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Abstract— The problem of active mapping aims to plan an
informative sequence of sensing views given a limited budget
such as distance traveled. This paper considers active occu-
pancy grid mapping using a range sensor, such as LiDAR or
depth camera. State-of-the-art methods optimize information-
theoretic measures relating the occupancy grid probabilities
with the range sensor measurements. The non-smooth nature
of ray-tracing within a grid representation makes the objective
function non-differentiable, forcing existing methods to search
over a discrete space of candidate trajectories. This work
proposes a differentiable approximation of the Shannon mutual
information between a grid map and ray-based observations
that enables gradient ascent optimization in the continuous
space of SE(3) sensor poses. Our gradient-based formulation
leads to more informative sensing trajectories, while avoiding
occlusions and collisions. The proposed method is demonstrated
in simulated and real-world experiments in 2-D and 3-D
environments. Materials supplementing this paper are avail-
able at: https://arashasgharivaskasi-bc.github.
io/grad_active_mapping/

I. INTRODUCTION

Mapping an unknown environment using sensor-equipped
mobile robots has been widely studied motivated by many
real-world applications such as search and rescue operations,
planetary exploration, security and surveillance. While the
traditional mapping methods have been developed for a given
robot trajectory, optimizing the path to increase the accuracy
of the constructed map is significant for the operation of
autonomous robots in highly unstructured environments.
Such an “active mapping” problem renders challenges in
the computation of objective function and its reliable op-
timization method in terms of enhancing the performance
and computational feasibility.

One of the most common procedures for incremental
estimation of occupancy grid maps is to utilize a narrow-ray
range sensor, such as Laser range finder [1, Ch. 9]. However,
the resulting observation model occurs to be a piece-wise
constant, namely a non-smooth function of measurement
poses due to the discrete nature of ray-tracing over a grid
map [2, Ch. 5]. Hence, the objective function is piecewise-
constant, making the derivatives either 0 or undefined. In
addition to the problem of non-smoothness of grid map
representations, occlusion, which is caused when a field of
view intersects with objects, is a significant challenge in
sensing and planning to accomplish several tasks in robotics
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Fig. 1: Occlusion and collision-aware active mapping. Top: Wheeled
robot exploring an unknown environment equipped with a depth
sensor used for estimating a 3-D map. Bottom: Path planning
given the current map. The red trajectory is A∗ planning towards
a frontier. The purple trajectory is obtained via gradient ascent
optimization of the objective function.

such as 3-D reconstruction [3], object classification [4], and
target tracking [5]. Koga et al. [6] has developed dense active
mapping using iterative Covariance Regulation (iCR), which
utilizes a differentiable field of view that enables deriving
an explicit gradient of an information-theoretic objective
with respect to a multi-step control sequence. Incorporating
occlusion in iCR makes the field of view dependent on the
map estimate, which renders a significant challenge for sens-
ing model formulation since it violates the linear-Gaussian
property of the mapping by Kalman Filter. Nevertheless, the
current work borrows one of the key ideas from iCR: In
order to perform gradient-based optimization of the mutual
information, one needs to apply a smooth proximity operator
among the elements involved in its computation.

The work by Rocha et al. [7] was among the first that
attempted to derive a gradient-based strategy for active
mapping of occupancy grids. The authors proposed a gradient
of map entropy with respect to the robot pose at a cell
center via finite difference of entropy values at adjacent
cells. Julian [2] proposed a divergent beam sensor model,
where the width of a beam increases radially as it travels
farther through space. While the derived mutual information
formula was shown to be differentiable, it suffers from high
computational complexity as it requires numerical integration
of the objective function. Charrow et al. [8] proposed a
numerical evaluation for the gradient of Cauchy-Schwarz
mutual information (CSQMI) [9] using finite differences of



CSQMI evaluated at cell centers. Our work is most similar to
[10] and [11], where the authors formulate the information
gain as a sum of informative elements weighted by a discount
factor. In particular, [10] defines informative elements as
frontier cells between free and unexplored areas visible from
a candidate pose. However, unlike the mutual information
between the map and a sensor observation, using visible
frontier size as a proxy for information gain does not take
into account the effect of sensor noise which is inevitable in
real-world sensing applications [9], [12].

