
=

N∑
k=1

(
min
ρ∈P

d(xkT |T , ρ)

)
wk0|0,

(3.18)

where 1{xks|s ∈ Collision} is the indicator of the set {xks|s ∈ Collision}.
The performance of the active semantic localization approach is demonstrated in sim-

ulation with a differential-drive robot in Fig. 3.6 and Fig. 3.7. The task of the robot is
to localize itself and subsequently reach a goal pose specified on the prior map. The initial
particle set is uniformly distributed over the whole environment. As a result, minimizing
the entropy in the early iterations will be expensive and of little value. In our experi-
ments, the robot either acquires several observation sets without moving (as in Fig. 3.6
(A)) or chooses motion primitives which minimize the collision probability only (by setting
α1 = 0, α2 = 0, α3 = 1). Once the summarized particle set contains less hypotheses, both
the entropy and the probability-of-collision criteria can be enabled to select informative
trajectories (see Fig. 3.6 (B) for details). We used α1 = 0.55, α2 = 0, α3 = 0.45 before the
first time the robot is localized well (the covariance of the particle set is small). Once well-
localized, the robot can plan a path from the mode of the distribution to the goal pose. In
our experiments, we used A∗ with a cost map that rewards landmark visibility. If along the
way to the goal the uncertainty in the robot pose starts to increase due to the motion noise,
the robot can carry out the minimization in (3.18) with all three terms enabled. We used
α1 = 0.5, α2 = 0.05, α3 = 0.45 in this case (see Fig. 3.7 (B) for details). The experiments
demonstrate that the robot achieves global localization autonomously, avoids collisions in
the environment, re-localizes itself if necessary, and reaches the goal successfully. Addi-
tional simulations, which compare our approach to other active localization techniques, are
presented in Sec. 3.1.6.
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(a) Particle set after the first set
of semantic observations, parti-
cle mean (green triangle), particle
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(b) The particle distribu-
tion converges to 5 ambigu-
ous poses (green arrows) after
several semantic observations.
Pose 4, unlike the rest, has
two cyan circles in its vicinity.

−10 0 10

(c) All motion primitives (yellow,
in frame of reference of pose 2),
minimum-collision-probability
motion primitives (green), and
minimum-entropy-and-collision-
probability motion primitive
(magenta)

Figure 3.6: A simulation of a differential-drive robot employing our active semantic localization
approach to reach a goal. The environment contains objects from three classes (square, circle, and
triangle) in six areas, divided by the black obstacles. The task of the robot is to localize itself
(position and orientation) and reach pose 5, indicated by the green arrow on subplot (b). It has a
field of view of 94◦ and a sensing range of 12.5m. The other parameters of the observation model
were p0 = 0.73,m0 = 2.7, v0 = 35,Σβ = 5◦, λ = 0.5. The robot had no prior information about its
initial pose (subplot (A)). The particle distribution converges to 5 ambiguous locations after several
semantic observations because a yellow square and a cyan circle are detected repeatedly (subplot
(B)). The robot plans its motion (using the motion primitives in Fig. 3.4) to minimize the probability
of collision and the entropy of its pose, conditioned on 5 future sets of semantic observations (subplot
(C)). The description continues in Fig. 3.7.
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(a) Actual robot trajectory (dot-
ted red), estimated trajectory
(green), particle distribution
(dark red), particle covariance
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(b) Actual (dotted red) and es-
timated (green) robot trajec-
tories, intended trajectory to-
wards the goal (dotted ma-
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and-collision-probability motion
primitive (solid magenta) chosen
to decrease the pose uncertainty
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(c) The robot managed to re-
localize itself and reach the
goal successfully

Figure 3.7: Continuation of the active semantic localization simulation from Fig. 3.6. The robot
recognizes correctly that the best way to disambiguate its pose is to visit the bottom-right area
(subplot (A)). At this point, there are only two remaining hypotheses and more weight is starting
to concentrate around the true pose. Once the robot considers itself localized (the covariance of the
particle set is small), it plans a path to the goal in the top-right area. As there are no landmarks
along the hallway, the motion noise causes the uncertainty in the robot pose to increase. Using the
entropy-minimization criterion, the robot recognizes that it needs to deviate from its intended path
and visit an area with landmarks in order to re-localize (subplot (B)). The robot reaches the goal
successfully (subplot (C)).
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3.1.6 Performance Evaluation

This section evaluates the performance of the semantic localization approach in simulation
and in three real-world scenarios. Global localization from semantic observations is demon-
strated for a differential-drive robot, for a Tango phone (Google ATAP group 2014), and
on the KITTI visual odometry dataset (Geiger et al. 2013).

Semantic information was obtained using deformable part models (DPM, Felzenszwalb
et al. 2010b), which achieve excellent performance in single-image object recognition. Given
an input image, an image pyramid is obtained via repeated smoothing and subsampling.
Histograms of oriented gradients are computed on a dense grid at each level of the pyramid.
For each object class (in the set C), a detector is applied in a sliding-window fashion to
the image pyramid, in order to obtain detection scores at each pixel and scale (see Fig.
3.8). The detection scores above a certain threshold are returned, along with bounding
box, class, and bearing information. The collection of all such measurements at time t
forms the random finite set Zt. A significant increase in detection speed is obtained via an
active DPM approach, which optimizes the order of filter evaluations and the time at which
to stop and make a decision. The active DPM approach will be discussed in more detail in
Ch. 4, Sec. 4.5.

In the experiments, it was sufficient to represent the state of an object y with its position
and class because orientation and appearance variations are captured well by a DPM-
based detector. If necessary, our model can incorporate appearance and shape signatures
by extending the object state y and training an appropriate observation model. This is
likely to make the data association more unimodal (i.e., make the terms in the sum in
(3.9) dominated by the weight of a single data association), in which case the maximum
likelihood data association approach (Sec. 3.1.5) would perform well. We emphasize that the
permanent approach can handle this scenario efficiently too. As permanent approximation
methods rely on Monte-Carlo sampling from the data associations, fewer samples can be
used to speed up the computations. The connection between the observation model and
the permanent incorporates this naturally and leverages state-of-the-art algorithms.

Mobile Robot Semantic Localization

We carried out simulations and real-world experiments in an indoor environment using a
differential-drive robot equipped with an inertial measurement unit (IMU), magnetic wheel
encoders, a Kinect RGB-D camera with Nyko Zoom wide-angle lens, and a Hokuyo UTM-
30LX 2D laser range finder. The IMU and the encoders were integrated using a differential-
drive model (Appendix B.1) and Gaussian noise was added to obtain the motion model in
(3.1). Only the RGB images were used for semantic observations via Alg. 7. The mea-
surement updates were performed using the exact permanent algorithm (Alg. 6). The lidar
was used to provide a ground-truth trajectory in the real-world experiments via geometric
Monte-Carlo localization. The performance is demonstrated for global localization, which
means that the robot had no prior information about its initial pose.

The detection model pd(y, x), the measurement likelihood pz(z | y, x), and the clutter
model pκ(z) were obtained from training data as discussed in Sec. 3.1.1. The angle of
view of the wide-angle lens was 94◦, the detection range was 10 meters, and the following
parameters were learned: p0 = 0.92,m0 = 3.5, v0 = 20.52,Σβ = 4◦. The semantic map
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Figure 3.8: A component of the de-
formable part model of a chair (top) and
scores (bottom) from its evaluation on
an image (middle) containing four chairs
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Figure 3.9: Detection score likelihoods obtained from
training images

in the real-world experiment contained doors (class 1) and chairs (class 2). The confusion
matrix was:

pc(c | yc) =

[
0.94 0.08
0.06 0.92

]
while the single-object observation models are shown in Fig. 3.9.

A simulated environment of size 25 × 25 m2 was populated by objects with randomly-
chosen positions and classes (see Fig. 3.10). The robot motion was simulated along a
pre-specified trajectory. Semantic observations were simulated using the learned detection,
clutter, and measurement likelihood models. The error in the estimates, averaged over
50 repetitions with different randomly-generated scenes, is presented in Fig. 3.13. Since
the robot starts with a uniform prior over the whole environment, the error is large in
the initial iterations. Multiple hypotheses are present until enough semantic measurements
are obtained to localize the robot uniquely. The performance is also demonstrated in a
challenging scenario with a lot of ambiguity in Fig. 3.11. The reason for using only two
classes in the experiments was to increase the ambiguity in the data association. Our
approach can certainly handle more classes and a higher object density. Fig. 3.12 shows
a simulation with clutter rate λ = 4 and 150 objects from 5 classes in a 25 × 25 m2 area.
Scenarios with such high object density necessitate the use of an approximate permanent
algorithm for real-time operation.

In the real experiments, the robot was driven through a long hallway containing doors
and chairs. Four data sets were collected from the IMU (at 100 Hz), the encoders (at 40 Hz),
the lidar (at 40 Hz), and the RGB camera (at 1 Hz). Lidar-based geometric localization
was performed via the ROS amcl package (Howard and Gerkey 2002) and the results were
used as the ground truth. Appendix D.16 Extension 2 contains a video of the experiment.

70



−20 0 20

−20

−10

0

10

20

12 Iterations

−20 0 20

−20

−10

0

10

20

17 Iterations

−20 0 20

−20

−10

0

10

20

21 Iterations

−20 0 20

−20

−10

0

10

20

26 Iterations

−20 0 20

−20

−10

0

10

20

462 Iterations

Figure 3.10: A simulated environment with 45 objects from two classes (yellow squares, blue circles).
The plots show the evolution of the particles (red dots), the ground truth trajectory (green), and
the estimated trajectory (red). The expected number of clutter detections was set to λ = 2.
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Figure 3.11: A simulated example of semantic localization in the presence of severe perceptual
aliasing. The ground truth trajectory (blue) and the evolution of the particle positions (red points)
and orientations (red lines, top left) are shown.
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Figure 3.12: A simulated environment with 150 objects from 5 classes (circles, squares, triangles,
crosses, and diamonds) in a 25 × 25 m2 area. The plots show the particles (red dots), the ground
truth trajectory (green), and the estimated trajectory (red) for clutter rate λ = 4.
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Figure 3.13: Root mean squared error (RMSE)
in the pose estimates obtained from the semantic
localization algorithm after 50 simulated runs of
the scenario in Fig. 3.10
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Figure 3.14: Root mean squared error (RMSE)
between the pose estimates from semantic local-
ization and from lidar-based geometric localiza-
tion obtained from four real experiments

71



m
e

te
rs

0 10 20 30 40 50 60

0

5

10

Figure 3.15: Robot trajectories estimated by lidar-based geometric localization (red), image-based
semantic localization (blue), and odometry (green) in a real experiment. The starting position, the
door locations, and the chair locations are denoted by the red cross, the yellow squares, and the
cyan circles, respectively. See Appendix D.16 Extension 2 for more details.
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Figure 3.16: Particle filter evolution (bottom) and object detections (top) during a real semantic
localization experiment

The lidar and semantic estimates of the robot trajectory are shown in Fig. 3.15. The
error between the two, averaged over the 4 runs, is presented in Fig. 3.14. The error is
large initially because, unlike the lidar-based localization, our method was started with an
uninformative prior. Nevertheless, after the initial global localization stage, our approach
achieves average errors in the position and orientation estimates of less than 35 cm and 10◦,
respectively. The particle filter evolution is illustrated in Fig. 3.16 along with some object
detections.

Comparison with Maximum Likelihood Data Association

We compared the permanent-based data association (PER) to the more traditional maxi-
mum likelihood data association (MLD), used for example in FastSLAM (Montemerlo and
Thrun 2003). PER is based on Alg. 7 with an exact permanent computation (Alg. 6)
on line 6. MLD is based on Alg. 7 also but the set of detections on line 6 is processed
sequentially as described in Sec. 3.1.5. The two approaches were compared on the four real
datasets (Fig. 3.15) and on the simulations in Fig. 3.10 and Fig. 3.11. Because we assume
semantically-meaningful measurements, the observation sets in our comparison had rela-
tively low cardinalities. Of course, if there are many observations per time step (e.g., SIFT
features), MLD would be significantly more efficient than the exact permanent algorithm.
In future work, we plan to compare MLD to an approximate permanent algorithm.

The comparison is presented in Table 3.1 for two types of initializations: local (L), for
which the initial particle set had errors of up to 1 m and 30◦, and global (G), for which the
set was distributed uniformly over the environment. MLD(L) performs as well as PER(L)
in the real experiments and in Fig. 3.11. In Fig. 3.10, the data association is highly
multi-modal and MLD(L) does not converge even with 15K particles. This is reinforced in
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Table 3.1: Comparison of maximum likelihood data association (MLD) and our permanent-based
data association approach (PER) with the exact permanent computation (Alg. 6) on the four robot
datasets (Fig. 3.15) and the simulations in Fig. 3.10 and Fig. 3.11. Two types of initializations were
used: local (L), for which the initial particle set had errors of up to 1 m and 30◦, and global (G),
for which the initial particle set was uniformly distributed over the whole environment. Number of
particles (NP) in thousands, position error (PE), orientation error (OE), and filter update time8(UT),
averaged over time, are presented. The first MLD(G) column uses the same number of particles as
PER(G), while the second uses a large number in an attempt to improve the performance.

Fig. 3.15 MLD(L) MLD(G) MLD(G) PER(L) PER(G)
NP [K] 0.50 3.00 40.0 0.50 3.00
PE [m] 0.26 22.9 0.31 0.26 0.26

OE [deg] 2.54 107 2.75 2.67 2.69
UT [sec] 0.023 0.060 0.600 0.065 0.320

Fig. 3.10
NP [K] 0.50 5.00 100 0.50 5.00
PE [m] 15.3 24.9 17.3 0.32 0.72

OE [deg] 67.0 68.8 72.8 4.58 9.17
UT [sec] 0.012 0.062 1.100 0.042 0.400

Fig. 3.11
NP [K] 0.50 24.0 100 0.50 24.0
PE [m] 0.27 48.8 26.9 0.11 2.35

OE [deg] 3.68 112 74.9 2.08 4.05
UT [sec] 0.027 0.760 3.340 0.062 2.620

the global initialization cases. While PER(G) performs well with 3K particles, MLD(G)
needs 40K to converge consistently on the real datasets and is slower at the same level
of robustness. In Fig. 3.10 and Fig. 3.11, MLD(G) does not converge even with 100K
particles. We conclude that once the particles have converged correctly MLD performs as
well as PER. However, with global initialization or ambiguous data association, MLD makes
mistakes and can never recover, while PER is robust with a small number of particles.

Global Localization for Project Tango

The Project Tango phone (Google ATAP group 2014) is designed to track its full 3-D
motion and create a geometric map of the environment. However, it does not use an
absolute reference to the world and provides localization only with respect to its initial
frame of reference. We demonstrate that our semantic localization approach can provide
global positioning of the Tango phone within an existing map of semantically-meaningful
landmarks.

The Tango phone is equipped with an IMU, a front-facing (120◦ field of view) camera, a
rear-facing RGB/IR narrow (68◦ field of view) camera, and a rear-facing fisheye (180◦ field
of view) camera. It provides a 6-D position-quaternion estimate of its pose and associated
covariance, over time, within the initial frame of reference. In our experiments, this local
trajectory was used as the motion model (3.1) in the prediction step in Alg. 7. The
update step was performed using semantic observations (class, score, and bearing) only
from the narrow camera RGB images. The same hallway as in the robot experiment was

8The reported times are from a MATLAB implementation on a computer with i7 CPU@2.3GHz and
16GB RAM. The timing results include only the time needed to perform data association and update the
weights for all particles. The time required for object recognition is not included because it is the same for
both methods.
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Figure 3.17: Tango phone trajectory (red) estimated via semantic localization in a real experiment.
The semantic map contains doors (yellow squares), red chairs (cyan circles), and brown chairs (blue
triangles). Ground-truth information was not available for this experiment. See Appendix D.16
Extension 4 for more details.

traversed several times with the phone. RGB images from the narrow camera (at 30 Hz)
and the Tango visual odometry (at 30 Hz) were recorded. The prior semantic map of
the environment (see Fig. 3.17) contained doors (class 1), red chairs (class 2), and brown
chairs (class 3). Two of the runs were used to train the object detector and to learn the

observation model parameters: sensing range 15 m, p0 =
(
0.71 0.81 0.82

)T
, v0 = 35.4,

m0 = 2.7, Σβ = 5◦, λ = 0.76, and confusion matrix:

pc(c | yc) =

0.98 0 0
0 0.94 0.08

0.02 0.06 0.92

 .
The semantic localization approach was used to recover the global Tango trajectories

in the rest of the runs. Since the prior semantic map contained 2-D object positions, only
the horizontal bearing angle was used to update the 2-D position and yaw angle of the
phone. A good estimate of the phone’s pitch and roll angles can be obtained from the
local 6-D trajectory (provided by the Tango phone). Thus, the global semantic localization
was performed in 5-D (without the z-axis). This can be extended, of course, if vertical
bearing measurements are used and the landmarks in the prior map are annotated with
z-coordinates. The likelihoods of the semantic observations were computed via the exact
permanent algorithm (Alg. 6). Videos, from two of the experiments, are provided in
Appendix D.16 Extension 3 and Extension 4. The phone trajectory, recovered from the
second run (Extension 4), is shown in Fig. 3.17. Unfortunately, ground-truth trajectories
are not available for these experiments. The videos show 9 global localization trials, in
which, on average, 11 sets of semantic observations were needed to obtain an accurate
estimate of the phone pose in the prior map. They demonstrate that our algorithm can
repeatedly relocalize and track the phone pose within the same environment. Moreover, our
semantic localization approach is very robust to perceptual aliasing and can improve the
visual odometry provided by the phone in ambiguous environments and when closing loops.

Evaluation on the KITTI Dataset

This section evaluates the performance of the semantic localization approach on the KITTI
visual odometry dataset (Geiger et al. 2013). The dataset consists of 22 sequences of color
stereo images (0.5 Megapixels in png format) and 3-D Velodyne point clouds (100k points
per frame) recorded from a vehicle, driving through residential areas. Eleven sequences (00-
10) contain ground-truth vehicle trajectories provided by a GPS/IMU system with real-time
kinematic correction. Only sequences {00, 05, 06, 07, 08, 09, 10} were used in our experiments
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Figure 3.18: Vehicle trajectory estimated via global semantic localization on sequence 00 from the
KITTI visual odometry dataset. The left and middle plots show two images with car and window
detections and the corresponding particle distributions in the semantic map. The plot on the right
shows the semantic map and the trajectory, recovered after unique localization (iteration 70). See
Appendix D.16 Extensions 5 and 6 for more details.

because the rest either had too few static landmarks or did not contain ground-truth infor-
mation. The cars (class 1) and windows (class 2) in the RGB image sequences were labeled
in order to build prior semantic maps. The Velodyne range information was mapped to
the images and the ground-truth trajectories were used to project the labeled objects to
the 3-D world coordinate frame. The final semantic maps are provided in Appendix D.16
Extension 14 and the map for sequence 00 is shown in Fig. 3.18.

The pre-trained deformable-part car models provided in the KITTI object dataset were
used for car recognition. Sequence 07 was used to train a deformable-part-model-based
window detector and to obtain parameters for the single-object detection model pd(y, x),
observation likelihood pz(z | y, x), and clutter model pκ(z). The car detection model was
nonzero for a distance range of [3, 33] meters and used parameters p0 = 0.7,m0 = 11.8, v0 =
14. The window detection model was nonzero in the range [7, 24] with parameters p0 =
0.7,m0 = 12.7, v0 = 7. The rest of the parameters were: pc(c | yc) = I2, sensing range 32
m, field of view 80◦, Σβ = 5◦, and λ = 0.5.

Visual odometry via Viso2 (Geiger et al. 2011) was used for the prediction step in
Alg. 7. Viso2 provides a 6-D local trajectory. As in the Tango phone experiments, only
the 2-D position and the yaw angle of the trajectory were updated via our method. The
likelihoods of the car-window semantic observations were computed via the exact permanent
algorithm (Alg. 6). Global semantic localization was carried out on sequences 00, 05-10.
The vehicle trajectory, recovered from sequence 00, is shown in Fig. 3.18 along with some
object detections. A video of the experiment is included in Appendix D.16 Extension 6.
An additional experiment, in which the localization was restarted every 400 iterations,
was carried out on sequence 00 and is presented in Appendix D.16 Extension 5. The
experiment demonstrates that our algorithm can repeatedly and successfully relocalize and
track the vehicle pose within the same environment. Finally, the results of the global
semantic localization on the rest of the sequences (05-10) are presented in Appendix D.16
Extensions 7 - 12. The localization errors with respect to the ground-truth trajectories
from all experiments are presented in Fig. 3.19. Initially, the errors are large because our
method is started with an uninformative prior (a uniform distribution in the area around the

75



1000 2000 3000 4000
0

5

10

P
o
s
it
io

n
E

rr
o
r 

[m
e
te

rs
]

Sequence 00

1000 2000 3000 4000
0

5

10

Iteration

O
ri
e

n
ta

ti
o
n

E
rr

o
r 

[d
e

g
re

e
s
]

1000 2000 3000 4000
0

10

20

P
o
s
it
io

n
E

rr
o
r 

[m
e
te

rs
]

Sequence 00 + Restarts

1000 2000 3000 4000
0

10

20

Iteration

O
ri
e

n
ta

ti
o
n

E
rr

o
r 

[d
e

g
re

e
s
]

500 1000 1500 2000 2500
0

5

10

P
o
s
it
io

n
E

rr
o
r 

[m
e
te

rs
]

Sequence 05

500 1000 1500 2000 2500
0

5

10

Iteration

O
ri
e

n
ta

ti
o
n

E
rr

o
r 

[d
e

g
re

e
s
]

200 400 600 800 1000
0

5

10

P
o
s
it
io

n
E

rr
o
r 

[m
e
te

rs
]

Sequence 06

200 400 600 800 1000
0

5

10

Iteration

O
ri
e

n
ta

ti
o
n

E
rr

o
r 

[d
e

g
re

e
s
]

200 400 600 800 1000
0

5

10

P
o

s
it
io

n
E

rr
o
r 

[m
e
te

rs
]

Sequence 07

200 400 600 800 1000
0

5

10

Iteration

O
ri
e

n
ta

ti
o
n

E
rr

o
r 

[d
e
g
re

e
s
]

1000 2000 3000 4000
0

5

10

P
o

s
it
io

n
E

rr
o
r 

[m
e
te

rs
]

Sequence 08

1000 2000 3000 4000
0

5

10

Iteration

O
ri
e

n
ta

ti
o
n

E
rr

o
r 

[d
e
g
re

e
s
]

500 1000 1500
0

5

10

P
o

s
it
io

n
E

rr
o
r 

[m
e
te

rs
]

Sequence 09

500 1000 1500
0

5

10

Iteration

O
ri
e

n
ta

ti
o
n

E
rr

o
r 

[d
e
g
re

e
s
]

200 400 600 800 1000 1200
0

5

10

P
o

s
it
io

n
E

rr
o
r 

[m
e
te

rs
]

Sequence 10

200 400 600 800 1000 1200
0

5

10

Iteration

O
ri
e

n
ta

ti
o
n

E
rr

o
r 

[d
e
g
re

e
s
]

Figure 3.19: Position (euclidean distance) and orientation errors of the vehicle trajectories recov-
ered via global semantic localization on sequences {00, 05, 06, 07, 08, 09, 10} from the KITTI visual
odometry dataset. The plot, titled “Sequence 00 + Restarts”, shows results from an experiment in
which the localization was restarted every 400 iterations. Appendix D.16 Extensions 5 - 13 provide
videos of all experiments.

Figure 3.20: Average translation and orientation errors8obtained from visual odometry via Viso2
(Geiger et al. 2011) and from visual odometry combined with semantic localization on sequences
{00, 05, 06, 07, 08, 09, 10} from the KITTI visual odometry dataset. Both methods use a known
starting vehicle pose, i.e., perform tracking instead of global localization.

landmarks). Nevertheless, after the initial global localization stage, our approach achieves
average errors in the position and orientation estimates of less than 1 m and 5◦, respectively.
Even though the data association obtained from permanent computations is very robust to
perceptual aliasing, sometimes, the ambiguity in the environment is large enough to cause
particle depletion problems. For example, if resampling is done too frequently and there
is no way to detect if the system is lost (i.e., the particle distribution is never reset), the
localization might fail. Such a fail case is shown in Appendix D.16 Extension 13.

To demonstrate that localization from semantic observations is complementary to exist-
ing odometry and SLAM techniques, we also carried out tracking experiments, in which the
initial vehicle pose was known. In Fig. 3.20, the position and orientation errors obtained
from visual odometry are compared to those obtained from visual odometry, combined
with our semantic localization approach. Even though visual odometry provides excellent
tracking results by itself, the addition of semantic observations provides a reference to the
absolute (semantic map) frame and improves the results.
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Figure 3.21: The left plot shows the trajectories, followed by four different active-semantic-
localization approaches, which localize and lead a differential-drive robot to a goal pose in a simulated
environment containing 300 objects from 3 classes (yellow square, cyan circle, blue triangle). The
initial particle distribution is shown by the black dots. The four methods are: (1) ASL: active
semantic localization presented in Sec. 3.1.5, (2) RND: chooses motion primitives at random, (3)
MIN: chooses the motion primitive that drives the particle mean closest to the closest landmark, (4)
BEM: bearing-only entropy minimization (see text for details). The right plot shows the particle-
distribution entropies along the trajectories associated with each method.

Active Semantic Localization Simulations

In this section, we evaluate the performance of the active semantic localization approach
(Sec. 3.1.5) by comparing it to three other active localization methods in simulation. The
simulations use the differential-drive robot model and the motion primitives in Fig. 3.4.
Fifty environments of size 120× 120 m2 containing 300 objects from 3 classes (square, cir-
cle, triangle) were generated by sampling random points and placing one of three possible
four-object structures (square-square-circle-triangle, square-circle-circle-triangle, or square-
triangle-circle-triangle) in order to create perceptual ambiguity (see Fig. 3.21). A start
and a goal pose for the robot were chosen in the top-left and bottom-right corners of each
environment, respectively. The semantic localization algorithm (Alg. 7 with exact per-
manent computation via Alg. 6) was initialized with a uniform particle distribution over
the whole environment. Semantic observations were simulated using the learned detection,
clutter, and measurement likelihood models for cars and windows (from the KITTI dataset
experiments) and red chairs (from the Tango phone experiments), corresponding to squares,
circles, and triangles, respectively. For each environment, semantic observations were col-
lected, while moving in a straight line, and the filter was updated without resampling until
there were 100 effective particles (see Fig. 3.21 for an example of the initial particle set).
Starting with this initial particle distribution, the following methods were compared to our
active semantic localization (ASL) approach:

• RND: chooses a motion primitive from the ones in Fig. 3.4 at random

8The orientation error is the cumulative error in degrees between the ground-truth and the estimated
orientations divided by path length in meters.
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Table 3.2: Comparison of the average (over 50 simulated environments) performance of the four
active-semantic-localization approaches, referenced in Fig. 3.21. The average euclidean distance
between the start and the goal positions was 251 m. If the goal was not reached in 1000 iterations,
the experiment was terminated. The table presents averages of the number of iterations until termi-
nation, the euclidean distance to the goal at termination, the entropy in the particle distributions,
and the position and orientation errors with respect to the ground-truth robot trajectory.

Method Steps Distance to Goal [m] Entropy [bits] Position Error [m] Orientation Error [deg]
RND 595 35.02 3.00 22.17 12.48
MIN 508 35.58 2.83 27.58 11.98
BEM 447 16.22 3.05 18.49 11.13
ASL 345 12.09 2.05 12.59 6.37

• MIN: chooses the motion primitive, which drives the mean of the particle distribution
closest to the closest landmark in the environment

• BEM: chooses a motion primitive by minimizing the entropy of the robot pose condi-
tioned on the future bearing measurements only (see Appendix D.14 for details).

The methods were used to choose motion primitives if the entropy in the particle distri-
bution (computed by discretizing the robot state space into cells of size 2.5 × 2.5 m2 and
25◦ and replacing the particles, contained in the same cell, with their average) increased
above 2.5 bits. Otherwise, if the entropy decreased under 2.5 bits, each method planned a
trajectory from the mean of the particle distribution to the goal state using A* and followed
it using a deterministic controller. The trajectories, followed by the four active localization
methods, and the associated particle-distribution entropies are shown for one of the simu-
lated environments in Fig. 3.21. Performance statistics, averaged over the 50 environments,
are presented in Tab. 3.2. The results show that, on average, the active semantic localiza-
tion approach reaches the goal in less iterations, with lower particle-distribution entropy,
and with lower estimation error, compared to the other three approaches. Of course the
approach is also more computationally demanding. As expected, the random approach per-
forms the worst because when there no landmarks in proximity to the robot, it might spend
a long time until relocalization. The BEM approach demonstrates much better performance
but the main problem with it and the MIN method is that they rely on the mean of the
particle distribution for planning. Sometimes, when the mean is far from the true pose,
these methods choose trajectories, which do not necessarily result in improved localization
accuracy.

3.2 Model-free Source Seeking

In this section, we switch gears and address a more extreme scenario in which the observation
model is completely unknown. As mentioned in the introduction, we consider a somewhat
simpler objective - to control a sensor team in order to localize a single static source that
generates the sensed signal. Suppose that the team is composed of n sensing robots with
states {x1,t, . . . , xn,t} ⊂ X ∼= Rdx at time t. The states are typically comprised of pose
and velocity information but might include other operational parameters too. At a high-
level planning stage we suppose that the vehicles have discrete single-integrator dynamics
xi,t+1 = xi,t + ui,t, where ui,t ∈ U is the control input to sensor i. The task is to localize a
signal source, whose state is y ∈ Y ∼= Rdy captures the source position and other observable
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properties of interest. At time t, each sensor i has access to a noisy measurement zi,t ∈ Z ∼=
Rdz of the signal generated by y:

zi,t = h(xi,t, y) + vi,t, (3.19)

where vi,t is the measurement noise, whose values are independent at any pair of times
and among sensors. The noise depends on the states of the sensor and the source but to
simplify notation we do not make it explicit. We assume that the noise is zero-mean and has
a finite second moment, i.e., Evi,t = 0, ∀i, t, xi,t and tr

(
E[vi,tv

T
i,t]
)
< ∞. In the reminder,

we use the notation xt :=
[
xT1,t, . . . , x

T
n,t

]T
, ut :=

[
uT1,t, . . . , u

T
n,t

]T
, zt :=

[
zT1,t, . . . , z

T
n,t

]T
, and

vt :=
[
vT1,t, . . . , v

T
n,t

]T
.

In the model-free scenario, the sensors simply receive measurements without knowing
the signal model h(·, ·). We suppose that the team adopts some arbitrary formation, with
center of mass mt :=

∑n
i=1 xi,t/n at time t, which can be enforced using potential fields

(Ögren et al. 2004) or convex optimization (Derenick and Spletzer 2007). The sensors use
the centroid mt as the estimate of the source state y at time t and try to lead it toward
the true source location based on the received measurements. Let π : X → Y be a known
transformation which maps the team centroid to a source estimate. For example, if the robot
state space captures both position and orientation, e.g., X = SE(2), but we are interested
only in position estimates for the source, e.g., Y = R2, then π will be the projection that
extracts the position components from the centroid mt ∈ X . We consider the following
problem.

Problem (Model-free Source Seeking). Assume that the measurement signal in (3.19) is
scalar9 and its expectation is maximized at the true state y of the source:

π−1(y) ∈ arg max
x∈X

h(x, y). (3.20)

Generate a sequence of control inputs u0, u1, . . . for the team of sensors in order to drive its
centroid mt toward a maximum of the signal field h(·, y).

We resort to a greedy control approach, based on stochastic gradient descent, that
results in a simple algorithm with local convergence guarantees and is applicable to robot
platforms with limited computational resources and no global localization capabilities.

3.2.1 Stochastic Finite-difference Gradient Ascent

We design an iterative optimization scheme which causes the centroid mt of the robot
formation to ascend the gradient g(x, y) := ∇xh(x, y) of the measurement signal. The
gradient ascent leads mt to a (often local) maximum of the signal field, which is appropriate
in view of assumption (3.20). In detail, the desired dynamics for the centroid are:

mt+1 = mt + γtg(mt, y). (3.21)

The main challenge is that the sensors do not have access to g(·, y) and can only measure
a noisy version of h(·, y) at their current positions. Supposing noise-free measurements

9This assumption is made only to simplify the presentation of the gradient ascent approach. The approach
generalizes to signals of higher dimension.
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for now, the sensors can approximate the signal gradient at the formation centroid via a
finite-difference (FD) scheme:

g(mt, y) = ∇xh(mt, y) = W (xt)

h(x1,t, y)
...

h(xn,t, y)

− bt, (3.22)

where W (xt) ∈ Rdx×n is a matrix of FD weights, which depends on the sensor states xt,
and bt ∈ Rdx captures the error in the approximation. The most natural way to obtain
the FD weights is to require that the approximation is exact for a set of test functions
ψi, i = 1, . . . , n, commonly polynomials, which can represent the shape of g(·, y). In
particular, the following relation needs to hold:ψ1(x1,t) · · · ψ1(xn,t)

...
...

ψn(x1,t) · · · ψn(xn,t)

W (xt)
T =


∂
∂xψ1(mt)

...
∂
∂xψn(mt)

 , (3.23)

where ∂
∂xψi(x) is a row vector of partial derivatives. When xi,t ∈ R the most common set of

test functions are the monomials ψi(x) = xi−1, in which case (3.23) becomes a Vandermonde
system. The standard (monomial) FD approach is problematic when the states xi,t are
high-dimensional and not in a lattice configuration because the system in (3.23) becomes
ill-conditioned. These difficulties are alleviated by using radial basis functions (RBFs)
ψi(x) := φ(‖x−xi,t‖) as test functions. In particular, using Gaussian RBFs, φ(d) := e−(δd)2

,
with shape parameter δ > 0, guarantees that (3.23) is non-singular (Fornberg et al. 2013).
Then, the FD weights obtained from (3.23) as a function of xt are:

W (xt) = R(xt)
TΦ(xt)

−T , (3.24)

where, for x ∈ X n, we let Φij(x) := e−δ
2‖xj−xi‖22 and

R(x) :=

2δ2e−δ
2‖x1−

∑n
i=1 xi/n‖22(x1 −

∑n
i=1 xi/n)T

...

2δ2e−δ
2‖xn−

∑n
i=1 xi/n‖22(xn −

∑n
i=1 xi/n)T

 . (3.25)

Since the measurements are noisy, sensor i can observe only zi,t rather than h(xi,t, y). As
a result, the gradient ascent (3.21) can be implemented only approximately via g(mt, y) ≈
W (xt)zt instead of (3.22) and with the additional complication that the measurement noise
makes the iterates mt random. Our stochastic model-free source seeking algorithm becomes:

mt+1 = mt + γtW (xt)zt. (3.26)

The convergence of similar source seeking schemes is often studied in a deterministic
framework (Ögren et al. 2004) by assuming that the noise can be neglected, which is dif-
ficult to justify. In the following section, we show that the center of mass mt, following
the dynamics (3.26) with appropriately chosen step-sizes γt, converges to a neighborhood
of a local maximum of h(·, y). Assuming all-to-all communication or a centralized loca-
tion, which receives all state and measurement information from the sensors, the stochastic
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gradient ascent (3.26) can be implemented as is. It requires that the sensors are localized
relative to one another, i.e., in the inertial frame of one sensor, but not globally, in the
world frame. Notably, it is also not important to maintain a rigid sensor formation because
the correct FD weights, necessary to combine the observations, are recomputed at every
measurement location. We show that the only requirement is that the sensor team is not
contained in a subspace of Rdx when measuring (e.g., at least 3 non-collinear sensors are
needed for dx = 2).

Convergence Analysis

We apply the theory of stochastic approximations (Kushner and Yin 2003, Borkar 2008) to
carry out the convergence analysis of the stochastic gradient ascent in (3.26). It is sufficient
to consider the following stochastic approximation (SA) algorithm:

mt+1 = mt + γt(g(mt) + bt +Dt), (3.27)

where bt is a bias term, Dt is a random zero-mean perturbation, γt is a small step-size,
and mt is a random sequence whose asymptotic behavior is of interest. The main result
is that the iterates mt in (3.27) asymptotically follow the integral curves of the ordinary
differential equation (ODE) ṁ = g(m). Since in our case with a fixed source state y,
g(m) := ∇xh(m, y), the ODE method of Ljung (1977) (see also Borkar 2008, Ch.2) shows
that the iterates {mt} almost surely (a.s.) converge to the set {x | ∇xh(x, y) = 0} of critical
points of h(·, y) under the following assumptions10:

(A1) The function g is Lipschitz continuous11.

(A2) Step-sizes {γt} are positive scalars satisfying:
∑∞

t=0 γt =∞ and
∑∞

t=0 γ
2
t <∞.

(A3) {Dt} is martingale difference sequence with respect to the family of σ-algebras Ft :=
σ(m0, Ds, 0 ≤ s ≤ t), i.e., Dt is measurable with respect to Ft, E[‖Dt‖] < ∞, and
E[Dt+1 | Ft] = 0 a.s. for all t ≥ 0. Also, Dt is square-integrable with E[‖Dt+1‖2 |
Ft] ≤ K(1 + ‖mt‖2) a.s. for t ≥ 0 and some constant K > 0.

(A4) {mt} is bounded, i.e., supt ‖mt‖ <∞ a.s.

(A5) {bt} is bounded and bt → 0 a.s. as t→∞.

The proposed source-seeking algorithm (3.26) can be converted to the SA form (3.27) as
follows:

mt+1 = mt + γtW (xt)zt = mt + γtW (xt)

h(x1,t, y) + v1,t
...

h(xn,t, y) + vn,t


= mt + γt (g(mt, y) + bt +W (xt)vt) ,

10While assumptions (A1)-(A5) are sufficient to prove the convergence in our application, they are by no
means the weakest possible. If necessary some can be relaxed using the results in stochastic approximation
(Kushner and Yin 2003, Borkar 2008).

11Given two metric spaces (X , dx) and (G, dg), a function g : X → G is Lipschitz continuous if there exists
a real constant 0 ≤ L <∞ such that: dg(g(x1), g(x2)) ≤ Ldx(x1, x2), ∀x1, x2 ∈ X .
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where the second equality follows from (3.22). Assumption (A1) ensures that ṁ = g(m, y)
has a unique solution for any initial condition and any fixed source state y. Assumption
(A2) can be satisfied by an appropriate choice of the step-size, e.g., γt = 1/(t + 1). The
selection of proper step-sizes is an important practical issue that will be discussed in the
next section. We can satisfy (A4) by requiring that the environment X of the sensors
is bounded and if necessary use a projected version of the gradient ascent (Borkar 2008,
Ch.5.4). This also ensures that the FD weights are bounded and in turn (A3) is satisfied:

(E‖Dt‖2)2 ≤E‖Dt‖22 = E
[
‖Dt‖22 | Ft−1

]
= E

[
‖W (xt)vt‖22

]
≤ ‖W (xt)‖22E‖vt‖22 = ‖W (xt)‖22

n∑
i=1

tr(E[vi,tv
T
i,t]) <∞

E [Dt | Ft−1] = E[W (xt)vt] = W (xt)Evt = 0,

since the measurement noise in (3.19) is uncorrelated in time and has zero mean and a
finite second moment. Note that the error term in (3.22) violates (A5) because it does
not converge to 0. However, if we ensure that the sensor formation is not contained in
a subspace of Rdx , then bt remains bounded by some ε0 > 0, i.e., supt ‖bt‖ ≤ ε0. Then,
the argument in Borkar (2008, Ch.5, Thm.6) shows that the iterates mt converge a.s. to a
small neighborhood of a local maximum, whose size depends on ε0. The result is summarized
below.

Theorem 3.5. Suppose that the gradient g(x, y) = ∇xh(x, y) of the measurement signal
is Lipschitz continuous in x, the step-sizes γt in (3.26) satisfy (A2), the sensor state space
X is bounded and convex, and the sensor formation is not contained in a subspace of Rdx
at the measurement locations. Then, algorithm (3.26) converges to a small neighborhood
around a local maximum of the signal field h(·, y).

3.2.2 Single-robot Source Seeking

Instead of a sensor network, a single robot may travel to several sensing locations in order to
collect the measurements needed for a finite-difference gradient approximation. Thm. 3.5
requires visiting dx + 1 locations with a single robot which may result in costly maneuvers.
In this section, we emphasize that the robot can use a random direction stochastic approx-
imation (RDSA, Kushner and Yin 2003) to the gradient instead. The idea of RDSA is to
estimate the gradient along a single direction at time t instead of in all dx dimensions. We
show that if the directions are chosen consistently over time, this random direction gradient
ascent will still converge. In detail, we use the following gradient estimate:

ĝt(xt) :=
√
dx

[
zt+ − zt−
‖xt+ − xt−‖2

]
Ttat, (3.28)

where at ∈ Rdx is a random direction vector with probability distribution pt : Rdx → [0, 1],
and Tt is a rotation matrix, whose role is explained below. Also, xt+ := xt + ct+Ttat
and xt− := xt − ct−Ttat are two measurement locations determined by gain coefficients
ct− , ct+ ∈ R≥0. At iteration t of the algorithm, the signal field is sampled at points xt−
and xt+ in order to estimate its directional gradient at xt. Then, a step is taken in the
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direction of the gradient estimate to generate the next estimate of the source location xt+1.
Repeating this procedure generates a sequence of states {(xt, xt− , xt+)}, which represents
a trajectory in the world coordinate frame. The role of the matrices Tt is to transform
this trajectory to the body coordinate frame of the robot. The sampling points at time t
represented in the robot body frame are:

xbt− = −ct−R(−θt)Ttat
xbt+ = ct+R(−θt)Ttat
xbt+1 = −γtR(−θt)ĝt(0),

where θt is the robot orientation and R(−θt) is a rotation matrix. Choosing Tt = R(θt),
allows the robot to run the algorithm without the need for localization:

xbt+1 = −γt
√
dx

[
zt+ − zt−
‖xbt+ − x

b
t−‖

]
at (3.29)

The design parameters of the algorithm are γt, ct− , ct+ , and the pdf pt of the random
directions at. Successful application of this algorithm in a real environment requires a
careful choice of the design parameters that takes the robot capabilities and the geometric
constraints of the environment into account in order to ensure that the resulting sequence
{(xt, xt− , xt+)} can be followed by the robot.

Proposition 3.6. If the sensor state space X is bounded and convex, the random direction
stochastic gradient ascent in (3.29) converges a.s. to a local maximum of the signal field
h(·, y) under the following assumptions:

(Signal field) h(x, y) is bounded and three times continuously differentiable in x

(Sample point gains) ct := max{ct− , ct+} > 0, ct → 0

(Gradient gains) γt > 0, γt → 0,
∑∞

t=0 γt =∞, and
∑∞

t=0 γ
2
t /c

2
t <∞

(Direction vectors) at are i.i.d. with distribution pt, which is symmetric with respect to
reflections about the coordinate axes, and satisfy E[‖at‖2] =

√
dx and E[ata

T
t ] = I.

Proof. The result follows from a slight modification of the proof of the RDSA algorithm
(Kushner and Yin 2003, Chapter 5.6 and 10.7) which takes into account that ct−Ttat 6=
ct+Ttat. Note that:

E
[
‖xt+ − xt−‖2√

dx

]
=

(ct+ + ct−)‖Tt‖2E[‖at‖2]
√
dx

= (ct+ + ct−).

The rest of the assumptions are satisfied because the measurement noise vt is zero mean
and square integrable and the boundedness of X guarantees that supt ‖xt‖ <∞.

Remark. The smoothness condition on h guarantees that ĝt is almost surely an unbiased
estimate of gt to within an O(c2

t ) error, which is guaranteed to be small by the assumption
on the sample point gains.
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Since our goal is to apply the algorithm in an environment with obstacles, we disregard
the assumption that the state space X is convex. Of course, the theoretical almost sure
convergence guarantee in Prop. 3.6 is lost but we would like to show that the algorithm
still works in practice with the appropriate choice of parameters. The rest of this section
concentrates on the choice of γt, pt, ct− , and ct+ with two goals in mind: first, to take the
geometric constraints of the environment and the robot characteristics into account so that
the generated sampling points {(xt, xt− , xt+)} are easy to follow and, second, to provide
only a few high-level and intuitive parameters to the user of the algorithm. The parameter
choice is simplified to the following two constants:

• Aggressiveness factor r > 0: a constant determining the size of the steps of the
algorithm. Intuitively, r is the amount of meters, by which the position of the robot
is expected to change in the early iterations. The further away the source is expected
to be, the larger the value of r should be.

• Stability factor s ≥ 0: a constant which allows for large steps in the early iterations
of the algorithm without causing instabilities. It should be set to 5 − 10 percent of
the expected number of iterations of the algorithm.

Choosing the direction vectors at

Several choices for the pdf of at have been considered in literature (Spall 2003, Kushner
and Yin 2003, Le Ny and Pappas 2010) with a Bernoulli distribution in each coordinate
being preferred in applications. We note that the Bernoulli distribution is an optimal choice
only for signal fields, which are aligned with the coordinate axes in a way that their third
cross-derivatives ∂3h/∂xi∂xj∂xk are all zero (Theiler and Alper 2006). Since the signal
field will not be axis aligned in a non-convex X it is beneficial to choose at uniformly from
all possible directions. In particular, we let pt be a shell distribution, which is defined as
follows: choose ai ∼ N (0, 1) for i = 1, . . . , dx and then rescale the vector to guarantee that
its magnitude is

√
dx as required in Prop. 3.6.

Choosing the gradient gains γt

The usual form used for the gradient gain coefficients in literature (Spall 2003, Kushner and
Yin 2003) is:

γt =
γ

(t+ 1 + s)α
, t = 0, 1, . . . , (3.30)

where γ > 0 is a constant, s is the stability factor mentioned earlier, and α > 0 governs the
decay rate for the gains and can be set to α = 0.602 as suggested in (Spall 2003, Ch.6).

A modification to this choice is required for our application. If the numerator γ is con-
stant, the gain coefficients γk are monotonically decreasing, which is not desirable because
the robot will be taking decreasing steps along the gradient and it might get trapped in
a location, where the magnitude of the gradient estimate is small. We replace γ with a
time-varying numerator γ0

t > 0, which is inversely proportional to the magnitude of the
gradient estimate. This is beneficial because when the magnitude of the gradient estimate
is large, the robot takes small steps in a controlled manner towards the source but if the
magnitude of the gradient estimate decreases, the gain coefficients increase allowing the
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robot to follow the gradient even if the signal field is very flat. Based on these observations
we propose:

γ0
t =

r(1 + s)α

1

w

t∑
j=t+1−w

1

dx
‖ĝj(xj)‖1

, t = 0, 1, . . . , (3.31)

where r is the aggressiveness factor and w ∈ N is a window over which the mean magnitude
of the elements of ĝt is averaged. The size of w determines the speed at which γt reacts to
changes in the magnitude of the gradient estimate. We used w = 10 in the experiments in
Sec. 3.2.4.

Choosing the sample point gains ct− and ct+

A typical schedule used in the stochastic approximation literature (Spall 2003, Kushner and
Yin 2003) for the sample point gain coefficients is:

ct− =
c0
−

(t+ 1)β
, ct+ =

c0
+

(t+ 1)β
, t = 0, 1, . . . , (3.32)

where c0
−, c

0
+ ∈ R≥0 are constants and β ∈ R>0 is the gain decay rate. In practical applica-

tions, a slow decay leads to better finite sample performance and a good choice is β = 0.101
(see Spall 2003). The constants c0

− and c0
+ are typically set to the standard deviation of the

measurement noise vt at the current position of the robot by measuring the signal several
times. The gains ct− , ct+ , and the direction vector at affect the position of the sampling
points xt− and xt+ as specified in (3.28). While the choice in (3.32) is applicable to the
obstacle-free case, when dealing with a general environment it needs to be modified to ac-
commodate for the constraints introduced by the obstacles. Let bt+ be the value for ct+
originally suggested in (3.32). Suppose that the robot is traveling from its previous estimate
xt−1 towards xt. As soon as xt is in the robot’s field of view F , we choose xt+ in F to
ensure that it is reachable. Alg. 8 with x ← xt and r ← bt+ shows how to sample at and
simultaneously choose ct+ , with a magnitude as close to bt+ as possible.

Algorithm 8 Rejection Sampling of at

1: Input: Position x ∈ Rdx in the robot body frame, radius r ∈ R≥0, and field of view F ⊆ X
2: Output: Step size ct+ and direction vector at
3: Let dS be a small area element on the surface of the hypersphere of radius

√
dx centered at x

4: count← 1
5: repeat
6: Sample at from the shell distribution
7: if (1− P({at ∈ dS}))count < 0.05 then
8: decrease r; count← 1
9: else

10: count← count+ 1

11: until r = 0 or there is a path between x and (x+ rat) in F
12: return at and ct+ ← r

The shell distribution is sampled for a direction at, which selects a possible sample point
q = xt + rat. Line 11 checks if the path from xt to q is within the robot’s field of view and
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if so the chosen values for at and ct+ ← r are returned. Otherwise, another sample for at is
chosen. Thus, the allowable values for xt+ = xt + ct+at lie on the intersection of the field of
view F and the ball of radius r

√
dx centered at xt. Due to the obstacles, there might not

be a feasible choice for at with the specified radius r. When the probability of selecting a
sampling point in any small region dS on the surface of the sphere of radius r is above 95%
but a suitable direction has not been chosen yet, the radius is decreased (line 6). Once the
direction at is known, the choice of ct− is the maximum distance that can be traveled along
−at starting from xt and up to bt+ or until an obstacle is reached.

3.2.3 Distributed Multi-robot Source Seeking

Now, we return to the case when a sensor team is available to estimate the complete gradient
in (3.26) instead of the directional one. As mentioned earlier, if the sensors are localized
in the frame of reference of one of them and if all-to-all communication is available, the
algorithm can be implemented as is. However, in many scenarios, all-to-all communication
is either infeasible or prone to failures and sensor localization needs to be carried out online.
In this section, we describe a distributed implementation of the model-free algorithm (3.26),
in which the sensors use relative measurements of their neighbors’ states to estimate the
collective state of the formation. In detail, the sensors need to estimate the formation state
xt, the centroid mt, and the stochastic approximation to the signal gradient W (xt)zt at
each time t using only local information. We introduce a fast time-scale k = 0, 1, . . ., which
will be used for the estimation procedure at each measurement location, i.e., at each time t.
During the formation state and gradient estimation at time t, the sensors remain stationary
and we drop the index t to simplify the notation.

Let the communication network of the n sensors be represented by an undirected graph
G = ({1, . . . , n}, E). Suppose that each sensor i receives a relative measurement of the state
of each of its neighbors j ∈ Ni:

sij(k) = xj − xi + εij(k), εij(k) ∼ N (0, Eij), (3.33)

where εij(k) is the measurement noise which is independent at any pair of times on the
fast time-scale and across sensor pairs. If each sensor manages to estimate the states of
the whole sensor formation using the measurements {sij(k)}, then each can compute the
finite-difference weights in (3.24) on its own.

The distributed linear Gaussian estimator (2.25) in Sec. 2.6.1 can be employed to esti-
mate the sensor states x. Notice that it is sufficient to estimate x in a local frame because
neither the finite difference computation (3.24) nor the gradient ascent (3.26) requires global
state information. Assume that all sensors know that sensor 1 is the origin at every mea-

surement location. Let x∗ :=
[
0T (x2 − x1)T · · · (xn − x1)T

]T
denote the true sensor

states in the frame of sensor 1. Let x̂i(k) denote the estimate that sensor i has of x∗ at
time k on the fast time scale. The vector form of the measurement equations (3.33) is:

s(k) = (B ⊗ Idx)Tx∗ + ε(k), (3.34)

where B is the incidence matrix of the communication graph G. The measurements (3.34)
fit the linear Gaussian model in (2.22). Since the first element of x∗ is always 0, only

86



(n− 1)dx components need to be estimated. As the rank of B⊗ Idx is also (n− 1)dx, Thm.
2.10 allows us to use the distributed estimator (2.25) to update x̂i(k).

Concurrently with the state estimation, sensor i would be obtaining observations zi,t(k)
of the signal field for k = 0, 1, . . .12. In the centralized case (Sec. 3.2.1), each sensor uses
the following gradient approximation:

g(mt, y) ≈W (xt)zt =

n∑
i=1

coli(W (xt))zi,t, (3.35)

where coli(W (xt)) denotes the ith column of the finite-difference-weight matrix. Since xt
and zt are not available in the distributed setting, each sensor can use its local measurements
zi,t(k) and its estimate x̂it(k) of the sensor states to form its own local estimate of the signal
gradient:

ĝi,t(k) := coli(W (x̂it(k)))
1

k + 1

k∑
τ=0

zi,t(τ). (3.36)

In order to obtain an approximation to g(mt, y) as in (3.35) in a distributed manner, we
use the high-pass dynamic consensus filter of Spanos et al. (2005) to have the sensors agree
on the value of the sum:

ĝt(k) := n

(
1

n

n∑
i=1

ĝi,t(k)

)
.

Each node maintains a state qi,k, receives an input µi,k, and provides an output ri,k with
the following dynamics:

qi,k+1 = qi,k + β
∑
j∈Ni

(qj,k − qi,k) + β
∑
j∈Ni

(µj,k − µi,k)

ri,k = qi,k + µi,k

(3.37)

where β > 0 is a step-size. For a connected network Spanos et al. 2005, Thm. 1 guarantees
that ri,k converges to 1/n

∑
i µi,k as k →∞. The following result can be shown by letting

µi,k := ĝi,t(k) and is proved in Appendix D.15.

Theorem 3.7. Suppose that the communication graph G is strongly connected. If the sensor
nodes estimate their states x∗ from the relative measurements (3.34) using algorithm (2.25),
compute the finite-difference weights (3.24) using the state estimates, and run the dynamic
consensus filter (3.37) with input µi,k := ĝi,t(k), which was defined in (3.36), then the output
ri,k of the consensus filter satisfies:

n

(
lim
k→∞

E[ri,k]

)
= g(m∗, y) + b, ∀i ∈ {1, . . . , n},

where g(m∗, y) is the true signal gradient at m∗ :=
∑n

i=1 x
∗
i /n and b is the error in the

finite-difference approximation (3.22).

12The time-scales of the relative state measurements and the signal measurements might be different but
for simplicity we keep them the same.
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After this procedure the sensors agree on a centroid for the formation and a gradient
estimate, which can be used to compute the next formation centroid according to (3.26).
Since the finite-difference weights are recomputed at every t, the formation need not be
maintained accurately. This allows the sensors to avoid obstacles and takes care of the
motion uncertainty.

3.2.4 Application: Wireless Radio Source Seeking

This section demonstrates the performance of the source-seeking algorithms in a wireless
radio source localization task. A radio signal was chosen because it is very noisy and
difficult to model and yet most approaches for wireless source seeking are model-based.
Both simulations and real world experiments were carried out. We begin by modeling the
received signal strength (RSS), which is needed to simulate the radio signal.

Wireless Radio Signal Model

Let the positions of a wireless source and receiver in 2-D be y and x, respectively. The
received signal strength (dBm) at x is modeled as:

Prx(x, y) = Ptx +Gtx − Ltx +Grx − Lrx − Lfs(x, y)− Lm(x, y)−R(x, y),

where Ptx is the transmitter output power (18 dBm in our experiments), Gtx is the trans-
mitter antenna gain (1.5 dBi), Ltx is the transmitter loss (0 dB), Grx is the receiver antenna
gain (1.5 dBi), Lrx is the receiver loss (0 dB), Lfs is the free space loss (dB), Lm is the
multi-path loss (dB), and R is the noise. The free space loss is modeled as:

Lfs(x, y) = −27.55 + 20 log10(ν) + 20 log10

(
‖x− y‖2

)
,

where ν is the frequency (2400 MHz). The model from Capulli et al. (2006) is used for the
the multi-path loss:

Lm(x, y) =

{
α+ βλ(x, y), if λ(x, y) > 0

0, else

where α is a multi-wall constant (30 dB), β is a wall attenuation factor (15 dB/m), and
λ(x, y) denotes the distance traveled by the ray from y to x through occupied cells in the
environment (represented as an occupancy grid). Finally, if the measurement is line-of-sight
(LOS), i.e., λ(x, y) = 0, the fading R(x, y) is Rician(µ, σ); otherwise it is Rayleigh(σ). We
used µ = 4 dB and σ = 20 dB in the simulations.

Robot Platform

We carried out simulations and real-world experiments in an indoor environment using a
differential-drive Scarab robot (Fig. 3.22). The robot was equipped with a Hokuyo URG
laser range finder for obstacle detection and a XBee-PRO RF module for RSS measurements.
An A∗ planner was used to generate a feasible path along the sampling points supplied by
the stochastic gradient ascent algorithm. The robots were controlled by simulating possible
trajectories over a short horizon and evaluating them based on orientation correctness,
proximity to the planned path, speed, obstacle avoidance, and distance to the next sampling
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Figure 3.22: A differential-drive Scarab robot equipped with a XBee-PRO RF module.

point. Two Scarabs were used in the single-robot experiments: one transmitting a wireless
signal and the other acting as the seeker. A team of 10 robots was used in the multi-robot
simulations.

Single-robot Simulations

Simulations were carried out in an obstacle-free environment using the radio signal model
described above. The positions of the source and the seeker as well as a sample trajectory
after 20 iterations of the random-direction stochastic approximation algorithm (3.29) are
shown in Fig. 3.23. The results confirm the convergence guarantees of the RDSA algorithm
in a convex environment (Prop. 3.6) empirically. Starting 21.85 meters away and running
the algorithm for only 30 iterations resulted in a mean error in the source estimate of less
than 30 cm. For these simulations we used r = 1.5, s = 4, and w = 10.

Next, we applied the RDSA algorithm in non-convex environments, for which conver-
gence to the source cannot be guaranteed theoretically. Fig. 3.24 shows an example trajec-
tory followed by the source seeker. Fifty independent replications were simulated for several
different run lengths to investigate the finite-sample performance. We can see that, as the
number of iterations increases, the mean distance from the estimated source position to
the actual one decreases. The variance in the source position estimate in this case is much
larger than in the obstacle-free case because the robot can get trapped in local maxima
created by the obstacles. The parameters in this case were r = 2.5, s = 7, and w = 10.
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Figure 3.23: A path followed by the robot after 20 iterations of the random-direction stochastic
approximation algorithm (3.29) in an obstacle-free environment is shown on the left. The blue
circles indicate positions at which the robot measured the signal strength. The white dots indicate
the starting and final positions of the robot and are 21.85 m and 1.47 m away, respectively, from the
actual position of the source. The right plot shows the final distance to the source calculated over
50 independent replications. The source was 21.85 m away initially. The bars show one standard
deviation.
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Figure 3.24: A path followed by the robot after 20 iterations of the random-direction stochastic
approximation algorithm (3.29) in an environment with obstacles is shown on the left. The white
dots indicate the starting and the final positions. The seeker and the source were 17.85 m apart
initially and 0.75 m apart in the end. The distance to the source calculated over 50 independent
replications of the algorithm is shown on the right. The initial distance from the source was 17.85
m. The bars show one standard deviation from the mean.
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Figure 3.25: Path followed by the robot after 10 iterations of the random-direction stochastic ap-
proximation algorithm (3.29) in a real environment. The seeker was 17.9 m away from the source
initially. The red circle shows the final estimate of the source location and is 2.2 m away from the
actual one, denoted by the blue cross. The received-signal-strength measurement history is shown
on the right. See Appendix D.16 Extension 15 for a video of the experiment.

Singe-robot Experiments

The simulations show that the finite-time performance of the RDSA algorithm (3.29) is good
even in non-convex environments but suffer from one drawback. The radio signal model is
not very accurate for an indoor environment because temporal and spatial fluctuations in
the signal due to fading and shadowing are significant Goldsmith (2005). We carried out
real-world experiments to evaluate the performance of the stochastic gradient ascent on a
real wireless signal. Fig. 3.25 shows the map of the environment and the trajectory followed
by the robot after 10 iterations of the random-direction stochastic approximation algorithm
(3.29) in one of the experiments. The parameters were r = 3.5, s = 4, and w = 10. Several
experiments with different source and seeker starting positions were performed in the same
environment. While we do not have enough data to reproduce the extensive convergence
analysis in the simulations, the experiments showed that the algorithm is applicable to real
signals. The robot’s movement is less erratic when further away from the source because
the change in the gradient is significant and easy to discern. Closer to the source, however,
the signal field is relatively flat and the measurement noise affects the gradient estimation
significantly. See Appendix D.16 Extension 15 for a video of the experiment.

Multi-robot Simulations

The multi-robot simulations were performed in an obstacle-free environment. First, we
verified the conclusions of Thm. 3.7 when the sensor formation is not maintained well,
namely that the distributed relative pose estimation and the consensus on the local finite-
difference gradient estimates converge asymptotically to an unbiased (up to the error in
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Figure 3.26: Joint position and gradient estimation at a single measurement location (on the fast
time-scale). The first plot shows the true sensor positions (red circles), initial position estimates
(blue circles), and the true gradient of the signal field (red arrow). The second plot shows the position
estimates after 40 iterations (blue circles) and the gradient estimate of sensor 1 (blue arrow). The
third column shows the root mean squared error (RMSE) of the position (top) and centroid (bottom)
estimates of all sensors averaged over 50 independent repetitions. The forth column shows the RMSE
of the gradient magnitude and orientation estimates.

the finite-difference approximation) gradient estimate. Ten sensors were arranged in a dis-
torted “circular” formation (see Fig. 3.26) and were held stationary during the estimation
procedure on the fast time-scale. Initially, the sensors assumed that they were in a perfect
circular formation of radius 1.75 meters. Relative measurements (3.33) with noise covari-
ance Eij = 0.4I2 were exchanged to estimate the sensor states. At each time k, sensor i used
its estimate x̂i(k) to compute the finite-difference weights via (3.24). Wireless signal mea-
surements, obtained according to the RSS model, were combined with the finite-difference
weights to form the local gradient estimates (3.36), which were used to update the state of
the consensus filter according to (3.37). Fig. 3.26 shows that the errors in the pose and the
gradient estimates tend to zero after 80 iterations on the fast time-scale.

Next, we demonstrate the ability of the stochastic gradient ascent algorithm to local-
ize the source of a wireless radio signal obtained according to the received-signal-strength
model. The performance of the model-free algorithm is illustrated in Fig. 3.27. A circular
formation with radius 1.75 meters consisting of 10 sensors was maintained. The robots had
a communication radius of 6 meters. They did not coordinate to maintain the formation
but were kept together by the agreement on the centroid and the signal gradient, achieved
via the distributed state estimation and the consensus filter. At time t, each sensor i applied
the control ui,t = γtĝi,t(Kmax), where ĝi,t(Kmax) is the gradient estimate after Kmax = 50
iterations on the fast time-scale and γt is the step-size. Unlike the persistent measurements
in Fig. 3.26, the sensors measured their relative states and the wireless signal only 10
times and stopped updating their local gradient estimates to enable faster convergence of
the consensus filter. The initial distance between the source and the centroid of the sensor
formation was 44.2 meters. Averaged over 50 independent repetitions the sensors managed
to estimate the source location to within 4.62 meters in 30 iterations.
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Figure 3.27: The paths followed by the sensors after 30 iterations of the model-free source-seeking
algorithm in an obstacle-free environment. The white circles indicate sensor 1’s estimates of the
source position over time. The plots on the right show the average error of the source position
estimates and its standard deviation averaged over 50 independent repetitions.

3.3 Summary

This chapter considered two specific cases of practical importance in which the linear Gaus-
sian techniques of Ch. 2 cannot be applied. The first was a semantic localization problem
whose difficulty was due to discrete (object class) measurements, false and missed detec-
tions, and unknown data association. Modeling the semantic information obtained from
object recognition with random finite sets enabled a unified treatment of these sensing nui-
sances. It was shown that the resulting semantic observation model can be evaluated via a
matrix permanent computation. This critical connection with the permanent enabled the
efficient use of the observation model for Bayesian filtering. Applications in vehicle localiza-
tion in residential areas, global localization of Google’s Tango phone, and robot localization
from detected objects demonstrated precise and robust localization from semantic infor-
mation in various scenarios and over many repetitions. Compared to maximum likelihood
data association, out approach was more robust to perceptual aliasing and offered superior
performance in cases of global localization and loop-closure. Finally, to enable autonomous
localization, we addressed the active semantic localization problem via greedy minimization
of the observer’s pose entropy, conditioned on future semantic measurements. Evaluating
the entropy criterion turned out to be particularly challenging due to the non-Gaussian
distributions and the unknown data association. The simulations demonstrated that this
approach, although computationally demanding, outperforms simpler active localization
heuristics.

In the second case, we considered localizing the source of a physical signal of interest
using a team of mobile sensors. The main challenge was that the sensor observation models
were completely unknown. We proposed a stochastic finite-difference approximation to the
signal gradient and proved that following the gradient in a convex environment would lead
the sensor team to a local maximum of the sensed signal. Our model-free algorithm does
not require global localization of the sensors and is robust to deformations in the geometry
of the team. Further, we discussed a distributed version of the algorithm, in which the
sensors estimate their poses using relative measurements from their neighbors and reach a
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consensus on the gradient estimate. To avoid costly maneuvers when only a single robot
is available, we proposed estimating a directional gradient of the signal, which requires
visiting just two measurement locations. We discussed parameter choices which enable
good practical performance even in environments with obstacles. The stochastic gradient
ascent algorithms were demonstrated in several wireless radio source seeking experiments.

In sum, this chapter discussed situations in which the target inference could not be per-
formed using standard estimation techniques, which forced us to apply greedy information-
seeking control. Nonmyopic closed-loop planning in a non-Gaussian setting will be discussed
in the next chapter.
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Chapter 4

Nonmyopic Information Acquisition
with General Discrete Models

While external techniques can be used to handle missed detections, false alarms, and un-
known data association, when the target state or measurement spaces are discrete, the
models cannot be linearized and the linear-Gaussian technique for informative planning
described in Ch. 2 is not applicable. As we saw in Ch. 3, such complications arise in object
recognition applications. Unfortunately, removing the linear-Gaussian assumptions invali-
dates the separation principle (Thm. 2.1) and a closed-loop policy is needed to solve the
original stochastic active information acquisition problem (1.4). Unlike Ch. 3 which uses
greedy planning, this chapter focuses on nonmyopic closed-loop planning for information
gathering in discrete state and measurement spaces.

An algorithm, which computes the optimal control policy, can be obtained by consider-
ing the discrete-space active information acquisition problem as an instance of a partially-
observable Markov decision process (POMDP) and applying backward value iteration (Bert-
sekas 1995). Albeit optimal, backward value iteration, scales poorly with the cardinality
of the state space. Instead of the exact algorithm, in Sec. 4.4 we use an offline point-
based approximate POMDP solver (Kurniawati et al. 2008) to obtain a non-greedy camera
control policy in the context of active object classification and pose estimation. Still, a
general POMDP solver does not exploit the properties of the particular cost function (i.e.,
the information measure) and, being an offline approach, has difficulties handling various
constraints (e.g., revisiting viewpoints or avoiding occlusions) and changing environments.
For these reasons, in Sec. 4.3 we propose an online approximate algorithm for nonmyopic
closed-loop informative planning based on Monte Carlo tree search (Browne et al. 2012),
which can handle various constraints and has exceptional performance in large challenging
domains such as game solving (Gelly and Silver 2007) and belief-space planning in robotics
(Hauser 2011, Nguyen et al. 2014, Lauri and Ritala 2014). We use the tree search algorithm
in conjunction with a rollout policy1, specifically designed to exploit the properties of the
information (or rather uncertainty) measure.

This chapter is based on the papers Atanasov et al. (2013, 2014b), Lauri et al. (2015),
Zhu et al. (2014) and presents applications in camera view planning for object classification

1The rollout policy in Monte Carlo tree search plays a similar role as the base policy in policy iteration
(Bertsekas 1995)
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and pose estimation (Sec. 4.4) and in single-image object recognition via deformable part
models (Sec. 4.5). In the language of active information acquisition, the class and pose of
an unknown object constitute the target state, while the probability of having misclassified
objects and incorrect orientation estimates is used as the uncertainty measure. Rather than
placing the burden of providing perfect recognition results on a static sensor, in Sec. 4.4
we consider controlling the viewpoint of a mobile camera in order to gain more information
about the scene and thus increase the confidence in the object recognition results. This can
also mitigate the effects of occlusions, lighting variations, and imperfect object models. Our
optimization criterion aims to balance the detection accuracy with the time spent moving
the sensor to different viewpoints. This encodes the requirements of an object recognition
task more precisely than a criterion based on mutual information.

Some of the earliest work in active perception is by Bajcsy (1988), Krotkov and Bajcsy
(1993). It is focused on improving the estimates of objects’ 3D positions by controlling
the intrinsic parameters of a stereo camera. Similarly, Pito (1999) addresses the problem
of selecting the resolution of a camera to improve surface reconstruction by maximizing
information gain. Since then, many active vision works have utilized information-theoretic
criteria for viewpoint and sensor parameter selection. Sommerlade and Reid (2008) con-
trol a pan-zoom-tilt camera with a fixed position to track mobile targets based on myopic
minimization of conditional entropy. This simplifies the problem considerably because the
trade-off between minimizing the sensor movement energy and maximizing viewpoint in-
formativeness is avoided. Methods, which deal with active selection of views for realistic
sensor models typically resort to myopic planning (Browatzki et al. 2012, Borotschnig et al.
2000, Potthast and Sukhatme 2014). Denzler and Brown (2002) select the focal length, pan
and tilt angles, and the viewpoint of a camera on a hemisphere around an object of interest
via greedy maximization of entropy. Borotschnig et al. (2000) represent object appearance
via parametric eigenspaces and use probability distributions in the eigenspace to greedily
select discriminative views. Eidenberger and Scharinger (2010) use a mobile camera to
classify stationary objects and estimate their poses. Static detection is performed using
SIFT matching and the object pose distributions are represented with Gaussian mixtures.
Similar to our approach, the problem is encoded by a POMDP but instead of an approxi-
mate nonmyopic policy, the authors resort to a greedy approach to reduce the differential
entropy in the object pose and class distributions. Karasev et al. (2012) plan the path of
a mobile sensor for visual search of an object in an otherwise known and static scene. The
authors hypothesize about the object’s pose and apply greedy maximization of the condi-
tional entropy of the next measurement. Paletta and Pinz (2000) describe a reinforcement
learning approach for obtaining a sequence of views which maximally discriminate objects
of various classes at different orientations. An approximate policy which maps a sequence
of received measurements to a discriminative view point is computed offline. Velez et al.
(2012) consider detecting doorways along the path of a mobile sensor traveling towards
a fixed goal. The unknown state of a candidate detection is binary: “present” or “not
present”. Deformable part models (Felzenszwalb et al. 2010b) are used for static detec-
tion; stereo disparity and plane fitting for pose estimation. An entropy field is computed
empirically offline for all viewpoints in the workspace and is used to nonmyopically select
locations with high information gain. The planning is open-loop, however, because the
object state distributions change online but only the precomputed entropy field is used.
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Inspired by Velez et al. (2012) and the work on hypothesis testing (Naghshvar and Javidi
2013b, Sankaran 2012), we introduce a rough discretization of the space of orientations so
that the hidden object state takes on several values: one for “object not present” and the
rest for “object present” with a specific orientation. Another approach based on hypothesis
testing is Laporte and Arbel (2006). To disambiguate competing hypotheses the authors
myopically select views to maximize the dissimilarity between the distributions of the ex-
pected measurements. In recent years, the active vision problem has received significant
attention in the robotics community as well. Hanheide et al. (2011) present an approach
for object search and place categorization in large indoor environments. A probabilistic
model is used to encode structural relations among objects and places (e.g., cereal boxes
are often located in kitchens). An object search task is then represented by pairing the
probabilistic conceptual map with the visual appearance of an object of interest. A se-
quence of views is planned using a POMDP abstraction with conditional entropy as the
cost function (Göbelbecker et al. 2011). Other recent work which does active visual search
in a similar spirit is Aydemir et al. (2011). Probabilistic spatial relations and static prop-
erties of rooms are used to pose the problem as a fully-observable Markov decision process
(MDP). A greedy next-best-view approach is used to determine if an object is present or
not at a specific location, while the MDP is used to synthesize a sequence of good locations
to search. Sridharan et al. (2010) plan visual sensing actions for scene understanding and
disambiguation. Similar to our approach, a POMDP captures the trade-off between plan
reliability and execution time and enables a robot to simultaneously decide which region in
the scene to focus on and what processing to perform.

Among the contributions of this chapter is a new 3D object detector, the viewpoint-
pose tree (VP-Tree, Sec. 4.4.1), that uses pointcloud data from a depth sensor to provide
a pose estimate in addition to detecting an object’s class. This is achieved via partial
view matching and helps in cases when the object is partially occluded or in contact with
another object. Real-world experiments were carried out to recognize objects of interest
by controlling the trajectory of a RGB-D camera attached to the arm of a PR2 robot.
The results show that nonmyopic closed-loop planning outperforms the traditional greedy
next-best-view approach.

Instead of controlling the camera viewpoint, Sec. 4.5 uses active information acquisition
to speed-up object recognition in a single image via part-based models. Part-based models,
such as deformable part models (DPM, Felzenszwalb et al. (2010b)), represent an object
as a collection of parts (e.g., a car is represented by a windshield, door, wheels, etc.) and
corresponding filters, based on local features. DPM-based detectors achieve unrivaled accu-
racy on standard datasets but their computational demand is high since it is proportional
to the number of parts in the model and the number of (pixel-scale) image locations at
which the part filters are evaluated. Approaches for speeding-up DPM inference such as
cascades, branch-and-bound, and multi-resolution schemes, use the response obtained from
the initial filter evaluation to reduce future computations. While these approaches rely on
a predetermined sequence of parts, we can use active information acquisition to optimize
the order in which to apply the part filters and the time at which to stop and predict an
object label. In the language of information acquisition, the sensor state consists of the set
of previously-used parts, the target state is whether an object is present or not at a spe-
cific image location, the observations consist of the part filter scores, and the uncertainty
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measure captures the probability of choosing an incorrect target label. Since the target
and measurement spaces are sufficiently small, the optimal nonmyopic closed-loop policy
for ordering the part filters and choosing the stopping time can be computed via backward
value iteration. Our active DPM approach demonstrates a speed-up of 3 times compared to
cascade DPM (Felzenszwalb et al. 2010a) with negligible loss in accuracy when evaluated
on the PASCAL VOC 2007 and 2010 datasets (Everingham et al. 2010). The approach
is independent of the representation and can generalize to any classification problem that
involves linear additive scores and uses several evaluation stages (e.g., parts filters).

The closest approaches in the literature include Felzenszwalb et al. (2010a), Sznitman
et al. (2013), Wu and Zhu (2013), Gao and Koller (2011), Karayev et al. (2014). Sznitman
et al. (2013) maintain a foreground probability at each stage of a multi-stage ensemble
classifier and determine a stopping time based on the corresponding entropy. Wu and Zhu
(2013) learn a sequence of score thresholds for stopping by minimizing an empirical loss
function. Gao and Koller (2011) optimize the order of applying ensemble classifiers by
greedily choosing the next classifier that minimizes entropy. Karayev et al. (2014) propose
anytime recognition via Q-learning given a computational cost budget. In contrast to
existing work, our approach optimizes the stage order and the stopping criterion jointly.
Kokkinos (2011) used branch-and-bound to prioritize the search over image locations driven
by an upper bound on the classification score. It is related to our approach in that object-less
locations are easily detected and the search is guided in (image) location space but with the
difference that our policy proposes the next part to be tested in cases when no label can yet
be given to a particular location. Earlier approaches (Lampert et al. 2008, Lehmann et al.
2011b, Lampert 2010) relied on branch-and-bound to constrain the search space of object
detectors based on a sliding window or a Hough transform but without deformable parts.
Another related group of approaches focuses on learning a sequence of object template tests
in position, scale, and orientation space that minimizes the total computation time through
a coarse-to-fine evaluation (Fleuret and Geman 2001, Pedersoli et al. 2011).

The classic work of Viola and Jones (2001) introduced a cascade of classifiers whose order
was determined by importance weights, learned by AdaBoost. The approach was studied
extensively in Bourdev and Brandt (2005), Brubaker et al. (2008), Gualdi et al. (2012),
Lehmann et al. (2011a), Zhang et al. (2011). Recently, Dollár et al. (2012) introduced
cross-talk cascades which allow detector responses to trigger or suppress the evaluation of
weak classifiers in the neighboring image locations. Weiss et al. (2012) used structured
prediction cascades to optimize a function with two objectives: pose refinement and filter
evaluation cost. Sapp et al. (2010) learn a cascade of pictorial structures with increasing
pose resolution by progressively filtering the pose-state space. Its emphasis is on pre-filtering
structures rather than part locations through max-margin scoring, so that human poses with
weak individual part appearances can still be recovered. Rahtu et al. (2011) used general
“objectness” filters in a cascade to maximize the quality of the locations that advance to
the next stage. Our approach is also related to and can be combined with active learning
via Gaussian processes for classification (Kapoor et al. 2010).
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4.1 Active Information Acquisition in Discrete Spaces

As discussed earlier, one important situation in which the linearization technique of Ch. 2
cannot be applied is when some measurement or state variables are discrete. Therefore, in
this chapter we add the following assumption to the general active information acquisition
problem (1.4).

Assumption 4.1. The sensor state space X , the target state space Y, and the measurement
space Z are finite sets.

Apart from this restriction, we proceed with very general motion and observation models.
As before, let the sensor state at time t be xt ∈ X and let the sensor motion model be:

xt+1 = f(xt, ut), ut ∈ U

where U is a finite space of admissible control inputs. Let the sensor observation model and
the target motion model be described by general probability mass functions (pmfs) over Z
and Y:

yt+1 ∼ pa(· | yt),
zt ∼ ph(· | xt, yt),

which capture the noise characteristics. Given a prior pmf pt ∈ P(Y) := {q ∈ [0, 1]|Y| |∑
y∈Y q(y) = 1} describing the target estimate at time t, since the state and measurement

spaces are discrete, we can implement the Bayes filter (Appendix C) for target inference
exactly:

Predict: pt+1|t(y) =
∑
j∈Y

pa(y | j)pt(j) (4.1)

Update: pt+1(y) =
ph(zt+1 | xt+1, y)pt+1|t(y)∑
j∈Y ph(zt+1 | xt+1, j)pt+1|t(j)

(4.2)

For notational convenience, let the posterior pmf, obtained via the prediction (4.1) and
update (4.2) steps, be denoted b(p, z, x), where p is the prior, x ∈ X is the sensor state, and
z ∈ Z is a new measurement.

Finally, instead of measuring the uncertainty in the target estimate as a performance
criterion, since the target state is now discrete, we can directly compute the probability
Pe(t) that the maximum-likelihood estimate ŷt := arg max

y∈Y
pt(y) is different from the true

target state yt:

Pe(t) := P(yt 6= ŷt) = Ez1:t

∑
y∈Y

1{
y 6=arg max

j∈Y
pt(j)

}pt(y)

 = Ez1:t

(
1−max

j∈Y
pt(j)

)
. (4.3)

This is not a significant change with respect to the conditional entropy criterion H(yt | z1:t)
we have been using so far because Fano’s inequality (Cover and Thomas 2012) gives a
connection between the two criteria:

H(yt | z1:t) ≤ Pe(t) log(|Y| − 1) + H(Pe(t)).
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By minimizing the probability of error, we are again, implicitly, minimizing the entropy
of the target state conditioned on the measurement set. In this chapter we also measure
the energy expenditure due to the sensor motion via a movement cost g(xt, xt+1). In other
words, the objective function aims to balance movement cost and the probability of an
incorrect target estimate as described in the problem formulation below.

Problem (Discrete-space Active Information Acquisition). Given an initial sensor state
x0 ∈ X , a prior p0 ∈ P(Y) on the true target state y0, and a finite planning horizon T ,
choose a sequence of functions µt(Ht) ∈ U for t = 0, . . . , T −1, which minimizes the average
movement cost and the probability of an incorrect target estimate:

min
µ0:T−1

T−1∑
t=0

g(xt, xt+1) + λPe(T )

s.t. xt+1 = f(xt, µt(Ht)), t = 0, . . . , T − 1,

xt+1 /∈ {x0, . . . , xt}, t = 0, . . . , T − 1,

zt ∼
∑
y∈Y

ph(· | xt, y)pt(y), t = 1, . . . , T,

pt+1 = b(pt, zt+1, xt+1), t = 0, . . . , T − 1,

(4.4)

where λ ≥ 0 determines the relative importance of a correct estimate versus cost of move-
ment, Pe(t) is the probability of error defined in (4.3), and H0 := (x0, z0), Ht := (x0:t, z0:t, u0:(t−1)), t >
0 is the state, measurement, and control history.

Remark. The second constraint above is optional. It prevents the sensor from revisiting
previous states, which is necessary in some applications (e.g., object detection) to ensure
that the measurements are independent, as required by the Bayes filter.

4.2 Exact Solution via Dynamic Programming

The active information acquisition problem in (4.4) is an instance of a discrete-space stochas-
tic optimal control problem. As a result, we can use backward value iteration (BVI, Alg.
9) to solve the problem exactly. BVI proceeds backwards in time and first computes the
terminal cost (i.e., the probability of error (4.3)) after the last observation zT has been
incorporated in the pmf pT (Line 3). Afterwards, it computes the intermediate stage costs
(V (x, p,A), Line 12) by keeping track of the reachable sensor states (St, Line 1) and the
admissible control inputs (Ut(x), Line 2) that ensure that previously visited sensor states
are not revisited (second constraint in (4.4)). Unfortunately, the complexity of BVI scales
exponentially with the sizes |X | and |Y| of the sensor and target state spaces. Nevertheless,
Sec. 4.5 shows that the exact algorithm is useful in practical applications such as speed-
ing up single-image object recognition. An alternative to BVI, is to use an approximate
POMDP solver such as SARSOP (Kurniawati et al. 2008), which can handle much larger
state spaces. However, as discussed earlier, general POMDP solvers do not exploit the
properties of our particular cost function, Pe(t), and are typically offline algorithms that
have difficulties with some constraints and changing environments. In the next section, we
develop an online approximate solution to problem (4.4).
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Algorithm 9 Backward Value Iteration

1: St := {S ⊆ X | |S| = t} % reachable sensor states at time t
2: Ut(x) := {s ∈ X \ St | s = f(x, u), u ∈ U} % admissible controls at time t
3: V (x, p,X ) := λ

(
1−maxy∈Y p(y)

)
, ∀x ∈ X , p ∈ P(Y) := {q ∈ [0, 1]|Y| |

∑
y∈Y q(y) = 1}

4:
5: for t = T − 1, . . . , 1 do
6: for p ∈ P(Y) do
7: for A ∈ St do
8: for x ∈ A do
9: for u ∈ Ut(x) do

10: s := f(x, u)
11: Q(x, p,A, u) := g(x, s) + EzV (s, b(p, z, s),A ∪ {s})
12: V (x, p,A) := min

u∈Ut(x)
Q(x, p,A, u)

13: µ(x, p,A) := arg min
u∈Ut(x)

Q(x, p,A, u)

14: return µ

Remark. If the planning horizon T is subject to optimization we get an optimal stopping
time problem. The only modification to Alg. 9 that is necessary is to stop the exploration,
if at time t, V (x, p,A) ≥ λ(1 − maxy p(y)). The inequality can be checked after line 10
in Alg. 9 and if satisfied, µ(x, p,A) should declare a stopping action. In that case, the
decrease in error probability resulting from further observations would not justify the cost
of changing the sensor state.

4.3 Approximate Solution via Monte Carlo Tree Search

Monte Carlo tree search (MCTS, Alg. 10) is an online simulation-based alternative to the
exact dynamic programming solution of the discrete-space active information acquisition
problem (4.4). MCTS constructs a tree sequentially in a best-first order. A node in the tree
corresponds to a state (xt, pt) and contains a visitation count and the total cost accumulated
over all simulations, both initialized to 0. Each simulation has two stages: a tree policy and
a rollout policy. The tree policy (lines 12-18) is followed until reaching a leaf node. The
real work of the tree policy is done by the SelectChild function (line 12), which uses the
UCT (Upper Confidence bounds applied to Trees) method (Kocsis and Szepesvári 2006) to
select the next node as follows:

n′ = arg min
n∈Children( node )

n.TotalCost

n.Visits
+ κ

√
log(node.Visits)

n.Visits
,

where κ is an exploration parameter encouraging selection of rarely-visited sensor states.
Once a leaf is reached, the rollout policy (lines 9-11) computes the cost-to-go by choosing
control inputs and simulating measurements until the end of the planning horizon T . The
most common choice for a rollout policy is one that picks successors uniformly at random
(Browne et al. 2012).

While the tree policy has been subject to extensive research (Kocsis and Szepesvári
2006, Silver and Veness 2010), since it determines if MCTS converges asymptotically to the
optimal policy, the choice of rollout policy has received less attention. MCTS converges for
any choice of rollout policy, but the convergence speed can be improved significantly by using
domain-specific knowledge to design a rollout policy. Policies with asymptotic optimality
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Algorithm 10 Monte Carlo Tree Search

1: root ← TreeNode(x0,p0)
2: while within computational budget do
3: Simulate(root, 0)

4: best node = arg min
n∈Children(root)

n.TotalCost

n.Visits

5: return best node.x
6:
7: function Simulate(node, t)
8: if t = T then return λ(1−maxy node.p(y))

9: if IsLeaf(node) then
10: ExpandTree(node)
11: return Rollout(node, t)

12: n′ ← SelectChild(node)
13: z ← SampleObservation(n′.x, p)
14: n′.p← b(p, z, n′.x)
15: J ← g(node.x, n′.x) + Simulate(n′, t+ 1)
16: node.Visits ← node.Visits +1
17: node.TotalCost ← node.TotalCost +J
18: return J

guarantees based on Kullback-Leibler divergence (Naghshvar and Javidi 2013b), Jensen-
Shannon divergence (Naghshvar et al. 2012) and Chernoff information (Nitinawarat and
Veeravalli 2013b, Nitinawarat et al. 2013) have been proposed for active hypothesis testing.
Since the discrete-space information acquisition problem (4.4) is closely related to hypothesis
testing, these policies are excellent candidates for rollout (Alg. 10, line 11). Instead of the
commonly-used uniform policy, we propose applying a rollout policy based on the Extrinsic
Jensen-Shannon (EJS) divergence among the observation models corresponding to different
sensor states. In particular, at time t, µt(pt, x0:t) selects sensor state x ∈ X \ {x0:t} at
random with probability proportional to:

1

g(xt, x)
EJS(pt; {ph(· | x, y) | y ∈ Y}),

where EJS is defined below.

Extrinsic Jensen-Shannon (EJS) Divergence (Naghshvar et al. 2012). The EJS
divergence among probability density functions q1, . . . , qM with respect to p ∈ [0, 1]M is
defined as:

EJS(p; q1, . . . , qM ) :=

M∑
i=1

p(i)D

qi∥∥∥∥∑
k 6=i

p(k)

1− p(i)
qk

 ,

where D(·||·) is the Kullback-Leibler divergence (Appendix A).

Intuitively, the proposed rollout policy tries to select a control input that will result in
maximum differentiation (measured by the EJS divergence) among the observation models
associated with different possible target states. The policy has performance guarantees
for active hypothesis testing (Naghshvar and Javidi 2013b) and Bayesian active learning
(Naghshvar et al. 2013).
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Figure 4.1: Database of object models constructed using kinect fusion (Newcombe et al. 2011) and
an example of a scene used to evaluate our framework in simulation.

4.4 Application: Object Classification and Pose Estimation

Consider a mobile depth sensor, which observes a static scene, containing unknown objects.
The sensor has access to a finite database D of object models (Fig. 4.1) and a subset I
of them are designated as objects of interest. We assume that an object class has a single
model associated with it and use the words model and class interchangeably2. The task
of the sensor is to detect all objects from I which are present in the scene and estimate
their poses. Note that the detection is not only against known objects from the database
but also clutter, background, and unknown objects. At each time step, the sensor obtains
a point cloud from the scene, splits it into separate surfaces (segmentation) and associates
them with either new or previously seen objects (data association). These procedures are
described in Sec. 4.4.3 and we assume they estimate the object positions accurately.

Hypotheses are formulated about the class and orientation of an unknown object by
choosing a small finite set of discrete orientations R(c) ⊂ SO(3) for each object class c ∈ I
(see Fig. 4.2). To denote the possibility that an object is not of interest we introduce a
dummy class c∅ and a dummy orientation R(c∅) = {r∅}. The sensor needs to decide among
the following hypotheses:

H(c∅, r∅) : the object does not belong to I,

H(c, r) : the object’s class is c ∈ I with orientation r ∈R(c)

As described in Sec. 4.1, we maintain a pmf over the hypotheses associated with each object
in the scene:

pt(c, r) := P(H(c, r) is true | z1:t),

where z1:t are the measurements obtained by the camera. Thus, the maximum-likelihood
hypothesis at time t is H(ĉt, r̂t), where

(ĉt, r̂t) := arg max
c∈Ī,r̂∈R(ĉ)

pt(c, r)

2This is necessary because our static detector (Sec. 4.4.1) works with instances. However, the view
planning approach is independent of the particular detector and can be used with class-based detectors.
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Figure 4.2: An example set of hypotheses about the class and orientation of an unknown object

and Ī := I ∪ {c∅} denotes the set of all hypothesized classes. To measure the correctness
of the sensor’s decisions we introduce a cost for choosing H(ĉt, r̂t), when H(c, r) is correct:

γ(ĉ, r̂, c, r) :=


K(r̂, r), ĉ = c

K+, ĉ ∈ I, c /∈ I
K−, ĉ 6= c, c ∈ I,

where K+ and K− are costs for making false positive and false negative mistakes respec-
tively, and K(·, ·) is a cost for an incorrect orientation estimate when the class is correct.

Example 4.1. Suppose that the task is to look for chairs (c1) and tables (c2) regardless of
orientation (K(r̂, r) := 0). The decision cost can be represented by the matrix:

γ(ĉ, r̂, c, r) :

ĉ
c

c∅ c1 c2

c∅ 0 K− K−
c1 K+ 0 K−
c2 K+ K− 0

Given pt, the expected cost of deciding an incorrect hypothesis is

JD(t) := Ec,rγ(ĉt, r̂t, c, r) =
∑
c∈Ī

∑
r∈R(c)

γ(ĉt, r̂t, c, r)pt(c, r),

which is a weighted version of the probability of error in (4.3).
Further, we restrict the motion of the camera to a set of viewpoints on a sphere of radius

ρ, centered at the location of the object (see Fig. 4.3). The camera’s orientation is fixed so
that it points at the centroid of the object. We denote the space of possible sensor poses by
V (ρ) and refer to it as a viewsphere. The viewsphere is discretized into a set of viewpoints
X (ρ) and the camera mobility is described by graph with the viewpoints as nodes. Edges
in the graph connect nodes which are reachable within a single time step from the current
location based on the kinematic restrictions of the camera. In this application, we allow
revisiting viewpoints (i.e., we do not include the second constraint in (4.4)) but add a fixed
sensing cost to prevent the camera from obtaining an infinite number of measurements
without moving. Since the motion graph is known a priori the Floyd-Warshall algorithm
can be used to precompute the all-pairs movement cost between viewpoints:

g(x, x′) := gM (x, x′) + g0,

where gM (x, x′) is the cost of moving from x to x′ on the viewsphere X (ρ) and g0 > 0
is the cost of taking another observation. In the experiments, we use the great-circle dis-
tance between two poses x, x′ ∈ X (ρ) as the mobility cost and g0 = 1 as the measurement
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Figure 4.3: Setup for the active object recognition problem. The camera position is restricted to
a set of viewpoints (green) on a sphere centered at the object’s location. The task is to choose a
camera control policy, which minimizes the movement cost and the probability of misclassification.

cost. Thus, a motion plan of length T for the sensor consists of a sequence of viewpoints
x0, x1, . . . , xT ∈ X (ρ) on the graph and its cost is JM (T ) :=

∑T−1
t=0 g(xt, xt+1). To summa-

rize, we consider the following problem.

Problem. Given an initial camera pose x0 ∈ X (ρ) and a prior p0 over the object hypotheses,
choose a stopping time τ , and a sequence of functions µt for t = 0, . . . , τ to minimize the
total cost:

min
τ,µ0:τ

Ez1:τ [JM (τ) + λJD(τ)]

s.t. xt+1 = µt, t = 0, . . . , τ − 1,

zt ∼
∑
c,r

ph(· | xt, c, r)pt(c, r), t = 1, . . . , τ,

pt+1 = b(pt, zt+1, xt+1), t = 0, . . . , τ − 1,

where, as before, λ > 0 determines the relative importance of a correct decision versus cost
of movement, b is the Bayesian update defined in (4.1) and (4.2), and ph(· | x, c, r) is the
camera observation model.

First, note that even though the scene contains multiple objects, we formulated the
problem with respect to a single object. In other words, we choose a sequence of camera
views which are beneficial for a particular object but still update the hypotheses pmfs
associated with all other objects in the scene. Applying the approximate algorithm of Sec.
4.3 could handle more objects simultaneously but in this section we use an approximate
POMDP solver, which requires a sufficiently small target state space.

Second, note that in addition to computing a camera control policy, the problem above
requires optimizing the stopping time. This, however, does not complicate the problem
significantly as noted at the end of Sec. 4.2. Finally, note that the only ingredient we did
not specify yet is the sensor observation model ph. This is the subject of the following
sections.

4.4.1 Object Detection via the Viewpoint-pose Tree

In this section we introduce a 3D object detector, the viewpoint-pose tree (VP-tree), which
provides coarse pose estimates in addition to recognizing an object’s class. The VP-Tree is
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Figure 4.4: The sensor position is restricted to a set of points on a sphere centered at the location
of the object. Its orientation is fixed so that it points at the centroid of the object. A point cloud
is obtained at each viewpoint, key points are selected, and local features are extracted (top right).
The features are used to construct a VP-Tree (bottom right).

built on the principles of the vocabulary tree, introduced by Nistér and Stewénius (2006).
A vocabulary tree is primarily used for large scale image retrieval where the number of
semantic classes is in the order of a few thousand. The VP-Tree extends the utility of
the vocabulary tree to joint recognition and pose estimation in 3D by using point cloud
templates extracted from views on a sphere around the models in the database D. The
templates serve to discretize the orientation of an object and make it implicit in the de-
tection. Given a query point cloud, the best matching template carries information about
both the class and the pose of the object relative to the sensor.

A simulated depth sensor is used to extract templates from a model by observing it from
a discrete set {v1(ρ), . . . , vG(ρ)} ⊂ V (ρ) of viewpoints (Fig. 4.4), which need not be the
same as the set of planning viewpoints X (ρ). Here G stands for the number of viewpoints
(48 were used in the experiments). The obtained point clouds are collected in a training
set T := {Pg,l | g = 1, . . . , G, l = 1, . . . , |D|}. Features, which describe the local surface
curvature are extracted for each template as described below and are used to train the
VP-Tree. Given a query point cloud at test time, features are extracted and the VP-Tree
is used to find the template from T , whose features match those of the query the closest.

Feature extraction

It is necessary to identify a set of keypoints KP for each template P ∈ T , at which to
compute local surface features. Most 3D features are some variation of surface normal
estimation and are very sensitive to noise. Using a unique keypoint estimator would be
prone to errors. Instead, the keypoints are obtained by sampling the point cloud uniformly
(Fig. 4.4), which accounts for global appearance and reduces noise sensitivity. Neighboring
points within a fixed radius of every keypoint are used to compute Fast Point Feature
Histograms (Rusu 2009). The features are filtered using a pass-through filter and are
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assembled in the set {f}kp associated with kp ∈ KP .

Training the VP-Tree

The features
⋃
P∈T

⋃
kp∈KP{f}kp obtained from the training set are quantized hierarchi-

cally into visual words, which are defined by k-means clustering (see Nistér and Stewénius
(2006) for more details). Instead of performing unsupervised clustering, the initial cluster
centers are associated with one feature from each of the models in D. The training set T
is partitioned into |D| groups, each consisting of the features closest to a particular cluster
center. The same process is applied to each group of features, recursively defining quanti-
zation cells by splitting each cell into |D| new parts. The tree is determined level by level,
up to a prespecified maximum number of levels.

Given a query point cloud Q at test time, we determine its similarity to a template P
by comparing the paths of their features down the VP-Tree. The relevance of a feature at
node i is determined by a weight wi := ln

(
|T |/ηi

)
, where ηi is the number of templates from

T with at least one feature path through node i. The weights are used to define a query
descriptor q and a template descriptor dP , with i-th components qi := niwi and di := miwi
respectively, where ni and mi are the number of features of the query and the template with
a path through node i. The templates from T are ranked according to a relevance score:

s(q, dP) :=

∥∥∥∥ dP
‖dP‖1

− q

‖q‖1

∥∥∥∥
1

.

The template with the lowest relevance score is the best matching one to Q.

Performance of the VP-Tree

The performance of the detector was evaluated by using the templates from T as queries
to construct a confusion matrix (Fig. 4.5). If the retrieved template matched the class
of the query it was considered correct regardless of the viewpoint. To analyze the noise
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Figure 4.5: Confusion matrix (left) for all classes in the VP-Tree. A class is formed from all views
associated with an object. The effect of signal noise on the classification accuracy of the VP-Tree is
shown on the right.
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sensitivity of the VP-Tree, we gradually increased the noise added to the test set. Gaussian
noise with standard deviation varying from 0.05 to 5 cm on a log scale was added along the
direction of the ray cast from the observer’s viewpoint. As expected the performance starts
to degrade as the amount of noise is increased but the detector behaves well at the typical
depth camera noise levels.

4.4.2 Camera Observation Model

Statistics about the operation of the VP-Tree detector for different viewpoints x ∈ X (ρ) and
object classes c ∈ Ī and orientations r ∈ R(c) are needed to specify the sensor observation
model ph(· | x, c, r). Using the VP-Tree output as the sensor observation reduces the
observation space from all possible point clouds to the space of VP-Tree outputs and includes
the operation of the vision algorithm in the statistics. Given a query point cloud suppose
that the VP-Tree returns template Pg,l as the top match. Assume that the templates in
T are indexed so that those obtained from models in I have a lower l index than the rest.
We take the linear index of Pg,l as the observation if the match is an object of interest.
Otherwise, we record only the model index l, ignoring the viewpoint g:

z =

{
(l − 1)G+ g, if l ≤ |I|
G|I|+ (l − |I|), if l > |I|.

This makes the observation space one dimensional.
In order to compute the likelihood of an observation offline, we introduce an occlusion

state ψ for a point cloud. Suppose that the z-axis in the sensor frame measures depth and
the xy-plane is the image plane. Given parameters ε and E , we say that a point cloud is
occluded from left if it has less than E points in the image plane to the left of the line x = −ε.
If it has less than E points in the image plane above the line y = ε, it is occluded from
top. Similarly, we define occluded from bottom, occluded from right, and combinations of
them (left-right, left-top, etc.). Let Ψ denote the set of occlusion states, including the non-
occluded (ψ∅) and the fully-occluded cases. Then, the likelihood of a VP-Tree observation z
for a given sensor pose x ∈ X (ρ), hypothesis H(c, r), and occlusion ψ ∈ Ψ is ph(z | x, c, r, ψ).
The function ph can be obtained offline because for a given occlusion state it only depends
on the characteristics of the sensor and the vision algorithm. Since all variables are discrete,
ph can be represented with a histogram, which we compute from the training set T . Note,
however, that the observation model depends on the choice of planning viewpoints and
hypotheses, which means that it needs to be recomputed if they change. Ideally, it should
be computed once for a given training set and then be able to handle scenarios with different
sets of hypotheses and planning viewpoints.

To make the computation of the observation model independent of the choice of hy-
potheses and planning views we discretize the viewsphere V (ρ) very finely into a new set of
viewpoints V o(ρ) with coordinates in the object frame. A nominal observation model:

poh(z | v, c, ψ) := P(Z = z | v, c, ψ), v ∈ V o(ρ), c ∈ D, ψ ∈ Ψ

is computed and used to obtain ph as follows:

1. Determine the sensor’s pose w(x, r) in the object frame.
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Figure 4.6: Observation model obtained with seven hypotheses for the Handlebottle model and
the planning viewpoints used in the simulation experiments (Sec. 4.4.4). Given a new VP-Tree
observation zt+1 from the viewpoint xt+1, the observation model is used to determine the data
likelihood of the observation and to update the hypotheses’ prior by applying Bayes rule.

2. Find the closest viewpoint v ∈ V o(ρ) to w(x, r) (the fine discretization avoids a large
error).

3. Rotate the lines associated with ψ to the object frame of c to get the new occlusion
region. Obtain a point cloud from v, remove the points within the occlusion region,
and determine the occlusion state ψo in the object frame.

4. Copy the values from the nominal observation model:
ph(z | x, c, r, ψ) := poh(z | v, c, ψo)

As a result, it is necessary to compute only the nominal model poh(z | v, c, ψo). The his-
togram representing poh was obtained in simulation. A viewsphere with radius ρ = 1 m
was discretized uniformly into 128 viewpoints (the set V o(ρ)). A simulated depth sensor
was used to obtain 20 independent scores from the VP-Tree for every viewpoint v ∈ V o(ρ),
every model c ∈ D, and every occlusion state ψ ∈ Ψ. Fig. 4.6 shows an example of the
final observation model obtained from the nominal one with the planning viewpoints and
hypotheses used in some of our experiments.

4.4.3 Implementation Details

Given the observation model ph developed in the previous section, we can solve the active
object recognition problem via dynamic programming as described in Sec. 4.2. However,
instead of the exact backward value iteration algorithm, we apply an approximate point-
based POMDP algorithm (SARSOP, Kurniawati et al. (2008)), which uses control and
observation samples to compute successive approximations to the optimally reachable part
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of the continuous space of probability mass functions over the hypotheses. Details can
be found in Atanasov et al. (2014b). SARSOP computes a control policy which maps
the current camera viewpoint xt and the hypotheses’ probabilities pt to either a future
viewpoint or to a guess of the correct hypothesis in case that the stopping time is reached.
The advantage of SARSOP over backward value iteration is that it alleviates the exponential
complexity in the number of object hypotheses and the number of camera viewpoints |X |. In
practice, there is some control over the number of hypotheses because typically few objects
are of interest and we show in Sec. 4.4.4 that a very sparse discretization of the orientation
space is sufficient to obtain accurate orientation estimates.

Segmentation and Data Association

To validate the proposed active object recognition approach, we carried out experiments
in a tabletop setting. This simplifies the problems of segmentation and data association,
which were not the focus of the experiments. Point clouds obtained from the scene were
clustered according to Euclidean distance by a k-d tree. An occupancy grid representing
the 2D table surface was maintained in order to associate the clustered surfaces with new or
previously seen objects. Each cell of the grid could be unoccupied or associated with the ID
of an existing object. The centroid of a newly obtained object surface was projected to the
table and compared with the occupied cells (if any). If the cell corresponding to the new
centroid was close enough to a cell associated with an existing object, the new surface was
associated with that object and its cell was indexed by the existing object’s ID. Otherwise,
a new object with a unique ID was instantiated.

Coupling among Objects

As mentioned earlier, the optimization in problem is with respect to a single object but
while executing it, the sensor obtains surfaces from other objects within its field of view. To
utilize these observations, we had the sensor turn towards the centroid of every visible object
and update the probabilities of the hypotheses associated with the object. The turning is
required because the observation model was trained only for a sensor facing the centroid
of the object. Removing this assumption requires more training data and complicates the
observation model computation. The energy used for these turns was not included in the
optimization.

The scores obtained from the VP-Tree are not affected significantly by scaling. This
allowed us to vary the radius ρ of the viewsphere in order to ease the sensor movement
and to update hypotheses for other objects within the field of view. The radius was set
to 1 meter by default but if the next viewpoint was not reachable, it could be adapted
to accommodate for obstacles and the sensor dynamics. Algorithm 11 summarizes the
complete view planning framework.

4.4.4 Performance Evaluation

The VP-Tree was trained on templates extracted using a simulated depth sensor from 48
viewpoints, uniformly distributed on a viewsphere of radius ρ = 1 m (Fig. 4.4). The
observation model was trained as described in the last paragraph of Sec. 4.4.2. We used
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Algorithm 11 View Planning for Active Object Recognition

1: Input: Initial sensor pose x0 = (xp0, x
r
0) ∈ R3 nSO(3), hypotheses prior p0, object models of interest I

2: Output: Decision ĉi ∈ Ī, r̂i ∈ R(ĉi) for every object i in the scene
3: Priority queue pq ← ∅; Current object ID i← unassigned
4: for t = 0 to ∞ do
5: Obtain a point cloud Qt from xt
6: Cluster Qt and update the table occupancy grid
7: for every undecided object j seen in Qt do
8: Rotate the sensor so that xrt faces the centroid of j
9: Get viewsphere radius: ρ← ‖xpt − centroid(j)‖

10: Get closest viewpoint: vj ← arg min
v∈X (ρ)

‖xpt − v‖

11: Obtain a point cloud Qj
12: Get VP-Tree score zj and occlusion state ψj from Qj
13: Update probabilities for object j via Bayes rule: pjt+1 ← b(pjt , z

j , ψj , vj)
14: if j /∈ pq then
15: Insert j in pq according to probability j ∈ I: 1− pjt+1(c∅, r∅)

16: if i is unassigned then
17: if pq is not empty then
18: i← pq.pop()
19: else . All objects seen so far have been processed.
20: if whole scene explored then
21: break
22: else
23: Move sensor to an unexplored area and start over

24: xt+1 ← µ(vi, pit+1)
25: if xt+1 is a hypothesis decision (c, r) then
26: ĉi ← c, r̂i ← r, i← unassigned, Go to line 19
27: else
28: Move sensor to xt+1

|X (ρ)| = 42 planning viewpoints in the upper hemisphere of the viewsphere to avoid placing
the sensor under the table and the following parameters:

λ = 75 γ(ĉ, r̂, c, r) =

{
0, ĉ = c and r̂ = r

1, otherwise

where λ was set heuristically high in order to favor correct decisions over speed and thus
emphasize the advantage of active view planning over static detection.

Performance evaluation in simulation

The Handlebottle model (Fig. 4.1) was used as a single object of interest, i.e., I = {cH}.
Keeping the pitch and roll zero, the space of object yaws was discretized into 6 bins to
formulate the hypotheses:

H(∅) := H(c∅, r∅) = The object is not a Handlebottle

H(r) := H(cH , r) = The object is a Handlebottle with yaw

r ∈ {0◦, 60◦, 120◦, 180◦, 240◦, 300◦}.

Seventy synthetic scenes were generated with 10 true positives for each of the seven hy-
potheses. The true positive object was placed in the middle of the table, while the rest
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of the objects served as occluders. Fig. 4.1 shows an example of the scenes used in the
simulation.

Four approaches for selecting sequences of views from X (ρ) were compared. The static
approach takes a single measurement from the starting viewpoint and makes a decision
based on the output from the VP-Tree. The second approach is our nonmyopic view plan-
ning (NVP). The third approach (random) is a random walk on the viewsphere, which
avoids revisiting viewpoints. It ranks the viewpoints, which have not been visited yet,
according to the great-circle distance from the current viewpoint. Then, it selects a view-
point at random among the closest ones. The observation model is used to update the
hypotheses’ probabilities over time. The experiment is terminated when the probability of
one hypothesis is above 60%, i.e., τ = inf{t ≥ 0 | ∃(c, r) such that pt(c, r) ≥ 0.6}, and that
hypothesis is chosen as the sensor’s decision. This stopping rule was chosen empirically so
that the random approach makes about the same number of measurements as NVP. This
allows us to compare the informativeness of the chosen sensor views. Last approach is the
widely-used greedy mutual information (GMI) approach:

µGMI(x0:t, pt) = arg max
v∈X (ρ)\{x0:t}

I(H(c, r); zt+1)

g(xt, v)
= arg min

v∈X (ρ)\{x0:t}

H(H(c, r) | zt+1)

g(xt, v)

= arg min
v∈X (ρ)\{x0:t}

1

g(xt, v)

∑
z∈Z

∑
c∈Ī

∑
r∈R(c)

pt(c, r)ph(z | v, c, r, ψ∅)

× log2

(∑
c′∈Ī

∑
r′∈R(c′) pt(c

′, r′)ph(z | v, c′, r′, ψ∅)
pt(c, r)ph(z | v, c, r, ψ∅)

)
,

where H(c, r) is the true hypothesis, I(·; ·) is mutual information, and H(· | ·) is conditional
entropy. The same stopping rule as for the random approach was used so that the number
of measurements made by GMI is roughly the same as those for random and NVP.

Fifty repetitions with different starting sensor poses were carried out on every scene.
For each hypothesis, the measurement cost

∑τ−1
t=0 g0, the movement cost

∑τ−1
t=0 gcd(xt, xt+1),

and the decision cost JD were averaged over all repetitions. The accuracy of each approach
and the average costs are presented in Table 4.1. The following conclusions can be made:

• The active approaches for object classification and pose estimation significantly out-
perform the traditional single-view approach in terms of accuracy. In most cases, by
making 1−2 extra measurements, they are able to choose the correct hypothesis more
than 20% more frequently.

• There is a steady improvement in performance when going from random viewpoint
selection, to greedy view planning, and finally to nonmyopic view planning. Compared
with the random and the GMI approaches, our NVP method needs less movement
and less measurements on average and, as demonstrated by its lower average decision
cost, is able to select more informative views.

• The performance gain of NVP over GMI is not significant. In some scenarios it
might not justify the complicated offline training. For example, it is much easier
to include additional constraints, such as occlusion avoidance, with greedy planning.
This suggests that it is best to use an online nonmyopic closed-loop planning approach,
such as the Monte Carlo tree search developed in Sec. 4.3.
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Table 4.1: Simulation results for a bottle detection experiment

True Hypothesis Avg Number of
Measurements

Avg Movement
Cost

Avg Decision
Cost

Avg Total
CostH(0◦) H(60◦) H(120◦) H(180◦) H(240◦) H(300◦) H(∅)

P
re

d
ic

te
d

H
y
p

o
th

e
si

s
(%

)

S
ta

ti
c

H(0◦) 60.35 3.86 1.00 2.19 1.48 2.19 28.92 1.00 0.00 29.74 30.74
H(60◦) 5.53 53.90 2.19 1.00 1.48 1.95 33.94 1.00 0.00 34.57 35.57
H(120◦) 4.86 4.62 51.49 3.90 2.21 1.24 31.68 1.00 0.00 36.38 37.38
H(180◦) 4.34 4.34 6.01 49.13 1.95 1.24 32.98 1.00 0.00 38.15 39.15
H(240◦) 3.88 1.96 1.24 2.20 56.11 1.24 33.37 1.00 0.00 32.92 33.92
H(300◦) 5.07 1.24 2.44 2.44 1.72 54.29 32.82 1.00 0.00 34.28 35.28

H(∅) 0.56 1.09 3.11 1.93 0.32 3.13 89.87 1.00 0.00 7.60 8.60
Overall Average Total Cost: 31.52

R
an

d
om

H(0◦) 73.78 3.17 1.24 2.21 1.48 1.24 16.87 2.00 1.26 19.66 22.93
H(60◦) 1.96 70.34 2.20 1.72 1.00 1.48 21.31 2.36 1.71 22.25 26.31
H(120◦) 1.00 1.49 70.75 3.43 1.00 1.24 21.09 2.30 1.64 21.94 25.87
H(180◦) 1.48 1.73 3.66 66.97 1.97 1.48 22.71 2.71 2.16 24.78 29.64
H(240◦) 1.48 1.24 1.48 2.45 68.76 1.72 22.87 2.41 1.77 23.43 27.62
H(300◦) 1.72 1.97 1.00 1.24 1.97 71.85 20.25 2.60 2.02 21.11 25.74

H(∅) 0.07 2.11 2.00 1.53 1.59 0.37 92.33 4.95 4.93 5.76 15.64
Overall Average Total Cost: 24.82

G
re

ed
y

M
I

H(0◦) 82.63 2.93 0.76 1.61 0.83 0.40 10.85 1.96 1.20 13.03 16.19
H(60◦) 0.80 80.14 1.05 1.07 0.14 1.16 15.64 2.26 1.58 14.89 18.73
H(120◦) 1.09 1.05 76.93 2.64 0.83 0.82 16.66 2.30 1.64 17.31 21.25
H(180◦) 1.47 1.25 3.62 75.60 0.71 0.50 16.84 2.79 2.25 18.30 23.34
H(240◦) 0.49 1.15 0.82 2.58 75.29 1.71 17.96 2.37 1.72 18.53 22.62
H(300◦) 1.79 0.50 0.12 0.86 1.21 81.78 13.74 2.59 2.00 13.66 18.25

H(∅) 0.72 1.35 2.23 0.39 0.25 0.41 94.65 5.29 5.37 4.01 14.67
Overall Average Total Cost: 19.29

N
V

P

H(0◦) 87.98 0.48 0.24 0.24 0.24 0.48 10.34 2.06 1.45 9.01 12.51
H(60◦) 0.00 83.78 0.97 0.24 0.24 0.24 14.53 2.28 1.73 12.17 16.17
H(120◦) 0.48 0.00 82.81 1.21 0.00 0.00 15.50 2.37 1.86 12.89 17.12
H(180◦) 0.00 0.00 0.97 82.61 1.21 0.24 14.98 2.50 2.05 13.04 17.60
H(240◦) 0.49 0.24 0.00 0.49 78.73 0.00 20.05 2.57 2.18 15.95 20.71
H(300◦) 0.00 0.24 0.24 0.73 0.48 81.60 16.71 2.60 2.15 13.80 18.55

H(∅) 1.49 1.58 1.37 0.37 0.74 1.25 93.20 2.08 1.50 5.10 8.68
Overall Average Total Cost: 15.91

• The most notable advantage of NVP comes from the adaptive stopping criterion. This
is especially evident when the observed object is clutter (H(∅) is correct). In this case,
the scores provided by the VP-Tree are not consistent and cause the probabilities of
various hypotheses to increase and decrease frequently. As a result, the GMI and
random approaches need many measurements to reach their prespecified stopping
time. In contrast, NVP employs a longer planning horizon and recognizes that if
the clutter class is likely, it is better to stop sooner than to attempt to increase the
confidence as many (costly) measurements would be needed.

Accuracy of the orientation estimates

Since the object orientations in a real scene are not discrete, a refinement step is needed
if the algorithm detects an object of interest. The surfaces observed from an object are
accumulated over time and, after a decision, are aligned using the iterative closest point
algorithm to the surface of the database model, corresponding to H(ĉ, r̂). Thus, the final
decision includes both a class and a continuous pose estimate.

Simulations were carried out to evaluate the accuracy of the continuous orientation
estimates with respect to the ground truth. The following distance metric on SO(3) was
used to measure the error between two orientations represented by quaternions q1 and q2:

d(q1, q2) := cos−1
(
2〈q1, q2〉2 − 1

)
,

where 〈a1 + b1i + c1j + d1k, a2 + b2i + c2j + d2k〉 = a1a2 + b1b2 + c1c2 + d1d2 denotes the
quaternion inner product. A single object of interest (Watercan) was used: I = {cW }.
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Figure 4.7: Twenty five hypotheses (red dotted lines) were used to decide on the orientation of a
Watercan. The left plot shows the error in the orientation estimates as the ground truth orientation
varies. The error averaged over the ground truth roll, the hypotheses over the object’s yaw (blue
dots), and the overall average error (red line) are shown on the right.

The ground truth yaw (α) and roll (γ) of the Watercan were varied from 0◦ to 360◦ at
7.5◦ increments. The pitch (β) was kept zero. Synthetic scenes were generated for each
orientation. Hypotheses were formulated by discretizing the yaw space into 6 bins and the
roll space into 4 bins:

H(c∅, r∅) = The object is not a Watercan

H(cW , r) = The object is a Watercan with orientation

r = (α, β, γ) ∈ {(iy60◦, 0, ir90◦) | iy = 0, . . . , 5, ir = 0, . . . , 3}

Fifty repetitions with different starting sensor poses were carried out on every test scene.
The errors in the orientation estimates were averaged and the results are presented in Fig.
4.7. As expected, the orientation estimates get worse for ground truth orientations which
are further away from the hypothesized orientations. On the right plot, it can be seen that
the hypothesized yaws correspond to local minima in the orientation error. This suggests
that the number of hypotheses needs to be increased if a better orientation estimate is
desired. Still, a rather sparse set of hypothesized orientations was sufficient to obtain an
average error of 39◦. For these experiments, the average number of measurements was 2.85
and the average movement cost was 2.61.

Performance evaluation in real-world experiments

In this section, we demonstrate that the real-world performance of NVP is similar to the
simulation. We expect the same to be true for the rest of the view planning methods and
did not carry out additional real experiments. An Asus Xtion RGB-D camera attached to
the right wrist of a PR2 robot was used as the mobile sensor. As before, the sensor’s task
was to detect if any Handlebottles (I = {cH}) are present on a cluttered table and estimate
their poses. Fig. 4.8 shows the experimental setup.

Twelve table setups were used, each containing 2 instances of the object of interest
and 8 − 10 other objects. Ten repetitions were carried out for each setup, which in total
corresponded to 40 true positive cases for every hypothesis. The results are summarized
in Table 4.2. The performance obtained in the real experiments is comparable to the
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Figure 4.8: An example of the experimental setup (left), which contains two instances of the object
of interest (Handlebottle). A PR2 robot with an Asus Xtion RGB-D camera attached to the right
wrist (middle) employs the nonmyopic view planning approach for active object classification and
pose estimation. In the robot’s understanding of the scene (right), the object which is currently
under evaluation is colored yellow. Once the system makes a decision about an object, it is colored
green if it is of interest, i.e. in I, and red otherwise. Hypothesis H(0◦) (Handlebottle with yaw 0◦)
was chosen correctly for the green object. See the video in Appendix D.16 Extension 16 for more
details.

Table 4.2: Results for a real-world bottle detection experiment

True Hypothesis Avg Number of
Measurements

Avg Movement
Cost

Avg Decision
Cost

Avg Total
CostH(0◦) H(60◦) H(120◦) H(180◦) H(240◦) H(300◦) H(∅)

P
re

d
ic

te
d

(%
)

H(0◦) 87.5 2.5 5.0 0.0 0.0 0.0 5.0 2.53 2.81 9.38 14.72
H(60◦) 2.5 80.0 0.0 0.0 0.0 0.0 17.5 2.66 2.52 15.00 20.18
H(120◦) 7.5 0.0 72.5 0.0 0.0 0.0 20.0 3.16 3.43 20.63 27.22
H(180◦) 0.0 0.0 0.0 70.0 10.0 2.5 17.5 2.20 1.72 22.5 26.42
H(240◦) 0.0 0.0 0.0 2.5 75.0 2.5 20.0 2.39 2.51 18.75 23.65
H(300◦) 0.0 0.0 0.0 0.0 5.0 72.5 22.5 2.57 2.18 20.63 25.38

H(∅) 0.0 0.0 0.97 0.0 0.0 0.97 98.05 2.17 1.93 1.46 5.56
Overall Average Total Cost: 20.45

simulation results. On average, more movement and more measurements were required
to make a decision in practice than in simulation, which can be attributed to the fact
that the VP-Tree and the observation model were trained in simulation but were used to
process real observations. The VP-Tree scores were sometimes inconsistent which caused the
hypotheses’ probabilities to fluctuate and hence the sensor took longer to make decisions.
Still, the results from the experiments are very satisfactory with an average accuracy of
76% for true positives and 98% for true negatives.

There are several aspects of our framework that slow down the processing and need
improvement, however. First, the occlusion model should be used in combination with
online planning (e.g., the Monte Carlo tree search in Sec. 4.3) to avoid viewpoints with
limited visibility. Second, as an artifact of the way the camera observation model was
trained, the camera had to turn towards the centroid of every object in its field of view.
This is slow and undesirable. The observation model can be modified, at the expense of
a more demanding training stage, to include sensor poses which do not face the object’s
centroid. Finally, an unavoidable computational cost is due to feature extraction from the
observed surfaces and to point cloud registration, needed to localize the sensor in the global
frame.
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4.5 Application: Accelerating Object Recognition with De-
formable Part Models

Next, we turn attention to object detection in a single image. Even though there is no sensor
to control anymore, we can use active information acquisition to accelerate the evaluation of
a star-structured object model such as a deformable part model (Felzenszwalb et al. 2010b).
A star-structured model of an object with n parts is formally defined by a (n + 2)-tuple
(F0, P1, . . . , Pn, β), where F0 is a root filter, β is a real-valued bias term, and Pk are the
part models. Each part model Pk = (Fk, vk, dk) consists of a filter Fk, a position vk of
the part relative to the root, and the coefficients dk of a quadratic function specifying a
deformation cost of placing the part away from vk. The object detector is applied in a
sliding-window fashion to each location q in an image pyramid, where q = (r, c, l) specifies
a pixel position (r, c) in the l-th level (scale) of the pyramid. The space of all locations
(position-scale tuples) in the image pyramid is denoted by Q. The response of the detector
at a given root location q = (r, c, l) ∈ Q is:

score(q) = F ′0 · φ(H, q) +
n∑
k=1

max
qk

(
F ′k · φ(H, qk)− dk · φd(δk)

)
+ β,

where φ(H, q) is the histogram of oriented gradients (HOG) feature vector at location q, H
is the HOG feature pyramid, δk := (rk, ck)−(2(r, c)+vk) is the displacement of the k-th part
from its anchor position vk relative to the root location q, and φd(dr, dc) := (dr, dc, dr2, dc2)
are deformation features. Each term in the sum above implicitly depends on the root
location q since the part locations qk are chosen relative to it. The score can be written as:

score(q) =
n∑
k=0

zk(q) + β, (4.5)

where z0(q) := F ′0 · φ(H, q) and for k > 0, zk(q) := maxqk
(
F ′k · φ(H, qk)− dk · φd(δk)

)
. From

this perspective, there is no difference between the root and the parts and we can think of
the model as one consisting of n+ 1 parts.

4.5.1 Observation Model of the Part Filters

The object detection task requires labeling every q ∈ Q with a label y(q) ∈ {	,⊕}, indicating
if an object is present or not. Since the same task needs to be performed at every location,
in the reminder we fix a particular root location q ∈ Q and suppress it in the notation.
The traditional approach to label y, is to compute the complete score in (4.5) and compare
it to a pre-specified threshold. We argue that it is not necessary to obtain all n + 1 part
responses in order to label a location correctly. Treating the part filter responses as noisy
observations of the true label y, we choose an effective order in which to receive observations
and an optimal time to stop. The stopping criterion is based on a trade-off between the
cost of obtaining more observations and the cost of labeling the location incorrectly.

In the language of active information acquisition, we can think of the true label y
as a binary target state, of the part scores z0, . . . , zn as sensor observations, and of the
particular part xt ∈ {0, . . . , n} to be applied at time t as the sensor state. Before we
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Figure 4.9: Observation models for several part filters from a car DPM. The root (P0) and three
parts of the model are shown on the left. The corresponding positive and negative score likelihoods
are shown on the right.

formulate the problem precisely, we present the observation model associated with the filter
responses. As the scores z0, . . . , zn are random variables, we need to specify their joint
probability density function ph(z0, . . . , zn | y) conditioned on the true label y. We make the
following independence assumption, which does not always hold in practice but simplifies
the representation of the observation model, avoids overfitting, and allows us to use Bayesian
filtering.

Assumption. The responses of the parts of a star-structured model with a given root loca-
tion q ∈ Q are independent, conditioned on the the true label y(q), i.e.,

ph(z0, z1, . . . , zn | y) =

n∏
k=0

ph(zk | k, y) (4.6)

where ph(zk | k,⊕) is the pdf of zk | y = ⊕ and ph(mk | k,	) is the pdf of zk | y = 	.

We learn non-parametric representations for the 2(n+ 1) pdfs {ph(· | k,⊕), ph(· | k,	)}
by collecting filter responses for each part from an annotated set D of training images.
Given a positive example I⊕i ∈ D of a particular DPM component, the root was placed
at the scale and position q∗ of the top score within the ground-truth bounding box. The
response zi0 of the root filter was recorded. The parts were placed at their optimal locations
relative to the root location q∗ and their scores zik, k > 0 were recorded as well. This
procedure was repeated for all positive examples in D to obtain a set of scores {zik | ⊕}
for each part k. For negative examples, q∗ was selected randomly over all locations in the
image pyramid and the same procedure was used to obtain the set {zik | 	}. Kernel density
estimation was applied to the score collections in order to obtain smooth approximations
to ph(· | k,⊕) and ph(· | k,	). Fig. 4.9 shows the observation models associated with the
part responses of a car model.
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4.5.2 Active Part Selection

Now that we have observation models for the filter responses, we can solve a discrete-space
active information acquisition problem (4.4) in order to plan an informative order in which
to apply the part filters and a time at which to stop and guess the label of y ∈ {	,⊕}. More
precisely, starting with an uninformative prior p0 = 1/2 for the true label, we consider the
following problem:

min
τ,µ0:τ−1

E[τ ] + λPe(τ)

s.t. xt = µt, t = 0, . . . , τ − 1,

xt+1 /∈ {x0, . . . , xt}, t = 0, . . . , τ − 2,

zt ∼
∑

y∈{	,⊕}
ph(· | xt, y)pt(y), t = 0, . . . , τ − 1,

pt+1 = b(pt, zt, xt), t = 0, . . . , τ − 1,

which is an instance of (4.4) with g(xt, xt+1) = 1 and planning horizon 0 ≤ τ ≤ n + 1
that is subject to optimization. Since the measurement and state spaces are small, we can
apply the exact backward value iteration algorithm (Alg. 9) to obtain the optimal control
policy µ0:τ that maps the set of previously used parts x0:t−1 and the pdf pt to the next filter
to be applied. Upon termination, we choose the label ŷτ := arg max

y∈{	,⊕}
pτ (y) for the current

location. The constant λ can be interpreted as a cost paid for choosing an incorrect label.
To allow flexibility, we rewrite the cost function as follows:

E
[
τ + λEy

[
1{ŷτ 6=y} | z0:(τ−1)

]]
= E

[
τ +

∑
y∈{	,⊕}

λ1{ŷτ 6=y}pτ (y)

]

and introduce separate costs λfp and λfn for false positive and false negative mistakes:

E
[
τ + λfn1{ŷτ=	}pτ (⊕) + λfp1{ŷτ=⊕}pτ (	)

]
.

During inference, the policy is used to select the sequence of parts to apply at each
location q ∈ Q in the image pyramid. Note that the labeling of a different location is
treated as an independent problem. The active DPM inference process is summarized in
Alg. 12 and exemplified in Fig. 4.10. At the start of a detection at location q, the set
of previously used parts s0 is empty and p0 = 1/2 (line 5). At each round t, the policy
is queried to obtain either the next part to run or a predicted label for q (line 7). Note
that querying the policy is an O(1) operation since it is stored as a lookup table. If the
policy terminates and labels y(q) as foreground (line 8), all unused part filters are applied
in order to obtain the final discriminative score in (4.5). On the other hand, if the policy
terminates and labels y(q) as background, no additional part filters are evaluated and the
final score is set to −∞ (line 16). In this case, our algorithm makes computational savings
compared to the original DPM inference. The potential speed-up and the effect on the
accuracy are discussed in the Sec. 4.5.3. Finally, if the policy returns a part index k, the
corresponding score zk(q) is computed by applying the part filter (line 19). This operation
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Figure 4.10: Active DPM Inference: A deformable part model trained on the PASCAL VOC 2007
horse class is shown with colored root and parts in the first column. The second column contains
an input image and the original DPM scores as a baseline. The rest of the columns illustrate the
ADPM inference which proceeds in rounds. The foreground probability of a horse being present is
maintained at each image location (top row) and is updated sequentially based on the responses
of the part filters (high values are red; low values are blue). A policy (learned offline) is used to
select the best sequence of parts to apply at different locations. The bottom row shows the part
filters applied at consecutive rounds with colors corresponding to the parts on the left. The policy
decides to stop the inference at each location based on the confidence of foreground. As a result, the
complete sequence of part filters is evaluated at very few locations, leading to a significant speed-up
versus the traditional DPM inference. Our experiments show that the accuracy remains unaffected.

is O(|∆|), where ∆ is the space of possible displacements for part k with respect to the
root location q. Following the analysis in Felzenszwalb et al. (2010a), searching over the
possible locations for part k is usually no more expensive than evaluating its linear filter Fk
once. This is the case because once Fk is applied at some location qk, the resulting response
Φk(qk) = F ′k ·φ(H, qk) is cached to avoid recomputing it later. The score zk of part k is used
to update the total score at q (line 20). Since the policy lookups and the state updates are
all of O(1) complexity, the worst-case complexity of Alg. 12 is O(n|Q||∆|). The average
running time of our algorithm depends on the total number of score zk evaluations, which
in turn depends on the choice of the parameters λfn and λfp and is the subject of the next
section.

4.5.3 Parameter Selection

The accuracy and speed of active DPM (ADPM) inference depend on the costs λfp and
λfn. To get an intuition, consider making both λfp and λfn very small. The cost of an
incorrect prediction will be negligible, thus encouraging the policy to sacrifice accuracy and
stop immediately. On the other extreme, when both parameters are very large, the policy
will delay the prediction as much as possible in order to obtain more information.

To evaluate the effect of different parameters, we compared the average precision (AP)
and the number of part evaluations of Alg. 12 to those of the traditional DPM as a baseline.
Let RM be the total number of score zk(q) evaluations for k > 0 (excluding the root) over
all locations q ∈ Q performed by method M. For example, RDPM = n|Q| since the DPM
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Algorithm 12 Active DPM Inference

1: Input: Image pyramid, model (F0, P1, . . . , Pn, β), observation models {ph(· | k,	), ph(· | k,⊕)}nk=0, policy µ0:τ

2: Output: score(q) at all locations q ∈ Q in the image pyramid
3:
4: for q ∈ 1 . . . |Q| do . All image pyramid locations
5: x0 := −1; s0 := ∅; p0 = 0.5; score(q) := 0
6: for t = 0, 1, . . . , n do
7: k := µt(xt, st, pt) . Lookup next best part
8: if k = ⊕ then . Terminate with foreground label
9: for i ∈ {0, 1, . . . , n} do

10: if i /∈ st then
11: Compute score zi(q) for part i . O(|∆|)
12: score(q) := score(q) + zi(q)

13: score(q) := score(q) + β . Add bias to final score
14: break;
15: else if k = 	 then . Terminate with background labeled
16: score(q) := −∞
17: break;
18: else . Update probability and score
19: Compute score zk(q) for part k . O(|∆|)
20: score(q) := score(q) + zk(q)
21: pt+1 := b(pt, zk, k) . Bayesian update
22: st+1 := st ∪ {k} . Set of used parts
23: xt+1 := k

Table 4.3: Average precision and relative number of part evaluations versus DPM obtained on the
bus class from VOC 2007 training set. A grid search over (λfp, λfn) ∈ {4, 8, . . . , 64}× {4, 8, . . . , 64}
with λfp ≥ λfn is shown.

Average Precision RNPE vs DPM

λfp/λfn 4 8 16 32 64 λfp/λfn 4 8 16 32 64

4 70.3 4 40.4

8 70.0 71.0 8 80.7 61.5

16 69.6 71.1 71.5 16 118.6 74.5 55.9

32 70.5 70.7 71.6 71.6 32 178.3 82.1 59.8 37.0

64 67.3 69.6 71.5 71.6 71.4 64 186.9 96.4 56.2 34.5 20.8

evaluates all parts at all locations in Q. We define the relative number of part evaluations
(RNPE) of ADPM versus method M as the ratio of RM to RADPM . The AP and the RNPE
versus DPM of ADPM were evaluated on several classes from the PASCAL VOC 2007
training set (Everingham et al. 2010) for different values of the parameter λ = λfn = λfp
(see Fig. 4.11). As expected, the AP increases while the RNPE decreases, as the penalty of
an incorrect declaration λ grows, because ADPM evaluates more parts. The dip in RNPE
for very low λ is due to fact that ADPM starts reporting many false-positives. In the case
of a positive declaration all n + 1 part responses need to be computed which reduces the
acceleration versus DPM.

To limit the number of false positive mistakes made by the policy we set λfp > λfn.
While this might hurt the accuracy, it certainly results in less positive declarations and in
turn significantly less part evaluations. To verify this intuition, we performed experiments
with λfp > λfn on the VOC 2007 training set. Table 4.3 reports the AP and the RNPE
versus DPM from a grid search over the parameter space. Generally, as the ratio between
λfp and λfn increases, the RNPE increases while the AP decreases. Notice, however, that
the increase in RNPE is significant, while the hit in accuracy is negligible.
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Figure 4.11: Average precision and relative number of part evaluations versus DPM as a function
of the parameter λ = λfn = λfp on a log scale. The curves are reported on the bus class from the
VOC 2007 training set.

4.5.4 Comparison of DPM, Active DPM, and Cascade DPM

In this section we compare ADPM versus two baselines, DPM (Felzenszwalb et al. 2010b)
and cascade DPM (Cascade, Felzenszwalb et al. (2010a)) in terms of average precision
(AP), relative number of part evaluations (RNPE), and relative wall-clock time speedup
(Speedup). Experiments were carried out on all 20 classes in the PASCAL VOC 2007 and
2010 datasets (Everingham et al. 2010). Publicly available PASCAL VOC 2007 and 2010
DPM and Cascade models were used for all three methods. For a fair comparison, ADPM
changes only the part order and the stopping criterion of the original implementations.

ADPM vs DPM

The inference of ADPM on two input images is shown in detail in Fig. 4.10 and Fig. 4.12.
The probability of a positive label pt(⊕) (top row) becomes more contrasted as additional
parts are evaluated. The number of locations at which the algorithm has not terminated
decreases rapidly as time progresses. Visually, the locations with a maximal posterior are
identical to the top scores obtained by the DPM. The order of parts chosen by the policy is
indicative of their informativeness. For example, in Fig. 4.12 the wheel filters are applied
first which agrees with intuition. In this example, the probability pt(⊕) remains low at
the correct location for several iterations due to the occlusions. Nevertheless, the policy
recognizes that it should not terminate and, as it evaluates more parts, the correct location
of the highest DPM score is reflected in the posterior. A video demonstrating the active
DPM inference is provided in Appendix D.16 Extension 17.

ADPM was compared to DPM in terms of AP and RNPE to demonstrate the ability of
ADPM to reduce the number of part evaluations with minimal loss in accuracy, irrespective
of the features used. The parameters were set to λfp = 20 and λfn = 5 for all classes based
on the analysis in Sec. 4.5.3. Table 4.4 shows that ADPM achieves a significant decrease
(90 times on average) in the number of evaluated parts with negligible loss in accuracy. The
precision-recall curves of the two methods are shown in Fig. 4.13 for several classes.

ADPM vs Cascade DPM

The improvement in detection speed achieved by ADPM is demonstrated via a comparison
to Cascade in terms of AP, RNPE, and wall-clock time (in sec). During inference, Cascade
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Figure 4.12: Illustration of the ADPM inference process on a car example. The DPM model with
colored root and parts is shown on the left. The top row on the right consists of the input image
and the evolution of the positive label probability pt(⊕) for t ∈ {1, 2, 3, 4} (high values are red; low
values are blue). The bottom row consists of the full DPM score(q) and a visualization of the parts
applied at different locations at time t. The pixel colors correspond to the part colors on the left. In
this example, despite the car being heavily occluded, ADPM converges to the correct location after
four iterations. For more examples see the video in Appendix D.16 Extension 17.

Table 4.4: Average precision (AP) and relative number of part evaluations (RNPE) of DPM versus
ADPM on all 20 classes in VOC 2007 and 2010.

VOC2007 aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

DPM RNPE 102.8 106.7 63.7 79.7 58.1 155.2 44.5 40.0 58.9 71.8 69.9 49.2 51.0 59.6 45.3 49.0 62.6 68.6 79.0 100.6 70.8

DPM AP 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7

ADPM AP 33.5 59.8 9.8 15.3 27.6 52.5 57.6 22.1 20.1 24.6 24.9 12.3 57.6 48.4 42.8 12.0 20.4 35.7 46.3 43.2 33.3

VOC2010 aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

DPM RNPE 110.0 100.8 47.9 98.8 111.8 214.4 75.6 202.5 150.8 147.2 62.4 126.2 133.7 187.1 114.4 59.3 24.3 131.2 143.8 106.0 117.4

DPM AP 45.6 49.0 11.0 11.6 27.2 50.5 43.1 23.6 17.2 23.2 10.7 20.5 42.5 44.5 41.3 8.7 29.0 18.7 40.0 34.5 29.6

ADPM AP 45.3 49.1 10.2 12.2 26.9 50.6 41.9 22.7 16.5 22.8 10.6 19.7 40.8 44.5 36.8 8.3 29.1 18.6 39.7 34.5 29.1

(a) class: bicycle (b) class: car (c) class: person
Figure 4.13: Precision recall curves for bicycle, car, and person classes from VOC 2007. Our method’s
accuracy ties with the baselines.

prunes the image locations in two passes. In the first pass, the locations are filtered using
the PCA filters and the low-scoring ones are discarded. In the second pass, the remaining
locations are filtered using the full-dimensional filters. To make a fair comparison, we
adopted a similar two-stage approach. An additional policy was learned using PCA score
likelihoods and was used to schedule PCA filters during the first pass. The locations, which
were selected as foreground in the first stage, were filtered again, using the original policy
to schedule full-dimensional filters. The parameters λfp and λfn were set to 20 and 5 for
the PCA policy and to 50 and 5 for the full-dimensional policy. A higher λfp was chosen
to make the prediction more precise (albeit slower) during the second stage. Deformation
pruning was not used for either method. Table 4.5 summarizes the results. A discrepancy
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in the speedup of ADPM versus Cascade is observed in Table 4.5. On average, ADPM is 7
times faster than Cascade in RNPE but only 3 times faster in seconds. A breakdown of the
computational time during inference on a single image is shown in Table 4.6. We observe
that the ratios of part evaluations and of seconds are consistent within individual stages
(PCA and full). However, a single filter evaluation during the full-filter stage is significantly
slower than one during the PCA stage. This does not affect the cumulative RNPE but lowers
the combined seconds ratio. While ADPM is significantly faster than Cascade during the
PCA stage, the speedup (in sec) is reduced during the slower full-dimensional stage.

Table 4.5: Average precision (AP), relative number of part evaluations (RNPE), and relative wall-
clock time speedup (Speedup) of ADPM versus Cascade on all 20 classes in VOC 2007 and 2010.

VOC2007 aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

Cascade RNPE 5.93 5.35 9.17 6.09 8.14 3.06 5.61 4.51 6.30 4.03 4.83 7.77 3.61 6.67 17.8 9.84 3.82 2.43 2.89 6.97 6.24

ADPM Speedup 3.14 1.60 8.21 4.57 3.36 1.67 2.11 1.54 3.12 1.63 1.28 2.72 1.07 1.50 3.59 6.15 2.92 1.10 1.11 3.26 2.78

Cascade AP 33.2 60.8 10.2 16.1 27.3 54.1 58.1 23.0 20.0 24.2 26.8 12.7 58.1 48.2 43.2 12.0 20.1 35.8 46.0 43.4 33.7

ADPM AP 31.7 59.0 9.70 14.9 27.5 51.4 56.7 22.1 20.4 24.0 24.7 12.4 57.7 48.5 41.7 11.6 20.4 35.9 45.8 42.8 33.0

VOC2010 aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

Cascade RNPE 7.28 2.66 14.80 7.83 12.22 5.47 6.29 6.33 9.72 4.16 3.74 10.77 3.21 9.68 21.43 12.21 3.23 4.58 3.98 8.17 7.89

ADPM Speedup 2.15 1.28 7.58 5.93 4.68 2.79 2.28 2.44 3.72 2.42 1.52 2.76 1.57 2.93 4.72 8.24 1.42 1.81 1.47 3.41 3.26

Cascade AP 45.5 48.9 11.0 11.6 27.2 50.5 43.1 23.6 17.2 23.1 10.7 20.5 42.4 44.5 41.3 8.7 29.0 18.7 40.1 34.4 29.6

ADPM AP 44.5 49.2 9.5 11.6 25.9 50.6 41.7 22.5 16.9 22.0 9.8 19.8 41.1 45.1 40.2 7.4 28.5 18.3 38.0 34.5 28.8

Table 4.6: An example demonstrating the computational time breakdown during inference of ADPM
and Cascade on a single image. The number of part evaluations (PE) and the inference time (in
sec) is recorded for the PCA and the full-dimensional stages. The results are reported once without
and once with cache use. The number of part evaluations is independent of caching.

PCA no cache PCA cache PE Full no cache Full cache PE Total no cache Total cache Total PE

CASCADE 4.34s 0.67s 208K 0.13s 0.08s 1.1K 4.50s 0.79s 209K

ADPM 0.62s 0.06s 36K 0.06s 0.04s 0.6K 0.79s 0.19s 37K

4.6 Summary

Some information gathering applications such as object recognition necessitate discrete-
space observation and motion models. Because these models are not “linearizable” the
open-loop planning approach of Ch. 2 cannot be used. This chapter focused on nonmyopic
closed-loop planning for discrete-space active information acquisition. It developed an ex-
act algorithm, based on dynamic programming, and an approximation algorithm based on
Monte Carlo tree search. Applications in camera view planning for object classification and
pose estimation and in single-image object recognition via deformable part models were
used to demonstrate the performance of the algorithms. The results showed that active
approaches for camera view planning provides a significant improvement over static object
recognition. Also, the main advantage of nonmyopic planning over greedy planning in this
application turned out to be the adaptive stopping criterion that depends on the obser-
vations received online. In the single-image object detection application, the active part
scheduling approach accelerated inference with pictorial structures substantially, without
sacrificing accuracy. Unlike existing approaches, which use a pre-specified part order and
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hard stopping thresholds, our approach selects the part order and the stopping criterion
adaptively, based on the filter responses obtained during inference.

In summary, the techniques developed in this chapter offer a nonmyopic closed-loop
planning approach that may impact many robotics tasks that optimize information gather-
ing in a discrete non-Gaussian setting.
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Chapter 5

Conclusions and Future Work

Using autonomous sensor teams to collect information about physical phenomena of inter-
est has the potential to revolutionize fields such as environmental monitoring, agriculture,
construction and structure inspection, security and surveillance, search and rescue opera-
tions, localization and mapping, and mining. Effective coordination of the mobile sensing
resources, aimed at improving the inference process, is one of the great technical challenges
that inspired this dissertation. Due to the coupling between estimation and control in
information gathering problems, there is a clear need for new planning and modeling tech-
niques that can handle long planning horizons, distributed coordination among the sensing
systems, and heterogeneity in the environment and sensor models. This dissertation offers
a general formulation of the active information acquisition problem and develops scalable
algorithms, accompanied by theoretical analysis, that are applicable to a broad variety of
practical applications.

Ch. 2 argued that if the sensor observation models and the target motion models are
“linearizable”, the stochastic active information acquisition problem can be reduced to a
deterministic optimal control problem, in which open-loop planning is optimal. Such a
reduction is possible due to Thm. 2.1, which proves that a separation principle between
estimation and control holds for the linear Gaussian active information acquisition prob-
lem. Still, the complexity of computing the optimal nonmyopic open-loop policy in the
deterministic problem scales exponentially with the planning horizon T and the number of
sensors n. The following contributions of Ch. 2 enable an efficient solution with performance
guarantees:

• The complexity in the planning horizon T was mitigated by developing a reduced value
iteration algorithm (Alg. 2), which approximates the optimal solution with finite-time
suboptimality guarantees (Thm. 2.2, Thm. 2.3, Thm. 2.4).

• The complexity in the number of sensors n was reduced from exponential (in the central-
ized setting) to linear via decentralized control. The decentralized algorithm is guaranteed
by Thm. 2.6 to obtain at least 50% of the information obtained by the optimal centralized
solution.

• The target inference process was decentralized as well in order to complement the decen-
tralized control scheme. We developed a distributed Kalman filter (Alg. 5) for dynamic
target tracking and a distributed Jacobi algorithm (2.27) for sensor self-localization. It
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was shown in Thm. 2.12 that the two algorithms can be used in conjunction to achieve
joint localization and estimation in sensor networks with arbitrarily small asymptotic
mean square error.

• The linear Gaussian techniques above can even produce an adaptive policy for nonlinear
motion and observation models via linearization and model predictive control (Sec. 2.4.6).

• Applications in methane emission monitoring, mobile vehicle tracking, distributed local-
ization in sensor networks, and active multi-robot simultaneous localization and mapping
were presented.

While the techniques of Ch. 2 capture a large class of information acquisition problems,
they are not applicable in three particular situations: (1) when the data association between
the received measurements and the observed targets is unknown, (2) when the sensor obser-
vation models are unknown, and (3) when the sensor and target states or the measurements
are discrete.

These complications were considered by Ch. 3 in the context of two applications: ac-
tive localization using object recognition as input and physical signal source seeking with
unknown sensing models. We made the following contributions:

• A sensor observation model that incorporates missed detections, false alarms, and un-
known data association was developed by considering set-valued observations.

• It was proven in Thm. 3.2 that the likelihood of a set-valued observation can be obtained
via a matrix permanent computation. This allows a polynomial-time approximation to a
Bayes filter with set-valued observations (Alg. 7 and Alg. 6).

• A stochastic gradient ascent algorithm was developed for multi-sensor information gath-
ering with unknown observation and target motion models. We proved that a distributed
finite-difference approximation of the gradient of the measured signal based on Gaussian
radial bases functions is unbiased (Thm. 3.7). Moreover, the stochastic gradient ascent
guarantees (Thm. 3.5) that the sensors converge to a small neighborhood around a local
maximum of the measured signal.

• Applications in vehicle localization in residential areas using semantically-meaningful
landmarks, hand-held device global localization, active robot localization using object
recognition, and wireless radio source localization were presented.

Finally, Ch. 4 considered nonmyopic closed-loop planning in discrete state and mea-
surement spaces and made the following contributions:

• Exact nonmyopic closed-loop planning for discrete-space information gathering was achieved
via dynamic programming (Alg. 9). The algorithm obtains the optimal solution but scales
poorly with the size of the state and measurement spaces.

• To provide scalability, an approximate algorithm based on Monte Carlo tree search with a
rollout policy that exploits the structure of the information measure was developed (Alg.
10).
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• Applications in object classification and pose estimation with a mobile depth camera
(Alg. 11) and active object recognition with deformable part models (Alg. 12) were
presented.

In summary, the techniques developed in this dissertation offer a scalable and versatile
non-greedy solution to the general active information acquisition problem, accompanied by
theoretical performance guarantees. Potential extensions to the current results that warrant
further investigation in light of the long-term goals listed in Sec. 1.4 are summarized below.

• Improved target inference: Several new techniques for target inference were proposed
in this dissertation. Among them were the particle filter with set-valued observations in
Sec. 3.1.4, the distributed Kalman filter in Sec. 2.6.1, and the square root information
filter in Sec. 2.4.5 that exploits sparsity in the target information matrix. An inter-
esting direction for future research is to develop a unified target inference method that
combines the benefits of the Kalman-type filters (no particle depletion problems in high
dimensions; distributed computation; exploits sparsity) with those of the set-based par-
ticle filter (can handle both continuous and discrete measurements and unknown data
association). Further, it would be advantageous to use ideas from graphical model in-
ference (Koller and Friedman 2009, Sudderth et al. 2003, Meyer et al. 2014) to replace
filtering with smoothing, which was shown to be superior in applications such as lo-
calization and mapping (Kaess 2008) because past linearization points and past target
estimates can be corrected.

• Anytime incremental informative planning: This thesis developed efficient tech-
niques for both open-loop (reduced value iteration, Sec. 2.4.4) and closed-loop (Monte
Carlo tree search, Sec. 4.3) planning that can handle long planning horizons and provide
performance guarantees. However, some aspects of these planners are still not at the
maturity level of traditional planners. For example, future research can be focused on
developing anytime (a valid solution can be provided at any time) incremental (reuses
information from previous planning episodes) versions of the information-based planners,
using inspiration from ARA* (Likhachev et al. 2003) and AD* (Likhachev et al. 2005).

• Motion primitive generation: The set of motion primitives available as control inputs
for the sensors are an important aspect of the information planning process that received
little attention in this dissertation. Future work should investigate how to design motion
primitives suitable for a particular information gathering task or how to select a small
subset of motion primitives from a potentially very large library of sensor controllers.
It is also possible to generate or optimize the sensor motion primitives online (Kröger
2009). Finally, the informative planning algorithms should be extended to handle multi-
scale motion primitives, which involve different numbers of sensing locations at different
separations.

• Experimental validation: It is of great interest to carry out large-scale multi-robot
experimental validation of the active information acquisition techniques and to explore
other potential applications. Some obvious examples of the latter include active dense
mapping (Newcombe 2012) and active semantic mapping but we believe that the tech-
niques developed in this thesis can provide significant performance gains in many other
applications and fields.
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Appendix A

Information Measures

Entropy. Let X be a discrete random variable with probability mass function p. Then, the
entropy of X is defined as:

H(X) := −
∑
x

p(x) log p(x)

Differential Entropy. Let X be a continuous random variable with probability density
function p. Then, the entropy of X is defined as:

h(X) := −
∫
p(x) log p(x)dx

Conditional Entropy. Let X and Y be discrete random variables with joint probability
mass function p(x, y) and marginals p(x) and p(y), respectively. Then, the entropy of X
conditioned on Y is defined as:

H(X | Y ) :=
∑
y

p(y)H(X | Y = y) =
∑
x,y

p(x, y) log
p(x)

p(x, y)

Rényi Entropy. Let X be a discrete random variable with probability mass function p.
Then, the Rényi entropy of X of order α, where α ≥ 0 and α 6= 1, is defined as:

Hα(X) =
1

1− α
log

(∑
x

p(x)α

)
Entropy Chain Rule (Cover and Thomas (2012)). Let X1, . . . , Xn be a collection of
random variables. Then, their joint entropy satisfies:

H(X1, . . . , Xn) = H(Xn | X1, . . . , Xn−1) + . . .+ H(X2 | X1) + H(X1)

=

n∑
i=1

H(Xi | X1, . . . , Xi−1)

Differential Entropy of a Gaussian Random Vector. Let X ∼ N (µ,Σ) be n-dimensional.
Then, its differential entropy is:

h(X) =
1

2
(n log(2πe) + log det(Σ))
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Kullback-Leibler divergence. Let p and q be probability density functions. Then, the
Kullback-Leibler divergence of q from p is defined as:

D(p‖q) :=

∫
p(x) log

p(x)

q(x)
dx

Mutual Information. Let X and Y be discrete random variables with joint probability
mass function p(x, y) and marginals p(x) and p(y), respectively. Then, the mutual infor-
mation of X and Y is defined as:

I(X;Y ) :=
∑
y

∑
x

p(x, y) log
p(x, y)

p(x)p(y)
= H(X)−H(X | Y ) = D(p(x, y)‖p(x)p(y))

Cauchy-Schwarz divergence. Let p and q be probability density functions. Then, the
Cauchy-Schwarz divergence of q from p is defined as:

DCS(p‖q) := − log

( (∫
p(x)q(x)dx

)2∫
p2(x)dx

∫
q2(x)dx

)

Cauchy-Schwarz Quadratic Mutual Information (Principe (2010)). Let X and Y be
discrete random variables with joint probability mass function p(x, y) and marginals p(x)
and p(y), respectively. Then, the Cauchy-Schwarz quadratic mutual information of X and
Y is defined as:

ICS(X;Y ) := DCS(p(x, y)‖p(x)p(y))

Mutual Information Chain Rule (Cover and Thomas (2012)). Let X and Y1, . . . , Yn be
random variables. Then, the mutual information of X and [Y1, . . . , Yn] satisfies:

I(X;Y1, . . . , Yn) =
n∑
i=1

I(X;Yi | Y1, . . . , Yi−1)

Probability of Error. Let Z1, . . . , Zt be a sequence of random variables. Let Y be a
discrete random variable with (random) conditional probability mass function pt(y) :=
P(Y = y | Z1, . . . , Zt) Then, the probability of error of the maximum likelihood estimate
Ŷt := arg maxy pt(y) is defined as:

Pe(t) := P(Y 6= Ŷt) = EZ1:t

∑
y

1{
y 6=arg max

j
pt(j)

}pt(y)

 = EZ1:t

(
1−max

y
pt(y)

)

Fano’s Inequality (Cover and Thomas (2012)). Let Z1, . . . , Zt be a sequence of random
variables. Let Y be a discrete random variable with support Y. Then, the entropy of Y ,
conditioned on Z1, . . . , Zt, and the probability of error Pe(t) of the maximum likelihood
estimate of Y , given Z1, . . . , Zt, are related as follows:

H(Y | Z1:t) ≤ Pe(t) log(|Y| − 1) + H(Pe(t))
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Appendix B

Sensor and Motion Models

B.1 Differential-drive Motion Model

This section presents a discrete-time model of a differential-drive robot in the form rt+1 =
f(rt, ut), where rt := (xt, yt, θt) is the pose of the robot at time t, consiting of its 2-D position
and orientation, and ut is the control input that is potentially perturbed by additive motion
noise. Let ε be the time discretization step, l be the distance between the centers of the
two wheels, and VL, VR be the left and right wheel velocities along the ground. The control
input to the robot consits of the linear and angular velocities,

vt =
VL + VR

2
ωt =

VR − VL
l

.

Further, we can define the instantaneous center of curvature (ICC), and the signed distance
Rt from the ICC to the mid point between the wheels,

Rt =
vt
wt
, ICC =

(
xt −Rt sin θt yt +Rt cos θt

)T
.

The discrete-time differential-drive model is:xt+1

yt+1

θt+1

 =

cos(εωt) − sin(εωt) 0
sin(εωt) cos(εωt) 0

0 0 1

xt − ICCxyt − ICCy
θt

+

ICCxICCy
εωt

 .

Note that as εωt → 0, Rt →∞, and we can simplify the above:

xt+1

yt+1

θt+1

 =

xtyt
θt

+



Rt(sin(θt + εωt)− sin θt)

Rt(cos θt − cos(θt + εωt))

εωt

 , |εωt| ≥ δ

εvt cos(θt + εωt/2)

εvt sin(θt + εωt/2)

εωt

 , |εωt| < δ

.

where δ is a small constant. The trajecotries of the differential-drive motion model can be
parametrized by distance st := εvt and curvature κt := 1

Rt
= ωt

vt
as well.
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To use the above model for some estimation and control tasks, it is necessary to linearize
the equations. The Jacobian of the motion model with respect to (xt, yt, θt) is:

1 0 Rt(cos(θt + εωt)− cos θt)

0 1 Rt(− sin θt + sin(θt + εωt))

0 0 1

 , |εωt| ≥ δ
1 0 −εvt sin(θt + εωt/2)

0 1 εvt cos(θt + εωt/2)

0 0 1

 , |εωt| < δ

,

while with respect to ut := [vt ωt]
T it is:


1
ωt

(sin(θt + εωt)− sin θt)
−vt sin(θt+εωt)+vt sin θt

ω2
t

+ εvt cos(θt+εωt)
ωt

1
ωt

(cos θt − cos(θt + εωt))
−vt cos θt+vt cos(θt+εωt)

ω2
t

+ εvt sin(θt+εωt)
ωt

0 ε

 , |εωt| ≥ δ
ε cos(θt + εωt/2) − ε2

2 vt sin(θt + εωt/2)

ε sin(θt + εωt/2) ε2

2 vt cos(θt + εωt/2)

0 ε

 , |εωt| < δ

.

B.2 Double-integrator Motion Model

Consider a vehicle with position x(t) ∈ R2 and velocity v(t) ∈ R2. If the velocity can be
controlled, we obtain a double-integrator motion model in continuous time:

ẋ = v, v̇ = u(t) + w(t),

where u(t) is the control input and w(t) is a zero-mean white Gaussian process with power
spectral density qI2. Hence, Ew(t) = 0 and the autocorrelation of the noise process is
E[w(t)w(τ)T ] = qI2δ(t− τ), where δ is the Dirac delta function, and q is a scalar diffusion
strength measured in (m/sec2)2 1

Hz . In state-space form, the equations look like:(
ẋ(t)
v̇(t)

)
=

[
0 I2

0 0

](
x(t)
v(t)

)
+

[
0
I2

]
u(t) +

[
0
I2

]
w(t)

Denote the first and the second matrices above by A ∈ R4×4 and B ∈ R4×2, respectively.
The system can be discretized with sampling period ε as follows:(

xk+1

vk+1

)
= eεA

(
xk
vk

)
+

[∫ ε

0
e(ε−s)ABds

]
uk +N

(
0, q

∫ ε

0
e(ε−s)ABBT e(ε−s)AT ds

)
=

[
I2 εI2

0 I2

](
xk
vk

)
+

[
εI2 ε2/2I2

0 εI2

]
uk +N

(
0, q

[
ε3/3I2 ε2/2I2

ε2/2I2 εI2

])
where it is assumed that between samples the input is kept constant so that uk = u(εt),
xk = x(εt), and vk = v(εt). We can of course take this a step further and define a constant-
acceleration motion model:

ẋ = v, v̇ = a(t), ȧ = u(t) + w(t),
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and discretize it as before.
When modeling the motion of a target in tracking applications, the control input u(t)

is unknown and the second term in the discrete-time motion model should be omitted.

B.3 Range Sensor Observation Model

This section models the operation of a sensor with position x ∈ Rd which measures the
distance to a landmark with position y ∈ Rd. The model has the form:

z = h(x, y) + v := ‖x− y‖2 + v,

where z ∈ R≥0 is the measurement and v is the measurement noise. In some applications
(e.g., the linear Gaussian framework in Ch. 2), it is necessary to use a linearized model.
The Jacobians are:

∇xh(x, y) =
1

h(x, y)
(x− y)T ∇yh(x, y) =

1

h(x, y)
(y − x)T .

B.4 Bearing Sensor Observation Model

This section models the operation of a sensor with pose x := [x1 x2 θ]
T ∈ SE(2) which

measures the bearing (in the body frame) to a landmark with position y := [y1 y2]T ∈ R2.
The model has the form:

z = h(x, y) + v := arctan

(
y2 − x2

y1 − x1

)
− θ + v,

where z ∈ SO(2) is the measurement and v is the measurement noise. In some applications
(e.g., the linear Gaussian framework in Ch. 2), it is necessary to use a linearized model.
The Jacobians are:

∇xh(x, y) =
[
y2−x2

‖y−x‖22
x1−y1

‖y−x‖22
−1
]

∇yh(x, y) =
1

‖x− y‖22

[
(x2 − y2) (y1 − x1).

]
B.5 Stereo Sensor Observation Model

This section models the operation of a planar stereo sensor with pose x := [x1 x2 θ]
T ∈

SE(2), baseline b, and focal length f . Consider a landmark with position y := [y1 y2]T ∈ R2

in the global frame. The sensor measures the landmark position in the left and right image
lines (instead of planes since the sensor is planar) according to the model:

z = h(x, y) + v =
f

2pz(x, y)

[
2px(x, y) + b
2px(x, y)− b

]
+ v

pz(x, y) := (cos θ)(y2 − x2)− (sin θ)(y1 − x1)

px(x, y) := (cos θ)(y1 − x1)− (sin θ)(y2 − x2)
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where z ∈ R2 is the measurement of the left and right point images, respectively, and v is
the measurement noise. In some applications (e.g., the linear Gaussian framework in Ch.
2), it is necessary to use a linearized model. The Jacobians are:

∇xh(x, y) =

[
∂h1(x,y)
∂x1

∂h1(x,y)
∂x2

∂h1(x,y)
∂θ

∂h2(x,y)
∂x1

∂h2(x,y)
∂x2

∂h1(x,y)
∂θ

]
∂h1(x, y)

∂x1
= −f

(
cos θ

pz(x, y)
+

sin θ(2px(x, y) + b)

2p2
z(x, y)

)
∂h1(x, y)

∂x2
= f

(
sin θ

pz(x, y)
+

cos θ(2px(x, y) + b)

2p2
z(x, y)

)
∂h1(x, y)

∂θ
= f

(
(sin θ)(x1 − y1) + (cos θ)(x2 − y2)

pz(x, y)

− ((cos θ)(x1 − y1) + (sin θ)(x2 − y2)) (2px(x, y) + b)

2p2
z(x, y)

)
∂h2(x, y)

∂x1
= −f

(
cos θ

pz(x, y)
+

sin θ(2px(x, y)− b)
2p2
z(x, y)

)
∂h2(x, y)

∂x2
= f

(
sin θ

pz(x, y)
+

cos θ(2px(x, y)− b)
2p2
z(x, y)

)
∂h2(x, y)

∂θ
= f

(
(sin θ)(x1 − y1) + (cos θ)(x2 − y2)

pz(x, y)

− ((cos θ)(x1 − y1) + (sin θ)(x2 − y2)) (2px(x, y)− b)
2p2
z(x, y)

)

∇yh(x, y) = f


(

cos θ
pz(x,y) + sin θ(2px(x,y)+b)

2p2
z(x,y)

) (
− sin θ
pz(x,y) −

cos θ(2px(x,y)+b)
2p2
z(x,y)

)
(

cos θ
pz(x,y) + sin θ(2px(x,y)−b)

2p2
z(x,y)

) (
− sin θ
pz(x,y) −

cos θ(2px(x,y)−b)
2p2
z(x,y)

)


B.6 Relative-pose Sensor Observation Model

2-D case

Let x := (p, θ) be an element of SE(2) with position p ∈ R2 and orientation θ ∈ SO(2). The
model of a sensor which measures the relative transformation between two poses xt, xt+1 ∈
SE(2) is:

h(xt+1, xt) := xt+1 	 xt :=

[
RT (θt)(pt+1 − pt)

θt+1 − θt

]
,

where R(θt) is the rotation matrix associated with θt. The Jacobians are:

∂h

∂xt
=

[
−RT (θt)

[
dRT (θ)
dθ |θ=θt

]
(pt+1 − pt)

01×2 −1

]
∂h

∂xt+1
=

[
RT (θt) 02×1

01×2 1

]
.

3-D case

Let x := (p, q) be an element of SE(3) with position p ∈ R3 and quaternion-represented ori-
entation q with ‖q‖ = 1. The model of a sensor which measures the relative transformation
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between two poses xt, xt+1 ∈ SE(3) is:

h(xt+1, xt) := xt+1 	 xt :=

[
RT (qt)(pt+1 − pt)

q−1
t qt+1

]
where RT (qt) is the rotation matrix associated with qt. The Jacobians with respect to
position are:

∂h

∂pt
=

[
−RT (qt)

03×3

]
∂h

∂pt+1
=

[
RT (qt)
03×3

]
.

To obtain the jacobians with respect to orientation, note that quaternion multiplication
can also be written in terms of matrix multiplications (Trawny and Roumeliotis 2005) as
follows qt+1qt = L(qt+1)qt = R(qt)qt+1, where:

L(q) :=

[
sI − v̂ v
−vT s

]
R(q) :=

[
sI + v̂ v
−vT s

]
,

and v is the vector part, s :=
√

1− ‖v‖2 is the scalar part of the unit quaternion q := [v s],
and v̂ is the skew-symmetric matrix associated with v. Letting qt+1 := [vt+1

√
1− ‖vt+1‖2],

we have:

∂h

∂vt+1
=

 03×3

L(q−1
t ) ∂

∂vt+1

(
vt+1

st+1

) =

 03×3

L(q−1
t )

(
I3×3

−vTt+1/st+1

)
Similarly,

∂q−1
t qt+1

∂vt
= R(qt+1)

∂

∂vt

(
−vt
st

)
= R(qt+1)

(
−I3×3

−vTt /st

)
Finally, for the translation component of h, note that RT (qt) = (2s2

t −1)I3×3 +2stv̂t+2vtv
T
t

(Trawny and Roumeliotis 2005) so that:

∂RT (qt)(pt+1 − pt)
∂vt

= −4vTt (pt+1 − pt)− 2
∂

∂vt

[
st ̂(pt+1 − pt)vt

]
+ 4vTt (pt+1 − pt)

=
2

st

(
vTt

̂(pt+1 − pt)vt − s2
t

̂(pt+1 − pt)
)
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Appendix C

Bayesian Filtering

Recursive Bayesian estimation is a probabilistic approach for estimating the probability
density (or mass) function (pdf) of a random variable over time, using incoming measure-
ments, an observation model, and a motion model. To be more precise, given motion and
observation models:

yt+1 = a(yt, noise), zt = h(yt,noise),

the evolution of the variable of interest, yt, is modeled via a hidden Markov model (Koller
and Friedman 2009). The transition probabilities pa(yt+1 | yt) are derived from the motion
model, while the emission probabilities ph(zt | yt) - from the observation model. Using the
Markov assumptions (that current state given the immediately previous one is conditionally
independent of the earlier states and that the current measurement is dependent only upon
the current state), the joint pdf of all states and measurements decomposes as:

p(y0:t, z0:t) = p0|0(y0)
t∏

k=0

ph(zk | yk)
t∏

k=1

pa(yk | yk−1),

where p0|0 is a prior pdf. For any t, denote the pdf of yt conditioned on the past measure-
ments z0:t by pt|t and that of yt+1 | z0:t by pt+1|t. The goal of the Bayes filter is to track the
evolution of pt|t, which reduces to iterating the following two steps:

Predict: pt+1|t(y) =

∫
pa(y | s)pt|t(s)ds (C.1)

Update: pt+1|t+1(y) =
ph(zt+1 | y)pt+1|t(y)∫
ph(zt+1 | s)pt+1|t(s)ds

(C.2)

While the Bayesian recursion is theoretically appealing, its implementation requires a
tractable representation of the pdfs pt|t, pt+1|t and a tractable way to carry out the in-
tegrations above, which inevitably leads to approximations (Huber 2015). The sections
below review two of the most widely-used approximations to the Bayes filter.

C.1 Kalman Filter

The Kalman filter uses a parametric distribution, namely Gaussian, to represent the pdf
pt|t tractably, which also conveniently leads to a closed-form expression for the integrals in
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the prediction (C.1) and update (C.2) steps of the Bayes filter above. The assumption of
Gaussian pdfs solves both difficulties associated with the Bayes filter. The price paid in
exchange is that the true pdfs are actually Gaussian only for linear motion and observation
models perturbed by Gaussian noise. Hence, whenever the models deviate from the linear
Gaussian assumptions, the Kalman filter is merely an approximation to the Bayes filter.

First, we review the linear Gaussian case in which the Kalman filter and the Bayes filter
are equivalent. Suppose that the motion model of yt is linear

yt+1 = Atyt + wt

and corrupted by additive Gaussian process noise wt ∼ N (0,Wt). Similarly, assume that
the observation model is:

zy = Htyt + vt, vt ∼ N (0, Vt).

Finally, let the prior pdf p0|0 be a Gaussian pdf, denoted φ( · ;µ0|0,Σ0|0), with mean µ0|0
and covariance Σ0|0. Using these assumptions, the prediction (C.1) and update steps (C.2)
of the Bayes filter can be evaluated in closed-form and interestingly pt|t remains Gaussian:

Predict: pt+1|t(y) =

∫
φ(y;Ats,Wt)φ(s;µt|t,Σt|t)ds

= φ(y;Atµt|t, AtΣt|tA
T
t +Wt)

=: φ(y;µt+1|t,Σt+1|t)

Update: pt+1|t+1(y) =
φ(zt+1;Ht+1y, Vt+1)φ(y;µt+1|t,Σt+1|t)∫
φ(zt+1;Ht+1s, Vt+1)φ(s;µt+1|t,Σt+1|t)ds

= φ
(
y;µt+1|t +Kt+1|t(zt+1 −Ht+1µt+1|t), (I −Kt+1|tHt+1)Σt+1|t

)
where Kt+1|t := Σt+1|tH

T
t+1(Ht+1Σt+1|tH

T
t+1 + Vt+1)−1 is the Kalman gain.

C.2 Extended Kalman Filter

As mentioned earlier, the Kalman filter is an exact implementation of the Bayes filter only
for linear Gaussian models. The extended Kalman filter (EKF) exploits linearization to
apply the Kalman filter idea to differentiable nonlinear models perturbed by zero-mean
continuous (non-Gaussian) noise with an existing second moment. The EKF is only an
approximation to the Bayes filter. To be more precise, suppose that the models are now
nonlinear:

yt+1 = at(yt, wt), Ewt = 0, E[wtw
T
s ] = Wtδ(t− s)

zt = ht(yt, vt), Evt = 0, E[vtv
T
s ] = Vtδ(t− s)

and define the Jacobians:

At(ŷ) :=
∂at(y, 0)

∂y
|y=ŷ Bt(ŷ) :=

∂at(y, w)

∂w
|y=ŷ, w=0

Ht(ŷ) :=
∂ht(y, 0)

∂y
|y=ŷ Gt(ŷ) :=

∂ht(y, v)

∂v
|y=ŷ, v=0
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The EKF forces the pdf pt|t to be Gaussian by using moment matching. In other words, it
replaces the true pt|t with a Gaussian pdf with mean and covariance corresponding to those
of pt|t. The EKF equations are given below:

Predict: pt+1|t(y) ≈
∫
φ(y; at(s, 0), Bt(s)WtB

T
t (s))φ(s;µt|t,Σt|t)ds

≈ φ
(
y; at(µt|t, 0), At(µt|t)Σt|tA

T
t (µt|t) +Bt(µt|t)WtB

T
t (µt|t)

)
=: φ(y;µt+1|t,Σt+1|t)

Update: pt+1|t+1(y)≈
φ(zt+1;ht+1(y, 0), Gt+1(y)Vt+1G

T
t+1(y))φ(y;µt+1|t,Σt+1|t)∫

φ(zt+1;ht+1(s, 0), Gt+1(s)Vt+1GTt+1(s))φ(s;µt+1|t,Σt+1|t)ds

≈ φ
(
y;µt+1|t +Kt+1|t(zt+1 − ht+1(µt+1|t, 0)), (I −Kt+1|tHt+1(µt+1|t))Σt+1|t

)
where the Kalman gain Kt+1|t is defined as:

Σt+1|tH
T
t+1(µt+1|t)(Ht+1(µt+1|t)Σt+1|tH

T
t+1(µt+1|t) +Gt+1(µt+1|t)Vt+1G

T
t+1(µt+1|t))

−1.

Instead of direct linearization, another way of applying the Kalman filter to nonlinear
models is to represent the distribution of yt via weighted samples, called sigma points, and
propagate them through the nonlinear equations. Filters, such as the unscented Kalman
filter, based on this idea are called linear regression Kalman filters (Huber 2015). They do
not require differentiability of the models and often result in more accurate approximations.

C.3 Particle Filter

Sometimes the nonlinearities in the motion and observation models are large enough to
introduce multiple modes in the pdf pt|t. In this case, approximating pt|t via a Gaussian
distribution would not be accurate. Another approximation to the Bayes filter which can
handle multimodal distributions is the particle filter. The particle filter represents the pdf

pt|t via a set of weighted samples (particles) {yit|t, w
i
t|t}

Nt|t
i=1 as follows:

pt|t(y) =

Nt|t∑
i=1

wit|tδ(y − y
i
t|t)

where δ is the Dirac delta function and
∑Nt|t

i=1 w
i
t|t = 1. The mean and covariance of this

distribution are

µt|t :=

Nt|t∑
i=1

wit|ty
i
t|t and Σt|t :=

Nt|t∑
i=1

wit|ty
i
t|t(y

i
t|t)

T − µt|tµTt|t,

respectively. As in the Kalman filter case, this has the additional benefit of simplifying the
integrations in the prediction (C.1) and update (C.2) steps. The prediction step is:

Predict: pt+1|t(y) =

∫
pa(y | s)

Nt|t∑
i=1

wit|tδ(s− y
i
t|t)ds =

Nt|t∑
i=1

wit|tpa(y | y
i
t|t)
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The pdf pt+1|t turns out to be a mixture model with Nt|t components. To keep a finite-
dimensional representation, the pdf can be approximated with a weighted particle set again
as follows:

1. Draw a sample j ∈ {1, . . . , Nt|t} from the probability mass function [w1
t|t · · · w

Nt|t
t|t ]

2. Draw a sample yt+1|t from the motion model pa(· | yjt|t)

3. RepeatNt+1|t to form the weighted particle set {yit+1|t, w
i
t+1|t} with wit+1|t := pt+1|t(y

i
t+1|t)

and i = 1, . . . , Nt+1|t, where Nt+1|t is a free parameter. Commonly, Nt+1|t = Nt|t and
instead of sampling in step 1, each particle index is chosen once.

After the above procedure, we have the following approximation:

pt+1|t(y) ≈
Nt+1|t∑
i=1

wit+1|tδ(y − y
i
t+1|t)

and can proceed with the update step:

Update: pt+1|t+1(y) =
ph(zt+1 | y)

∑Nt+1|t
i=1 wit+1|tδ(y − y

i
t+1|t)∫

ph(zt+1 | s)
∑Nt+1|t

j=1 wjt+1|tδ(s− y
j
t+1|t)ds

=

Nt+1|t∑
i=1

 ph(zt+1 | yit+1|t)w
i
t+1|t∑Nt+1|t

j=1 ph(zt+1 | yjt+1|t)w
j
t+1|t

 δ(y − yit+1|t)

which keeps the posterior finite-dimensional. There are, of course, different ways to ap-
proximate pt+1|t and pt+1|t+1, which gives rise to different particle filter variants. The
approximation procedure above uses the motion model pa(· | yit|t) as a proposal distribu-
tion to draw particles and approximate the pdf pt+1|t. This variant is known as a bootstrap
filter (Gordon et al. 1993, Thrun et al. 2005).

Regardless of the employed proposal distribution, every particle filter uses resampling
to avoid particle depletion - a situation in which most of the particle weights are close
to zero. A resampling procedure is applied at time t if the effective number of particles

Neff := 1/
∑Nt|t

i=1

(
wit|t

)2
is less than a given threshold. Then, Nt|t particles are drawn with

replacement from the particle set {wit|t, y
i
t|t} with probability proportional to the weights.

The weights of the new particles are set to 1/Nt|t. Resampling methods differ in the way the
new particles are drawn from the set {wit|t, y

i
t|t}. Stratified resampling is optimal in terms

of variance (Thrun et al. 2005). Instead of selecting samples independently from each other
in the resampling process, the selection involves a sequential stochastic process summarized
in the algorithm below.

Algorithm 13 Low Variance Sampler({yi, wi}Ni=1)

r = rand(0; 1/N), c = w1, k = 1
for i = 1 : N do

U = r + (i− 1)/N
while U > c do

k = k + 1, c = c+ wk

Add yk to the new set
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Appendix D

Proofs and Supplementary
Material

D.1 Proof of Theorem 2.1

At any time t, the distribution of the target state yt conditioned on any fixed measurement
sequence ẑ1:t and control sequence û1:t can be obtained via the Bayes filter (Appendix C).
Due to the assumptions in (2.1) that y0 is Gaussian, the target motion model is linear in
yt and Gaussian, and the sensor observation model is linear in yt and Gaussian, the Bayes
filter can be implemented exactly via the Kalman filter. In particular, the distribution of
yt | ẑ1:t, û1:t remains Gaussian for any t ≥ 0 and its covariance Σt is independent of ẑ1:t and
can be obtained by the Riccati map, given in (2.4) and (2.5). The differential entropy of an
n-dimensional Gaussian random vector X ∼ N (µ,Σ) is h(X) = 1

2 (n log(2πe) + log det(Σ)).
Since the target distribution is Gaussian, the differential entropy term in the cost function
in (2.1) satisfies for any t:

h(yt | z1:t) = Eẑ1:th(yt | z1:t= ẑ1:t)

=
1

2
Eẑ1:t

(
log(2πe)dy+log det Σt(û1:t)

)
=

1

2

(
log(2πe)dy+log det Σt(û1:t)

)
,

(D.1)

where dy is the dimension of yt and we have emphasized that Σt depends on the control
sequence û1:t but not on the measurement realization ẑ1:t. Let µ∗={µ∗0, .., µ∗T−1} be optimal
control policy in (2.1) with associated cost J∗. Fix a realization ẑ1:T of the measurements
and let σ be the open-loop policy induced by µ∗ given ẑ1:T with associated cost Jσ. From
(D.1), J∗ is independent of ẑ1:T , hence J∗ = Jσ for any ẑ1:T and σ is optimal.

D.2 Proof of Theorem 2.2

Definition D.1 (t-step Riccati map). Given a control sequence σ ∈ UT , the corresponding
sensor state trajectory π := x0, . . . , xT ∈ X T+1, and a covariance matrix Σ � 0, define the
t-step Riccati map recursively as follows:

φ0
σ,π(Σ) := Σ φtσ,π(Σ) := ρe

(
ρp
(
φt−1
σ,π (Σ), πt−1, σt−1

)
, πt
)
, t ∈ [1, T ]
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where ρp and ρe are the Riccati prediction (2.4) and update (2.5) steps, respectively.

Lemma D.1 (Vitus et al. (2012)). For any t ∈ [0, T ], the t-step Riccati map is operator
monotone and operator concave.

Proof of Thm 2.2. Let (x,Σ, J) be the dominated node so that, from Definition 2.1, there
exist nonnegative constants {αi}Ki=1 such that:

Σ �
K∑
i=1

αiΣ
i and J ≥

K∑
i=1

αiJ
i.

Let σ ∈ UT−t be any admissible control sequence applied at time t to the sensor state
x = xi, i = 1, . . . ,K with corresponding state trace π ∈ X T+1−t. From monotonicity and
concavity of the Riccati map (Lemma D.1) for any τ ∈ [t, T ]:

φτ−tσ,π (Σ) � φτ−tσ,π

(
K∑
i=1

αiΣ
i

)
�

K∑
i=1

αiφ
τ−t
σ,π

(
Σi
)
.

Then, from monotonicity and concavity of ct:

J +
T∑

τ=t+1

cτ
(
φτ−tσ,π (Σ), πτ−t

)
≥

(
K∑
i=1

αiJ
i

)
+

T∑
τ=t+1

cτ

(
K∑
i=1

αiφ
τ−t
σ,π

(
Σi
)
, πτ−t

)

≥
K∑
i=1

αi

(
J i +

T∑
τ=t+1

cτ
(
φτ−tσ,π

(
Σi
)
, πτ−t

))

≥ J i∗ +
T∑

τ=t+1

cτ

(
φτ−tσ,π

(
Σi∗
)
, πτ−t

)
.

The last inequality holds because a convex combination of scalars is lower bounded by the
smallest one, i∗. The inequalities above show that, for any control sequence, the total cost
obtained from the dominated node (x,Σ, J) will be bounded below by the total cost obtained
one of the dominating nodes. Thus, (x,Σ, J) cannot lead to the optimal solution.

D.3 Proof of Theorem 2.3

Notice that Thm. 2.3 is a special case of Thm. 2.4 because if δ = 0, then ζt = 1, ∀t ∈ [1, T ]
and since η∗ < 1, ∆T reduces to:

∆T =
dy
λ∗

(
1 +

β∗
λ∗

T−1∑
τ=1

ηT−τ∗

)
=
dy
λ∗

(
1 +

β∗
λ∗

η∗
1− η∗

(1− ηT−1
∗ )

)
=
dy
λ∗

(
1 +

β5
∗
λ5
∗

(1− ηT−1
∗ )

)
≤ dy
λ∗

(
1 +

β5
∗
λ5
∗

)
.
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D.4 Proof of Theorem 2.4

Lemma D.2 (Vitus et al. (2012)). For any control sequence σ ∈ UT , corresponding sensor
state trajectory π := x0, . . . , xT ∈ X T+1, symmetric matrix Q � 0, and ε ≥ 0, the directional
derivative of the t-step Riccati map with t ∈ [0, T ] is:

gtσ,π(Σ;Q) :=
d

dε
φtσ,π(Σ + εQ)

∣∣∣∣
ε=0

=

 0∏
j=t−1

Uj+1

(
φjσ,π(Σ)

)
Aj

Q[t−1∏
k=0

ATkU
T
k+1

(
φkσ,π(Σ)

)]

where Ut+1(Σ) := Rt+1(AtΣA
t
t +Wt) and Rt(Σ) := I − ΣHT

t

(
HtΣH

T
t + Vt

)−1
Ht.

Lemma D.3. For any t ∈ [0, T ], σ ∈ UT , corresponding state trajectory π ∈ X T+1,
symmetric matrices Σ, Q1, Q2, Q � 0, and a, b ∈ R

gtσ,π(Σ; aQ1 + bQ2) = agtσ,π(Σ;Q1) + bgtσ,π(Σ;Q2)

because a directional derivative is linear in the perturbation. In addition, by operator con-
cavity of the t-step Riccati map φtσ,π(Σ + εQ) � φtσ,π(Σ) + εgtσ,π(Σ;Q).

Lemma D.4. For all t ∈ [1, T ], σ ∈ UT−1 with corresponding state trajectory π ∈ X T , and
symmetric Σ, Q � 0, if there exist constants λ > 0 and β <∞ such that (W−1

t +Mt+1)−1 �
λI, Σt := φtσ,π(Σ) � βI, and AtΣtA

T
t +Wt � βI, then:

tr
(
gtπ(Σ;Q)

)
≤ βηt tr(Σ−1Q), η :=

β4

(β4 + λ4)
< 1.

Proof of Lemma D.4. Note that Wt � (W−1
t +Mt+1)−1 � λI and

φ1
σ,π(Σ) � φ1

σ,π(0) = (W−1
0 +M1)−1 � λI

φ2
σ,π(Σ) � ((λA1A

T
1 +W1)−1 +M2)−1 � (W−1

1 +M2)−1 � λI
Σt := φtσ,π(Σ) � λI for t ∈ [1, T ].

We follow the proof of (Vitus et al. 2012, Thm. 5) but our Riccati map is defined in the
opposite order, i.e., prediction step first and then update step. Moore and Anderson (1980)
show that the Riccati recursion can be written as:

Σt+1 = Ut+1AtΣtA
T
t U

T
t+1 + Ut+1WtU

T
t+1 + St+1Vt+1S

T
t+1

where Ut+1 := Rt+1(AtΣtA
T
t + Wt), Rt(Σ) := I −Kt(Σ)Ht, the Kalman gain is Kt(Σ) :=

ΣHT
t

(
HtΣH

T
t + Vt

)−1
, and St+1 := Kt+1(AtΣtA

T
t +Wt). Also, note that Σt+1 = Ut+1(AtΣtA

T
t +

Wt). From the assumptions and since the matrices Wt, Vt, and Mt := HT
t V
−1
t Ht are sym-

metric positive semidefinite:

βI � Σt+1 � Ut+1WtU
T
t+1

= Σt+1(AtΣtA
T
t +Wt)

−1Wt(AtΣtA
T
t +Wt)

−1Σt+1 �
λ3

β2
I
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and 1
β I � Σ−1

t . Let α := λ3/β4 and note that αI � αβΣ−1
t and thus Σ−1

t −αI � (1−αβ)Σ−1
t .

Since from the inequalities above, αβ = λ3/β3 ≤ 1, it follows that for t = 0, . . . , T − 1:

Ut+1At(Σ
−1
t − αI)−1ATt U

T
t+1 � (1− αβ)−1Ut+1AtΣtA

T
t U

T
t+1

= Ut+1AtΣtA
T
t U

T
t+1 +

(
1

1− αβ
− 1

)
Ut+1AtΣtA

T
t U

T
t+1

� Ut+1AtΣtA
T
t U

T
t+1 +

αβ

1− αβ

(
β − λ3

β2

)
I

= Ut+1AtΣtA
T
t U

T
t+1 +

λ3

β2
I

where the second to last step follows from:

βI � Σt+1 = Ut+1AtΣtA
T
t U

T
t+1 + Ut+1WtU

T
t+1 + St+1Vt+1S

T
t+1

� Ut+1AtΣtA
T
t U

T
t+1 + Ut+1WtU

T
t+1 � Ut+1AtΣtA

T
t U

T
t+1 +

λ3

β2
I.

Note also that Σt+1 − Ut+1AtΣtA
T
t U

T
t+1 � Ut+1WtU

T
t+1 � λ3

β2 I and therefore:

Σt+1 − Ut+1At(Σ
−1
t − αI)−1ATt U

T
t+1 � Σt+1 − Ut+1AtΣ

−1
t ATt U

T
t+1 −

λ3

β2
I � 0.

Applying a Schur complement to the last result shows that:

Σ−1
t − UTt+1A

T
t Σ−1

t+1AtUt+1 �
λ3

β4
I.

From here we follow the steps of (Vitus et al. 2012, Thm. 5), where in our case α := λ3/β4,
Ât := Ut+1At, and λW := λ. Since Q � 0 is symmetric, we can decompose it as Q =∑n

l=1 λ
l
Qqlq

T
l and let ξ(l)(0) =

√
λlQql.

Lemma D.5. For t ∈ [1, T ], ε ≥ 0, δ ≥ 0, the reduced tree T ε,δt contains a set of nodes
{(xit,Σi

t) | i = 1, . . . ,K} such that:

dX (x∗t , x
i
t) ≤

t−1∑
τ=0

Lτfδ, ∀i, (D.2)

Σ∗t + ε

(
ΓtI +

t−1∑
τ=1

Γτg
τ :t
∗ (Σ∗τ ; I)

)
� Γt

K∑
i=1

αiΣ
i
t +

t−1∑
τ=1

Γτ (1− γτ )φτ :t
∗ (0), (D.3)

where φτ :t
∗ is the (t − τ)-step Riccati map, associated with the optimal control sequence

σ∗τ :(t−1) and the optimal state trajectory x∗τ , . . . , x
∗
t , g

τ :t
∗ is its directional derivative, defined

in Lemma D.2, and

0 < γt := (1 +
∑t

s=1 L
s
fLmδ)

−1 ≤ 1, and Γt :=
∏t−1
s=1 γs.
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Proof of Lemma D.5. We proceed by induction.
Base Case : At time 1, (D.2), (D.3) follow from ε-algebraic redundancy (Def. 2.2) and
trajectory δ-crossing (Def. 2.3).
Hypothesis: Suppose that (D.2) and (D.3) hold for some set {(xjt ,Σ

j
t ) | j = 1, . . . ,K} of

nodes in T ε,δt .

Induction : At time t + 1, there are sets {(xjit+1,Σ
ji
t+1)}Kji=1 in T ε,δt+1 corresponding to each

node j from time t and satisfying

dX (xjt+1, x
ji
t+1) ≤ δ and Σj

t+1+εI �
∑Kj

i=1 αjiΣ
ji
t+1. (D.4)

From Lemma D.2 for every τ = 1, . . . , t:

g
t:(t+1)
∗

(
Σ∗t ; g

τ :t
∗ (Σ∗τ ; I)

)
= g

τ :(t+1)
∗ (Σ∗τ ; I).

From this and Lemma D.3:

Σ∗t+1 + ε
t∑

τ=1

Γτg
τ :(t+1)
∗ (Σ∗τ ; I) = φ

t:(t+1)
∗ (Σ∗t ) + εg

t:(t+1)
∗

(
Σ∗t ;

t∑
τ=1

Γτg
τ :t
∗ (Σ∗τ ; I)

)

� φt:(t+1)
∗

(
Σ∗t + ε

t−1∑
τ=1

Γτg
τ :t
∗ (Σ∗τ ; I) + εΓtI

)

Note that
∑t−1

τ=1 Γτ (1−γτ )+Γt = 1. Thus, the terms (1−γ1), γ1(1−γ2), . . . ,Γt−1(1−γt−1),Γt
are the coefficients of a convex combination. Using the hypothesis and monotonicity and
concavity of the Riccati map (Lemma D.1):

φ
t:(t+1)
∗

(
Σ∗t + ε

t−1∑
τ=1

Γτg
τ :t
∗ (Σ∗τ ; I) + εΓtI

)

� φt:(t+1)
∗

Γt

K∑
j=1

αjΣ
j
t +

t−1∑
τ=1

Γτ (1− γτ )φτ :t
∗ (0)


� Γt

K∑
j=1

αjφ
t:(t+1)
∗ (Σj

t ) +

t−1∑
τ=1

Γτ (1− γτ )φ
τ :(t+1)
∗ (0).

By hypothesis, dX (x∗t , x
j
t ) ≤

∑t−1
τ=0 L

τ
fδ, and from the continuity assumption on the Riccati

map (Assumption 2.2):

φ
t:(t+1)
∗ (Σj

t ) � γtΣ
j
t+1 + (1− γt)φt:(t+1)

∗ (0).

The nodes {(xjt+1,Σ
j
t+1)} might not be in T ε,δt+1 but from (D.4):

φ
t:(t+1)
∗ (Σj

t ) + γtεI � γt
(

Σj
t+1 + εI

)
+ (1− γt)φt:(t+1)

∗ (0)

� γt
Kj∑
i=1

αjiΣ
ji
t+1 + (1− γt)φt:(t+1)

∗ (0).
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Combining the previous results, we have:

Σ∗t+1 + ε

t∑
τ=1

Γτg
τ :(t+1)
∗ (Σ∗τ ; I) + εΓt+1I

� Γt

K∑
j=1

αj

(
φ
t:(t+1)
∗ (Σj

t ) + γtεI
)

+
t−1∑
τ=1

Γτ (1− γτ )φ
τ :(t+1)
∗ (0)

� Γt

K∑
j=1

αj

γt Kj∑
i=1

αjiΣ
ji
t+1 + (1− γt)φt:(t+1)

∗ (0)

+

t−1∑
τ=1

Γτ (1− γτ )φ
τ :(t+1)
∗ (0)

= Γt+1

K∑
j=1

Kj∑
i=1

αjαjiΣ
ji
t+1 +

t∑
τ=1

Γτ (1− γτ )φ
τ :(t+1)
∗ (0).

Thus, the set
⋃K
j=1

⋃Kj
i=1{(x

ji
t+1,Σ

ji
t+1)} satisfies (D.3) at time t + 1. It also satisfies (D.2)

because of (D.4) and the motion model continuity (Assumption 2.1).

Proof of Theorem 2.4. We use the notation from Lemma D.5 so that ΓT = ζ−1
T . Further,

let J(·) := log det(·) and G := ΓT I +
∑T−1

τ=1 Γτg
τ :T
∗ (Σ∗τ ; I). By monotonicity of J(·) and the

result (D.3) in Lemma D.5:

J(Σ∗T + εG) ≥ J
(

ΓT

K∑
i=1

αiΣ
i
T +

T−1∑
τ=1

Γτ (1− γτ )φτ :T
∗ (0)

)

for some set of nodes {(xiT ,Σi
T ) | i = 1, . . . ,K} in the reduced tree T ε,δT . Note that∑t−1

τ=1 Γτ (1 − γτ ) + Γt = 1 and, as shown in the proof of Lemma D.4, φτ :T
∗ (0) � λ∗I.

Then, by concavity and monotonicity of J(·):

J(Σ∗T + εG) ≥ ΓT

K∑
i=1

αiJ(Σi
T ) +

T−1∑
τ=1

Γτ (1− γτ )J
(
φτ :T
∗ (0)

)
(D.5)

≥ ΓTJ(Σi∗
T ) +

T−1∑
τ=1

Γτ (1− γτ )J (λ∗I) ≥ ΓTJ
ε,δ
T + (1− ΓT )J(λ∗I).

The second inequality holds because a convex combination of scalars is lower bounded by
the smallest one i∗. The last inequality holds because πε,δ is the optimal path in the reduced
tree. Next, by concavity of log det(·):

J(Σ∗T + εG) ≤ J(Σ∗T ) + ε
d

dε
J

(
Σ∗T + εG

)∣∣∣∣
ε=0

= J∗T + ε tr

(
(Σ∗T )−1G

)
≤ J∗T + ε

1

λ∗
tr(G). (D.6)
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From Lemma D.4 and since tr((Σ∗τ )−1) ≤ dy/λ∗:

tr(G) = ΓT tr(Idy) +

T−1∑
τ=1

Γτ tr

(
gτ :T
∗ (Σ∗τ ; Idy)

)

≤ dyΓT +

T−1∑
τ=1

Γτβ∗η
T−τ
∗ tr((Σ∗τ )−1) ≤ λ∗ΓT∆T (D.7)

Finally, by combining (D.5), (D.6), and (D.7) we get:

ΓTJ
ε,δ
T + (1− ΓT )J(λ∗I) ≤ J∗T + εΓT∆T

0 ≤ ΓT (J ε,δT − J
∗
T ) ≤ (1− ΓT )(J∗T − J(λ∗I)) + εΓT∆T .

Multiplying by ζT = Γ−1
T gives the result in (2.8).

D.5 Proof of Proposition 2.5

Consider the left-hand side:

L :=


(W d

t )−1/2 0 0
Dt(A

d
t )
−1 Dt(A

d
t )
−1 Ft

0 0 Gt

0 V
−1/2
t+1 Hd

t+1 V
−1/2
t+1 Hs

t+1


where Ht+1 has also been decomposed into its static and dynamic parts. Let Et :=
(Adt )

−TDT
t Dt(A

d
t )
−1 and Bt := (W d

t )−1 + Et. Then, LTL equals: Bt Et (Adt )
−TDT

t Ft
Et Et + (Hd

t+1)TV −1
t+1H

d
t+1 (Adt )

−TDT
t Ft + (Hd

t+1)TV −1
t+1H

s
t+1

F Tt Dt(A
d
t )
−1 F Tt Dt(A

d
t )
−1 + (Hs

t+1)TV −1
t+1H

d
t+1 F Tt Ft +GTt Gt + (Hs

t+1)TV −1
t+1H

s
t+1


Similarly, the right-hand side is:

R := Q


B

1/2
t B

−1/2
t Et B

−1/2
t (Adt )

−TDT
t Ft

0 Dt+1 Ft+1

0 0 Gt+1

0 0 0


RTR =

 Bt Et (Adt )
−TDT

t Ft
Et ETt B

−1
t Et+D

T
t+1Dt+1 ETt B

−1
t (Adt )

−1DT
t Ft +DT

t+1Ft+1

F Tt Dt(A
d
t )
−1 ∗ Pt + F Tt+1Ft+1 +GTt+1Gt+1


where Pt := F Tt Dt(A

d
t )
−1B−1

t (Adt )
−TDT

t Ft and ∗ is such that the matrix is symmetric.
Thus, to show that LTL = RTR it suffices to verify that:

Et + (Hd
t+1)TV −1

t+1H
d
t+1 = ETt B

−1
t Et +DT

t+1Dt+1

(Adt )
−TDT

t Ft + (Hd
t+1)TV −1

t+1H
s
t+1 = ETt B

−1
t (Adt )

−1DT
t Ft +DT

t+1Ft+1

F Tt Ft +GTt Gt + (Hs
t+1)TV −1

t+1H
s
t+1 = Pt + F Tt+1Ft+1 +GTt+1Gt+1

(D.8)
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The any t the covariance matrix satisfies:

Σt =

[
Σd
t Σds

t

(Σds
t )T Σs

t

]
= Ω−1

t = (CTt Ct)
−1, Ct =

[
Dt Ft
0 Gt

]
Σd
t =

(
DT
t Dt −DT

t Ft(F
T
t Ft +GTt Gt)

−1F Tt Dt

)−1

Σds
t = −D−1

t Ft
(
GTt Gt

)−1
Σs =

(
GTt Gt

)−1

DT
t Dt =

(
Σd
t − (Σds

t )T (Σs
t )
−1Σds

t

)−1

(D.9)

From the Kalman filter equations (Appendix C.1):

Ωt+1 =

[
DT
t+1Dt+1 DT

t+1Ft+1

F Tt+1Dt+1 F Tt+1Ft+1 +GTt+1Gt+1

]
=

[
AdtΣ

d
t (A

d
t )
T +W d

t AdtΣ
ds
t

(Σds
t )T (Adt )

T Σs
t

]−1

+

[
(Hd

t+1)TV −1
t+1H

d
t+1 (Hd

t+1)TVt+1H
s
t+1

(Hs
t+1)TVt+1H

d
t+1 (Hs

t+1)TVt+1H
s
t+1

]
Inverting the first matrix above and using the relations in (D.9), we get:

DT
t+1Dt+1 = (AdtD

T
t Dt(A

d
t )
T +W d

t )−1 + (Hd
t+1)TV −1

t+1H
d
t+1

DT
t+1Ft+1 = (AdtD

T
t Dt(A

d
t )
T +W d

t )−1AdtD
−1
t Ft + (Hd

t+1)TVt+1H
s
t+1

F Tt+1Ft+1+GTt+1Gt+1 =
(

Σs
t −ΣdsT

t AdTt (AdtΣ
d
tA

dT
t +W d

t )−1AdtΣ
ds
t

)−1
+HsT

t+1Vt+1H
s
t+1

Applying the matrix inversion lemma to the equations above verifies (D.8).

D.6 Proof of Theorem 2.6

Lemma D.6. Let F ⊆ {1, . . . , n}, yF := {yi,1:T | i ∈ F}, and zF := {zi,1:T | i ∈ F}. The
mutual information g(F) := I(yF ; zF ) between the target states yF and the measurement set
zF viewed as a function of the set of sensors F is submodular. In other words, given sets
A ⊆ B ⊆ {1, . . . , n} and C ⊆ {1, . . . , n} \ B, the following is satisfied: g(A ∪ C) − g(A) ≥
g(B ∪ C)− g(B).

Proof of Lemma D.6. The proof follows the steps of (Williams 2007, Lemma 2.1) but to
handle the varying dimension of yF we use that for A ⊆ B

I(yB; zA) = h(zA)− h(zA | yB) = h(zA)− h(zA | yA) = I(yA; zA),

since when conditioned on yA, the measurements zA from known sensor states xA := {xi,1:T |
i ∈ A} are independent of all other target states.

Proof of Theorem 2.6. Let the measurement sets obtained by µ∗ and µc be z∗1:T and zc1:T ,
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respectively. Then,

I(y1:T ;z∗1:T )
(a)

≤ I(y1:T ; z∗1:T ) +
n∑
i=1

(
I(y1:T ; zc1:i,1:T , z

∗
i+1:n,1:T )

− I(y1:i−1,1:T , yi+1:n,1:T ; zc1:i−1,1:T , z
∗
i+1:n,1:T )

)

= I(y1:T ; zc1:T ) +
n∑
i=1

(
I(y1:T ; zc1:i−1,1:T , z

∗
i:n,1:T )

− I(y1:i−1,1:T , yi+1:n,1:T ; zc1:i−1,1:T , z
∗
i+1:n,1:T )

)
Lemma D.6
≤ I(y1:T ; zc1:T ) +

n∑
i=1

(
I(y1:i,1:T ; zc1:i−1,1:T , z

∗
i,1:T )− I(y1:i−1,1:T ; zc1:i−1,1:T )

)
= I(y1:T ; zc1:T ) + I(y1:T ; zc1:n−1,1:T , z

∗
n,1:T ) (D.10)

+
n−1∑
i=1

(
I(y1:i,1:T ; zc1:i−1,1:T , z

∗
i,1:T )− I(y1:i,1:T ; zc1:i,1:T )

)
where (a) follows from the non-decreasing property of mutual information. By definition of
the coordinate descent policy

−I(y1:i,1:T ; zc1:i−1,1:T , z
∗
i,1:T ) ≥ −I(y1:i,1:T ; zc1:i,1:T ), ∀i

and from (D.10), J∗T = −I(y1:T ; z∗1:T ) ≥ JcT + JcT + 0.

D.7 Proof of Corollary 2.7

Lemma D.7. Given the motion and observation models in (2.1) and a deterministic state
sequence x0:T , the following relationship between mutual information and conditional en-
tropy holds:

h(y1:T )−
T∑
t=1

h(yt | z1:t) ≤ I(y1:T ; z1:T ) ≤
T∑
t=1

h(yt)−
T∑
t=1

h(yt | z1:t)

Proof of Lemma D.7. h(y1:T )−
T∑
t=1

h(yt | z1:t)
(a)

≤ h(y1:T )−
T∑
t=1

h(yt | z1:t, yt−1)

(b)
=== h(y1:T )− h(y1:T | z1:T ) = I(y1:T ; z1:T ) =

t∑
t=1

[h(yt | z1:t−1)− h(yt | z1:t)]

(c)

≤
T∑
t=1

h(yt)−
T∑
t=1

h(yt | z1:t)

where (a), (c) hold because conditioning decreases entropy, and (b) is due to the entropy
chain rule.
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Proof of Corollary 2.7. From Lemma D.7 and (D.10), it follows that

h(y1:T )− J∗T ≤
T∑
t=1

h(yt)− JcT +
T∑
t=1

h(yt)−
T∑
t=1

h(yt | zc1:n−1,1:t, z
∗
n,1:t)

+
n−1∑
i=1

((
T∑
t=1

h(y1:i,t)

)
− h(y1:i,1:T )

)

+

n−1∑
i=1

(
T∑
t=1

h(y1:i,t | zc1:i,1:t)−
T∑
t=1

h(y1:i,t | zc1:i−1,1:t, z
∗
i,1:t)

)

≤ 2
T∑
t=1

h(yt)− 2JcT +

(
n−1∑
i=1

(
T∑
t=1

h(y1:i,t)

)
− h(y1:i,1:T )

)

D.8 Proof of Theorem 2.10

Define the following:

ωt :=
[
ωT1,t . . . ωTn,t

]T
Ωt :=

[
ΩT

1,t . . . ΩT
n,t

]T
Mi := Hi(xi)

TV −1
i (xi)Hi(xi) M :=

[
MT

1 . . . MT
n

]T
ζt :=

[
H1V

−T
1 vT1,t . . . HnV

−T
n vTn,t

]T
.

The update equations of the filter (2.25) in matrix form are:

ωt+1 =
(
K ⊗ Idy

)
ωt +My + ζt,

Ωt+1 =
(
K ⊗ Idy

)
Ωt +M,

(D.11)

where K = [κij ] with κij = 0 if j /∈ Ni ∪ {i} is a stochastic matrix. The solutions of the two
linear dynamical systems are:

ωt =
(
K ⊗ Idy

)t
ω0 +

t−1∑
τ=0

(
K ⊗ Idy

)t−1−τ
(
My + ζτ

)
,

Ωt =
(
K ⊗ Idy

)t
Ω0 +

t−1∑
τ=0

(
K ⊗ Idy

)t−1−τ
M.

Looking at the i-th components again, we have:

ωit
t+ 1

=
1

t+ 1

n∑
j=1

[
Kt
]
ij
ωj0 +

1

t+ 1

t−1∑
τ=0

n∑
j=1

[
Kt−τ−1

]
ij

(Mjy +HT
j V
−1
j vj,τ ),

Ωit

t+ 1
=

1

t+ 1

n∑
j=1

[
Kt
]
ij

Ωj0 +
1

t+ 1

t−1∑
τ=0

n∑
j=1

[
Kt−τ−1

]
ij
Mj .
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Define the following to simplify the notation:

git := 1
t+1

∑n
j=1

[
Kt
]
ij
ωj0, Git := 1

t+1

∑n
j=1

[
Kt
]
ij

Ωj0,

bit := git −Gity, Bit := 1
t+1Ωit, (D.12)

φit := 1
t+1

∑t−1
τ=0

∑n
j=1

[
Kt−τ−1

]
ij
HT
j V
−1
j vj,τ , Cit := 1

t+1

∑t−1
τ=0

∑n
j=1

[
Kt−τ−1

]
ij
Mj .

With the shorthand notation:

ωit
t+ 1

= git + φit + City, Bit =
Ωit

t+ 1
= Git + Cit, (D.13)

where φit is the only random quantity. Its mean is zero because the measurement noise is
zero mean, while its covariance is:

E[φitφ
T
it] =

1

(t+ 1)2
E
[( t−1∑

τ=0

n∑
j=1

[
Kt−τ−1

]
ij
HT
j V
−1
j vj,τ

)( t−1∑
s=0

n∑
η=1

[
Kt−s−1

]
iη
HT
η V
−1
η vη,s

)T]

=
1

(t+ 1)2

n∑
j=1

t−1∑
τ=0

[
Kt−τ−1

]2
ij
HT
j V
−1
j E[vj,τv

T
j,τ ]V −1

j Hj

=
1

(t+ 1)2

n∑
j=1

t−1∑
τ=0

[
Kt−τ−1

]2
ij
Mj �

1

t+ 1
Cit, (D.14)

where the second equality uses the fact that vj,τ and vη,s are independent unless the indices
coincide, i.e., E[vj,τv

T
η,s] = δτsδjηVj . The Löwner ordering inequality in the last step uses

that 0 ≤
[
Kt−τ−1

]
ij
≤ 1 and Mj � 0.

Since G is connected, K corresponds to the transition matrix of an aperiodic irreducible
Markov chain with a unique stationary distribution π so that Kt → π1T with πj > 0. This
implies that, as t→∞, the numerators of git and Git remain bounded and therefore git → 0
and Git → 0. Since Cesáro means preserve convergent sequences and their limits:

1

t+ 1

t−1∑
τ=0

[
Kt−τ−1

]
ij
→ πj , ∀i,

which implies that Cit →
∑n

j=1 πjMj . The full-rank assumption on
[
HT

1 . . . HT
n

]T
and

πj > 0 guarantee that
∑n

j=1 πjMj is positive definite. Finally, consider the mean squared
error:

E
[
(ŷi,t − y)T (ŷi,t − y)

]
= E

∥∥∥∥∥
(

Ωit

t+ 1

)−1 ωit
t+ 1

−
(

Ωit

t+ 1

)−1( Ωit

t+ 1

)
y

∥∥∥∥∥
2

2


= E

[∥∥B−1
it

(
git + City + φit − (Git + Cit)y

)∥∥2

2

]
= E

[
‖B−1

it (bit + φit)‖22
]

= E
[
bTitB

−T
it B−1

it bit + 2bTitB
−T
it B−1

it φit + φTitB
−T
it B−1

it φit

]
(a)
=== bTitB

−T
it B−1

it bit + tr
(
B−1
it E[φitφ

T
it]B

−T
it

)
(b)

≤ bTitB
−T
it B−1

it bit +
1

t+ 1
tr
(
B−1
it CitB

−T
it

)
→ 0,
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where (a) holds because the first term is deterministic, while the cross term contains
E[φit] = 0. Inequality (b) follows from (D.14). In the final step, as shown before B−1

it →(∑n
j=1 πjMj

)−1
and Cit →

∑n
j=1 πjMj � 0 remain bounded, while bit → 0 and 1

t+1 → 0.

D.9 Proof of Theorem 2.11

Define the generalized (matrix-weighted) degree matrix D ∈ Rndx×ndx of graph G as the
block-diagonal matrix with Dii :=

∑
j∈Ni E

−1
ij . Since Eij � 0 for all {i, j} ∈ E, the general-

ized degree matrix is positive definite, D � 0. Define also the generalized adjacency matrix
A ∈ Rndx×ndx as follows:

Aij :=

{
E−1
ij if {i, j} ∈ E,

0 else.

The generalized Laplacian and the generalized signless Laplacian of G are defined as L :=
D−A and |L| := D+A, respectively. Further, let R := (B⊗Idx)T ∈ Rmdx×ndx and define the
block-diagonal matrix E ∈ Rmdx×mdx with blocks Eij for {i, j} ∈ E. It is straightforward to
verify that L = RTE−1R � 0 and |L| = (|B| ⊗ Idx)E−1(|B| ⊗ Idx)T � 0, where |B| ∈ Rn×m
is the signless incidence matrix of G. Let B̃ ∈ R(n−1)×m and R̃ ∈ Rmdx×(n−1)dx be the
matrices resulting from removing the row corresponding to sensor 1 from B. Similarly,
let D̃, Ã, L̃, |L̃| ∈ R(n−1)dx×(n−1)dx denote the generalized degree, adjacency, Laplacian, and
signless Laplacian matrices with the row and column corresponding to sensor 1 removed.
Thm. 2.2.1 in Barooah (2007) shows that L̃ � 0 provided that G is connected. The same
approach can be used to show that |L̃| � 0. Let x̃ ∈ R(n−1)dx be the locations of sensors
2, . . . , n in the reference frame of sensor 1 and x̂t ∈ R(n−1)dx be their estimates at time t
obtained from (2.27). The update in (2.27) can be written in matrix form as follows:

D̃x̂t+1 = Ãx̂t + R̃TE−1

(
R̃x̃+

1

t+ 1

t∑
τ=0

ετ

)
. (D.15)

Define the estimation error at time t as et := x̃−x̂t and let ut := 1
t+1

∑t
τ=0 ετ . The dynamics

of the error state can be obtained from (D.15):

et+1 = x̃− D̃−1Ãx̂t − D̃−1L̃x̃− D̃−1R̃TE−1ut

= x̃− D̃−1Ãx̂t − D̃−1

(
D̃ − Ã

)
x̃− D̃−1R̃TE−1ut

= D̃−1Ãet − D̃−1R̃TE−1ut.

The error dynamics are governed by a stochastic linear time-invariant system, whose internal
stability depends on the eigenvalues of D̃−1Ã. To show that the error dynamics are stable,
we use the following lemma.

Lemma D.8 (Elsner and Mehrmann 1991, Lemma 4.2). Let L = D − A ∈ Cn×n be such
that D+D∗ � 0 and Lθ = D+D∗− (eiθA+ e−iθA∗) � 0 for all θ ∈ R. Then ρ(D−1A) < 1.

Consider L̃θ := 2(D̃ − cos(θ)Ã). If cos θ = 0, then L̃θ = 2D̃ � 0. If cos θ ∈ (0, 1],
then L̃θ � 2 cos θL̃ � 0. Finally, if cos θ ∈ [−1, 0), then L̃θ � 2| cos θ||L̃| � 0. Therefore,
ρ
(
D̃−1Ã

)
< 1. The proof of the theorem is completed by the following lemma with F :=

D̃−1Ã and G := −D̃−1R̃TE−1.
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Lemma D.9. Consider the discrete-time stochastic linear time-invariant system, et+1 =
Fet + G 1

t+1

∑t
τ=0 ετ , driven by Gaussian noise ετ ∼ N (0, E), which is independent at any

pair of times. If the spectral radius of F satisfies ρ(F) < 1, then et
a.s.,L2

−−−−→ 0.

Proof. By the strong law of large numbers (Durrett 2010, Thm.2.4.1), ut := 1
t+1

∑t
τ=0 ετ

converges to 0 almost surely. Let Ω be the set with measure 1 on which ut converges so
that for any γ > 0, ∃ T ∈ N such that ∀t ≥ T , ‖ut‖ ≤ γ. For realizations in Ω, the solution
with initial time T is:

et = Ft−T eT +
∑t−1

τ=T Ft−τ−1Guτ .

Then, ‖et‖ ≤ ‖Ft−T eT ‖+
t−1∑
τ=T

∥∥Ft−τ−1
∥∥‖G‖γ. Taking the limit of t and using that F is stable,

we have

lim
t→∞
‖et‖ ≤

( ∞∑
τ=0

‖Fτ‖

)
‖G‖γ.

Since ρ(F) < 1, the system is internally (uniformly) exponentially stable, which is equivalent
to
∑∞

τ=0 ‖Fτ‖ ≤ β for some finite constant β (Rugh 1996, Ch.22). Thus, limt→∞ ‖et‖ ≤
β‖G‖γ, which can be made arbitrarily small by choice of γ. We conclude that et → 0 on Ω
and consequently et

a.s.−−→ 0.
Next, we show convergence in L2. First, consider the propagation of the cross term

Ct := (t + 1)EetuTt . Note that E[ut] = 0 and E[utu
T
t ] = E

t+1 . Using the fact that εt+1 is
independent of et and ut we have

Ct+1 = E (Fet + Gut) ((t+ 1)ut + εt+1)T = FCt + (t+ 1)GE[utu
T
t ] = FCt + GE .

The solution of the above linear time-invariant system is:

Ct = FtC0 +
t−1∑
τ=0

Ft−τ−1GE

and since F is stable: lim
t→∞

E[etu
T
t ] = lim

t→∞

1

t+ 1

t−1∑
τ=0

FτGE = 0. Now, consider the second mo-

ment of the error:

Σt+1 := E[et+1e
T
t+1] = FΣtF

T + F
(
E[etu

T
t ]
)
GT + G

(
E[ute

T
t ]
)
FT+

1

t+ 1
GEGT =FΣtF

T +Qt,

where Qt :=
1

t+ 1

(
FCtG

T + GCTt F
T + GEGT

)
. As shown above Qt → 0 as t→∞, i.e., for

any δ > 0, ∃ T ′ ∈ N such that ∀t ≥ T ′, ‖Qt‖ ≤ δ. With initial time T ′, for t ≥ T ′:

Σt = Ft−T
′
ΣT ′

(
FT
)t−T ′

+

t−1∑
τ=T ′

Ft−τ−1Qτ
(
FT
)t−τ−1

‖Σt‖ ≤
∥∥∥Ft−T ′∥∥∥2

‖ΣT ′‖+

t−T ′−1∑
τ=0

‖Fτ‖2δ ≤ α2µ2(t−T ′) + δα2
t−T ′−1∑
τ=0

µ2τ ,
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where the existence of the constants α > 0 and 0 ≤ µ < 1 is guaranteed by the stability of
F. We conclude that limt→∞ ‖Σt‖ ≤ δα2

1−µ2 , which can be made arbitrarily small by choice

of δ. In other words, et
L2

−→ 0.

D.10 Proof of Theorem 2.12

We use the same notation and approach as in the proof of Thm 2.10, except that now the
terms Hi, Vi, Mi, M , ζt, φit, Cit, Bit are time-varying and stochastic because they depend
on the location estimates x̂i,t. To emphasize this, we denote them by Ĥit, V̂it, M̂it, M̂t, ζ̂t,

φ̂it, Ĉit, B̂it, where for example M̂it := Mi(x̂i,t). The same linear systems (D.11) describe
the evolutions of ωt and Ωt except that they are stochastic now and (D.13) becomes:

ωit
t+ 1

= git + Ĉity + φ̂it, B̂it :=
Ωit

t+ 1
= Git + Ĉit.

We still have that Kt → π1T with πj > 0. Also, git, Git, and bit are still deterministic and

converge to zero as t → ∞. The following observations are necessary to conclude that Ĉit
still converges to

∑n
j=1 πjMj .

Lemma D.10. If x̂i,t
a.s.−−→ xi, then M̂it

a.s.,L2

−−−−→Mi.

Proof. Almost sure convergence follows from the continuity of Mi(·) and the continuous
mapping theorem (Durrett 2010, Thm.3.2.4). L2-convergence follows from the boundedness
of Mi(·) and the dominated convergence theorem (Durrett 2010, Thm.1.6.7).

Lemma D.11. If at → a and bt → b, then 1
t

∑t−1
τ=0 at−τ bτ → ab.

Proof. The convergence of at implies its boundedness, |at| ≤ q < ∞. Then, notice ab =
1
t

∑t−1
τ=0 ab and∣∣∣∣1t

t−1∑
τ=0

at−τ bτ − ab
∣∣∣∣ =

∣∣∣∣1t
t−1∑
τ=0

(
at−τ (bτ − b) + (at−τ − a)b

)∣∣∣∣
≤
∣∣∣∣1t

t−1∑
τ=0

at−τ (bτ − b)
∣∣∣∣+

∣∣∣∣1t
t−1∑
τ=0

(at−τ − a)b

∣∣∣∣
≤
∣∣∣∣q(1

t

t−1∑
τ=0

bτ − b
)∣∣∣∣+

∣∣∣∣(1

t

t∑
τ=1

aτ − a
)
b

∣∣∣∣,
where both terms converge to zero since Cesáro means preserve convergent sequences and
their limits.

Combining Lemma D.10,
[
Kt
]
ij
→ πj , and Lemma D.11, we have:

1

t+ 1

t−1∑
τ=0

[
Kt−τ−1

]
ij
M̂jτ

a.s.−−→
[
π1T

]
ij
Mj = πjMj .
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Moreover, 0 ≤ [Kt]ij ≤ 1 and the boundedness of M̂jt imply, by the bounded convergence
theorem (Durrett 2010, Thm.1.6.7), that the sequence above converges in L2 as well:

Ĉit
a.s.,L2

−−−−→
∑n

j=1 πjMj � 0. (D.16)

In turn, (D.16) guarantees that:

B̂−2
it =

(
Git + Ĉit

)−2 a.s.−−→
(∑n

j=1 πjMj

)−2
(D.17)

but is not enough to ensure that E
[
B̂−2
it

]
remains bounded as t→∞. The parameter δ > 0

is needed to guarantee the boundedness. In particular, define B̂it(δ) := B̂it + δIdy . Then

B̂it(δ)
−2 =

(
Git + Ĉit + δIdy

)−2 ≺ 1

δ2
Idy

and by the bounded convergence theorem and (D.17):

B̂it(δ)
−2 a.s.,L1

−−−−→
(∑n

j=1 πjMj + δIdy
)−2

, (D.18)

so that limt→∞ E
[
B̂it(δ)

−2
]
< ∞. From (D.16) and the boundedness of B̂it(δ)

−1 and Ĉit,
we also have:

B̂it(δ)
−1ĈitB̂it(δ)

−T a.s.,L2

−−−−→

 n∑
j=1

πjMj+δIdy

−1 n∑
j=1

πjMj

 n∑
j=1

πjMj+δIdy

−T (D.19)

Since Ĥit and V̂it depend solely on x̂i,t, they are independent of vi,t. Because E[vj,τ ] = 0,

E[ĤT
jτ V̂

−1
jτ vj,τ ] = 0 and as before E[φ̂it] = 0. Since B̂it(δ) is independent of vi,t as well,

E
[
B̂it(δ)

−2φ̂it
]

= 0 and a result equivalent to (D.14) holds:

E[B̂it(δ)
−1φ̂itφ̂

T
itB̂it(δ)

−T ] = E

B̂it(δ)−1

 1

(t+ 1)2

n∑
j=1

t−1∑
τ=0

[
Kt−τ−1

]2
ij
M̂jτ

 B̂it(δ)
−T


� 1

t+ 1
E
[
B̂it(δ)

−1ĈitB̂it(δ)
−T
]
. (D.20)
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Finally, consider the mean squared error:

E
[
‖ŷi,t − y‖22

]
= E

[∥∥∥∥B̂it(δ)−1 ωit
t+ 1

− B̂it(δ)−1B̂it(δ)y

∥∥∥∥2

2

]

= E
[∥∥∥B̂it(δ)−1

(
git + Ĉity + φ̂it − (Git + Ĉit + δIdy)y

)∥∥∥2

2

]
= E

[∥∥∥B̂it(δ)−1(bit + φ̂it + δy)
∥∥∥2

2

]
= E

[
bTitB̂it(δ)

−2bit + φ̂TitB̂it(δ)
−2φ̂it + δ2yT B̂it(δ)

−2y

+ 2bTitB̂it(δ)
−2φ̂it + 2δyT B̂it(δ)

−2φ̂it + 2δbTitB̂it(δ)
−2y

]
= bTitE

[
B̂it(δ)

−2
]
bit + tr

(
E
[
B̂it(δ)

−1φ̂itφ̂
T
itB̂it(δ)

−T
])

+ δ2yTE
[
B̂it(δ)

−2
]
y + 2δbTitE

[
B̂it(δ)

−2
]
y

(D.20)

≤ bTitE
[
B̂it(δ)

−2
]
bit + 2δbTitE

[
B̂it(δ)

−2
]
y + δ2yTE

[
B̂it(δ)

−2
]
y

+
1

t+ 1
tr

(
E
[
B̂it(δ)

−1ĈitB̂it(δ)
−T
])

→ δ2yT
( n∑
j=1

πjMj + δIdy

)−2

y.

In the final step, the first two terms go to zero because bit → 0 and limt E
[
B̂it(δ)

−2
]
<∞

from (D.18), the third term converges in view of (D.18) again, while the last term goes to
zero because the trace is bounded in the limit in view of (D.19).

D.11 Validity of the Data Association Probability Density
Functions

For simplicity, let pd(yi, x) = pd(yj , x) ≡ pd for all i, j in this section. We verify that
p(π | Yd(x), x) is a valid probability density function in each of the following cases.

No missed detections and no false positives

In this case, π ∈ Πn,n with likelihood p(π | Yd(x), x) = 1/n!, which sums to one as follows:∑
π∈Πn,n

p(π | Yd(x), x) =
1

n!
|Πn,n| = 1.

No false positives but missed detections are possible

In this case, π ∈ Πm,n with likelihood:

p(π | Yd(x), x) =
1

m!
pmd (1− pd)n−m,
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which sums to one using the Binomial theorem:

n∑
m=0

∑
π∈Πm,n

p(π | Yd(x), x) =
n∑

m=0

nPm
1

m!
pmd (1− pd)n−m = (pd + (1− pd))n = 1.

No missed detections but false positives are possible

In this case, π ∈ Πn,m with likelihood:

p(π | Yd(x), x) =
1

mPn

e−λλm−n

(m− n)!
,

which sums to one as follows:
∞∑
m=n

∑
π∈Πn,m

p(π | Yd(x), x) =

∞∑
m=n

mPn
1

mPn

e−λλm−n

(m− n)!
= 1.

Both missed detections and false positives are possible

The likelihood of π ∈ Π̄n,m with k true positive assignments is:

p(π | Yd(x), x) =
1

mPk
pkd(1− pd)n−k

e−λλm−k

(m− k)!
,

which sums to one as follows:

∞∑
m=0

min{m,n}∑
k=0

(
n

k

)
mPk p(π | Yd(x), x) =

∞∑
m=0

min{m,n}∑
k=0

(
n

k

)
pkd(1− pd)n−k

e−λλm−k

(m− k)!

=
n∑

m=0

m∑
k=0

(
n

k

)
pkd(1− pd)n−k

e−λλm−k

(m− k)!
+

∞∑
m=n+1

n∑
k=0

(
n

k

)
pkd(1− pd)n−k

e−λλm−k

(m− k)!

switch
========
index order

n∑
k=0

n∑
m=k

(
n

k

)
pkd(1− pd)n−k

e−λλm−k

(m− k)!
+

n∑
k=0

∞∑
m=n+1

(
n

k

)
pkd(1− pd)n−k

e−λλm−k

(m− k)!

=

n∑
k=0

(
n

k

)
pkd(1− pd)n−k

[ ∞∑
m=k

e−λλm−k

(m− k)!

]
= 1.

D.12 Proof of Theorem 3.2

Let V1 := Yd(x) and V2 := Z be the vertices of a weighted complete bipartite graph G :=
(V1, V2, E, w), where the weight we associated with e := (i, j) ∈ E is Q(i, j). The functions
π in (3.9) specify different data associations between the objects V1 and the measurements
V2. The introduction of missed detections (‘0’ in the range of π) means that some detectable
objects need not to be assigned to a measurement in Z. As any object could be missed, the
data associations π correspond to matchings (not necessarily perfect as before) in the graph
G. Given a matching π, the associated product term inside the sum in (3.9) corresponds to
the weight of π. The sum over all π corresponds to the sum of the weights of all matchings
in G. The sum of the weights of all k-matchings (matchings with k edges) can be computed
via the k-th subpermanent sum of the adjacency matrix Q of G.
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Subpermanent Sum. Let A be an n ×m non-negative matrix with n ≤ m and let Qk,n
be the set of all subsets of cardinality k of 1, . . . , n. For α ∈ Qk,n and β ∈ Qk,m let
A[α, β] := [A(αi, βj)]

k
i,j=1 be the corresponding k-by-k submatrix of A. Define per0(A) := 1

and
perk(A) :=

∑
α∈Qk,n,β∈Qk,m

per(A[α, β]), k = 1, . . . , n (D.21)

Then, the sum in (3.9) is equal to the sum over the weights of all k-matchings:

∑
π

∏
i|π(i)>0

pd(yi, x)pz(zπ(i) | yi, x)

(1− pd(yi, x))λpκ(zπ(i))
=

|Yd(x)|∑
k=0

perk(Q) (D.22)

where the assumption that |Yd(x)| ≤ m is used. The following two lemmas describe a
reduction from the problem of summing all subpermanent sums of a rectangular matrix
(or matchings in an unbalanced bipartite graph) to the problem of the permanent of a
rectangular matrix (or perfect matchings in an unbalanced bipartite graph) and then to the
problem of the permanent of a square matrix (or perfect matchings in a balanced bipartite
graph).

Lemma D.12. Let An,m be an n×m matrix with n ≤ m. Then,

n∑
k=0

perk(An,m) = per
([
An,m In

])
.

Proof : Associate A with a weighted complete bipartite graph GA := (V1 := {1, . . . , n}, V2 :=
{1, . . . ,m}, E, wA), where the weights wA corresponding with the entries of A. To obtain
the graph GB associated with B :=

[
An,m In

]
add n dummy nodes V3 to V2 and n edges

of weight 1. For k ∈ {0, . . . , n}, fix subsets α ∈ Qk,n and β ∈ Qk,m using the notation from
(D.21). A perfect matching in GB associated with α and β corresponds to:

• A k-matching between α ∈ V1 and β ∈ V2 of weight per(A[α, β])

• A (n− k)-matching between V1 \ α and V3 of weight 1

Then, per(B) is the sum of all perfect matchings in GB:

per(B) =
n∑
k=0

∑
β∈Qk,m
α∈Qk,n

per(A[α, β]) =
n∑
k=0

perk(A),

where the last equality follows directly from Def. (D.21).

Lemma D.13. Let An,m be an n×m matrix with n ≤ m. Then,

per(An,m) =
1

(m− n)!
per

([
An,m

1m−n,m

])
where 1m−n,m is a (m− n)×m matrix of all ones.
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Proof : Associate A with a weighted complete bipartite graph GA := (V1 := {1, . . . , n}, V2 :=
{1, . . . ,m}, E, wA), where the weights wA correspond with the entries of A. To obtain the

graph GB associated with B :=
[
ATn,m 1Tm−n,m

]T
add (m− n) dummy nodes V3 to V1 and

(m− n)m edges of weight 1. Fix a subset β ∈ Qm−n,m using the notation from (D.21). A
perfect matching in GB associated with β corresponds to:

• A n-matching between V1 and V2 \ β of weight per(A[V1, V2 \ β])

• A (m− n)-matching between V3 and β of weight (m− n)!

Then, per(B) is the sum of all perfect matchings in GB:

per(B) =
∑

β∈Qm−n,m

(m− n)! per(A[V1, V2 \ β])

= (m− n)! per(A),

where the last equality follows directly from Def. (D.21).
The proof is completed by combining the two reductions above to write the sum in

(D.22) as:
|Yd(x)|∑
k=0

perk(Q) =
1

m!
per

([
Q I|Yd(x)|

1m,m 1m,|Yd(x)|

])
.

D.13 Summary of the Semantic Observation Models

Table D.1: No missed detections and no clutter : the likelihood p(Z | Yd(x), x) of a set of semantic
observations Z is shown for different combinations of m := |Z| and n := |Yd(x)|. The dependence
of the likelihoods on x is omitted for clarity.

n 6= m 0

0 = m = n 1

0 < m = n
1

m!
per

pz(z1 | y1) · · · pz(zm | y1)
...

...
pz(z1 | yn) · · · pz(zm | yn)


Table D.2: No clutter but missed detections are possible: the likelihood p(Z | Yd(x), x) of a set of
semantic observations Z is shown for different combinations of m := |Z| and n := |Yd(x)|. The
dependence of the likelihoods on x is omitted for clarity.

n < m 0

0=m≤n
n∏
i=1

(1− pd(yi))

0<m≤n 1

m!(n−m)!
per

pd(y1)pz(z1 |y1) · · · pd(y1)pz(zm |y1) 1−pd(y1) · · · 1−pd(y1)
...

...
...

...
pd(yn)pz(z1 |yn) · · · pd(yn)pz(zm |yn) 1−pd(yn) · · · 1−pd(yn)


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Table D.3: No missed detections but clutter is possible: the likelihood p(Z | Yd(x), x) of a set of
semantic observations Z is shown for different combinations of m := |Z| and n := |Yd(x)|. The
dependence of the likelihoods on x is omitted for clarity.

m < n 0

0 = n ≤ m e−λλm

m!

m∏
j=1

pκ(zj)

0 < n ≤ m e−λ

m!(m− n)!
per



pz(z1 | y1) · · · pz(zm | y1)
...

...
pz(z1 | yn) · · · pz(zm | yn)
λpκ(z1) · · · λpκ(zm)

...
...

λpκ(z1) · · · λpκ(zm)


Table D.4: Both missed detections and clutter are possible: the likelihood p(Z | Yd(x), x) of a set
of semantic observations Z is shown for different combinations of m := |Z| and n := |Yd(x)|. The
dependence of the likelihoods on x is omitted for clarity.

n = 0
e−λλm

m!

m∏
j=1

pκ(zj)

m = 0

n∏
i=1

(1− pd(yi))

0 < n ≤ m e−λ

m!m!
per



pd(y1)pz(z1|y1)
λpκ(z1) · · · pd(y1)pz(zm|y1)

λpκ(zm) 1− pd(y1) 0
...

...
. . .

pd(yn)pz(z1|yn)
λpκ(z1) · · · pd(yn)pz(zm|yn)

λpκ(zm) 0 1− pd(yn)

λpκ(z1) · · · · · · · · · · · · λpκ(z1)
...

...
λpκ(zm) · · · · · · · · · · · · λpκ(zm)



0 < m ≤ n e−λ

m!n!
per



pd(y1)pz(z1|y1)
λpκ(z1) · · · pd(y1)pz(zm|y1)

λpκ(zm) 1− pd(y1) · · · 1− pd(y1)
...

...
...

...
pd(yn)pz(z1|yn)

λpκ(z1) · · · pd(yn)pz(zm|yn)
λpκ(zm) 1− pd(yn) · · · 1− pd(yn)

λpκ(z1) 0 λpκ(z1) · · · λpκ(z1)
. . .

...
...

0 λpκ(zm) λpκ(zm) · · · λpκ(zm)


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D.14 Active Bearing-only Localization

Bearing-only entropy minimization solves the active semantic localization problem in (3.12)
but the pose entropy is conditioned only on the future bearing measurements:

σ∗ ∈ arg min
σ∈Σ

H(x0:T | B1:T )

s.t. xs+1 = f(xs, σs, vs), s = 0, . . . , T − 1

Bs = {β(xs, y) + ηs | yp ∈ FoV (xs)}, s = 1, . . . , T,

(D.23)

where ηs ∼ N (0,Σβ) is the bearing-measurement noise and Bs is the set of bearing mea-
surements obtained at time s. Since the robot motion model f(x, u, v) and the bearing
measurement model β(x, y) are continuous functions of the robot state x and landmark
states y, perturbed by Gaussian noise, we can linearize them as discussed in Sec. 2.4.6. In
detail, let x̄s be the mean of the particle distribution at time s and define δxs := xs − x̄s.
We linearize the constraints in (D.23) around the means x̄s and β(x̄s, y) to obtain:

σ∗ ∈ arg min
σ∈Σ

H(δx0:T )− I(δx0:T ; δB1:T )

s.t. x̄s+1 = f(x̄s, σs, 0), s = 0, . . . , T − 1

δxs ≈
[
∂f

∂x
(x̄s, σs, 0)

]
δxs +

[
∂f

∂v
(x̄s, σs, 0)

]
vs

δBs ≈
{
∂β

∂x
(x̄s, y)δxs + ηs

∣∣∣∣ yp ∈ FoV (xs)

}
, s = 1, . . . , T.

(D.24)

Let C0 be the covariance of the prior particle distribution and assume that δx0 ∼ N (0, C0).
Since the constraints in (D.24) are linear and the measurement noise is Gaussian, the
distribution of δxs remains Gaussian for s = 1, . . . , T . In particular, it can be computed via
the Kalman filter. In addition, the entropy and mutual information of Gaussian random
variables depend only on the associated covariance matrices (and not on the particular
measurement realization δB1:T ) and can be computed in closed form. Thus, we compute
the cost for each control sequence σ ∈ Σ and choose the sequence with the lowest cost. Refer
to Sec. 2.4.6 for more details regarding conditional entropy minimization via linearization
and model predictive control.

D.15 Proof of Theorem 3.7

From Thm. 2.10, x̂i(k)
L2

→ x∗, ∀i, which implies convergence in L1 and in probability.
Convergence in L1 implies that the sequence {x̂i(k)} is uniformly integrable (UI) for all i
(Durrett 2010, Thm. 5.5.2). We claim that this implies that the sequence of finite-difference
weights W (x̂i(k)) computed in (3.24) is UI for each i. The matrix Φ in (3.24) is a bounded
continuous function of x̂i(k), which means that there exists a constant KΦ

i ≤ ∞ for each i
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such that ‖Φ(x̂i(k))−T ‖1 ≤ KΦ
i . Define αi(k) := x̂ii(k)−

∑n
j=1 x̂

i
j(k)/n. From (3.25):

‖W (x̂i(k))‖1 ≤

∥∥∥∥∥∥∥∥
2δ2e−δ

2‖α1(k)‖22αT1 (k)
...

2δ2e−δ
2‖αn(k)‖22αTn (k)


T
∥∥∥∥∥∥∥∥

1

∥∥Φ(x̂i(k))−T
∥∥

1

≤ 2δ2KΦ
i

n∑
j=1

e−δ
2‖αj(k)‖22‖αj(k)‖1

≤ 2δ2KΦ
i

n∑
j=1

∥∥∥∥x̂ij(k)− 1

n

n∑
l=1

x̂il(k)

∥∥∥∥
1

≤ 4δ2KΦ
i

n∑
j=1

‖x̂ij(k)‖1 = 4δ2KΦ
i ‖x̂i(k)‖1.

By UI of {x̂i(k)}, for any ε > 0, there existKi ∈ [0,∞) such that E
[
‖x̂i(k)‖11{‖x̂i(k)‖1≥Ki}

]
≤

ε for all k. Then for all i, k:

E
[
‖W (x̂i(k))‖11{‖W (x̂i(k))‖1≥4δ2KΦ

i Ki}
]
≤ 4δ2KΦ

i E
[
‖x̂i(k)‖11{4δ2KΦ

i ‖x̂i(k)‖1≥4δ2KΦ
i Ki}

]
≤ 4δ2KΦ

i ε.

Since W (x̂i(k)) is a continous function of x̂i(k) by the continuous mapping theorem,

W (x̂i(k))
p→W (x∗), ∀i. This, coupled with the uniform integrability of {W (x̂i(k))} for all i

implies that W (x̂i(k))
L1

→W (x∗), ∀i. The signal measurements zi(τ) in (3.36) are indepen-
dent of the estimates W (x̂i(k)) because the latter are based on the relative measurements
in (3.33). Therefore,

Eĝi(k) = E
[
coli(W (x̂i(k)))

]
1

k+1

∑k
τ=0 Ezi(τ) (D.25)

= E
[
coli(W (x̂i(k)))

]
h(x∗i , y)→ coli(W (x∗))h(x∗i , y).

Now, consider the behavior of the consensus filter in (3.37) with µi,k = ĝi(k). Eliminating
the state qi,k and writing the equations in matrix form gives:

rk+1 = (Indx − β(L⊗ Idx)) rk + (µk+1 − µk),

where L is the Laplacian of the communication graph G. Taking expectations above results
is a deterministic linear time-invariant system, which was analyzed in Spanos et al. (2005).
In light of (D.25), Proposition 1 in Spanos et al. (2005) shows that for all i:

lim
k→∞

(
E[ri,k]−

1

n

n∑
i=1

coli(W (x∗))h(x∗i , y)

)
= 0.

Finally, the finite-difference gradient approximation in (3.22) shows that:

lim
k→∞

E[rik] =
1

n
W (x∗)

h(x∗1, y)
...

h(x∗n, y)

 =
1

n

(
g(m∗, y) + b

)
, ∀i.
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D.16 Multimedia Extensions

Table D.5: Index to Multimedia Extensions

Extension Media Type Description

1 Video Multi-robot active exploration, localization, and mapping
2 Video Mobile robot localization from semantic observations
3 Video Global positioning of the Tango phone
4 Video Global positioning of the Tango phone
5 Video Global semantic localization on KITTI dataset sequence 00

with several restarts
6 Video Global semantic localization on KITTI dataset sequence 00
7 Video Global semantic localization on KITTI dataset sequence 05
8 Video Global semantic localization on KITTI dataset sequence 06
9 Video Global semantic localization on KITTI dataset sequence 07
10 Video Global semantic localization on KITTI dataset sequence 08
11 Video Global semantic localization on KITTI dataset sequence 09
12 Video Global semantic localization on KITTI dataset sequence 10
13 Video Global semantic localization on KITTI dataset sequence 08

(fail case)
14 Data Car and window positions used for the semantic maps in

the KITTI dataset experiments
15 Video Wireless radio source seeking with a single robot using

random-direction stochastic gradient ascent
16 Video Active object recognition with a depth camera attached to

the wrist of a PR2 robot
17 Video Single-image object recognition via active deformable part

models on the Pascal visual object classes 2007 dataset
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N. Ghods and M. Kristić. Source Seeking With Very Slow or Drifting Sensors. Journal of Dynamic
Systems, Measurement, and Control, 133(4), 2011.

M. Göbelbecker, C. Gretton, and R. Dearden. A Switching Planner for Combined Task and Obser-
vation Planning. In AAAI Conference on Artificial Intelligence, 2011.

A. Goldsmith. Wireless Communications. Cambridge University Press, 2005.

Google ATAP group. Project Tango. https://www.google.com/atap/projecttango, 2014.

N. Gordon, D. Salmond, and A. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state
estimation. Radar and Signal Processing, IEE Proceedings F, 140(2):107–113, 1993.

B. Grocholsky. Information Theoretic Control of Multiple Sensor Platforms. PhD thesis, University
of Sidney, 2002.

G. Gualdi, A. Prati, and R. Cucchiara. Multistage Particle Windows for Fast and Accurate Object
Detection. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), 34(8):1589–1604,
2012.

V. Gupta, T. Chung, B. Hassibi, and R. Murray. On a Stochastic Sensor Selection Algorithm with
Applications in Sensor Scheduling and Sensor Coverage. Automatica, 42(2):251–260, 2006.

M. Hanheide, C. Gretton, R. Dearden, N. Hawes, J. Wyatt, A. Pronobis, A. Aydemir,
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