The present work distinguishes itself from the prior meth-
ods by proposing an active mapping strategy that allows
gradient ascent optimization of the Shannon mutual infor-
mation (SMI) between the grid map and a sequence of
beam-based observations. As opposed to the discrete-space
active mapping methods [9], [13]–[15] that aim to plan
an informative robot path through evaluating a finite set
of candidate trajectories, the current work finds an optimal
trajectory over the continuous space of the robot state. Fig. 1
illustrates the proposed gradient-based active mapping using
a depth sensor. Our main contributions are:

1) a differentiable interpolation of the SMI as well as a
closed-form gradient expression,

2) decomposition of the SMI into additive terms over a
robot trajectory in SE(3), under sufficient assumptions
for the interpolation method.

Unlike the previous works that used map entropy or visible
number of frontiers, directly utilizing the SMI allows incor-
porating the range sensor noise specifications to the objective
function; leading to more accurate exploration. Moreover,
gradient-based methods allow augmenting the objective func-
tion with other differentiable terms (e.g. localization accuracy
[16], path cost [17]). With the addition of a differentiable
collision penalty to the objective function, we propose an
occlusion and collision-aware robot exploration.

II. PROBLEM STATEMENT

Consider a robot with pose Xt ∈ SE(3) at time t:

Xt :=

[
Rt pt

0⊤ 1

]
, (1)

where Rt ∈ SO(3) is the robot orientation and pt ∈ R3 is
the robot position. The robot is navigating in an environment
composed of occupied and free space. A mounted range
sensor, e.g. LiDAR or depth camera, provides the robot with
a stream of beam-based observations zt ∈ RB , where B is
the number of beams in a laser scan or pixels in a depth
image, measuring the distance from the robot’s position to
the closest obstacle along the beam. We model the map m
as a grid of cells mi, i ∈ I := {1, . . . , N}, where each
cell can take one of the two states: free or occupied. To
model measurement noise, we consider a probability density
function (PDF) p(zt | m,Xt) for each observation. Let
pt(m) = p(m | Ht) be the probability mass function
(PMF) of the map m given the history of robot poses and
observations Ht = {(Xτ , zτ )}tτ=1. A new observation zt+1

made from robot pose Xt+1 can then be integrated into the
map estimation process using Bayes rule:

pt+1(m) ∝ p(zt+1 |m,Xt+1)pt(m). (2)

The goal is to choose a collision-free pose trajectory to
obtain maximally informative measurements for constructing
an accurate map. As shown by Julian et al. [18], maximizing
the Shannon Mutual Information (SMI) between the map m
and a sequence of potential future measurements zt+1:t+T

yields an efficient active mapping strategy. The SMI is
defined as:

I(m; zt+1:t+T | Xt+1:t+T ,Ht) :=∑
m∈2N

∫
· · ·
∫

p(m, zt+1:t+T | Xt+1:t+T ,Ht)×

log
p(m, zt+1:t+T | Xt+1:t+T ,Ht)

p(m | Ht)p(zt+1:t+T | Xt+1:t+T ,Ht)

T∏
τ=1

dzt+τ ,

(3)

where Ht represents the realized history of robot poses
and observations and, hence, does not appear as an inte-
gration variable. Throughout this paper, we assume that the
robot pose Xt is known for all t. The SMI is a function
I(.) : SE(3)T → R≥0 of the robot trajectory Xt+1:t+T

parameterized by Ht.

Problem. Given a map PMF pt(m) obtained from prior
robot poses and observations Ht and a finite planning
horizon T , find a pose trajectory Xt+1:t+T ∈ SE(3)T that
maximizes the SMI between the map m and the future
observations zt+1:t+T with PDF in (2):

max
Xt+1:t+T∈SE(3)T

(
I(m; zt+1:t+T |Xt+1:t+T ,Ht)− (4)

γcC(Xt+1:t+T )
)
,

where C(Xt+1:t+T ) is a penalty term capturing the cost of
collisions along Xt+1:t+T and γc ≥ 0 is the weight of the
collision penalty.

In the next section, we propose a differentiable approxi-
mation of the SMI function that can be utilized for gradient-
based optimization of (4).

III. PROPOSED METHOD

A. Notation

We overload (̂.) to denote the mapping from an axis-angle
vector θ ∈ R3 to a 3× 3 skew-symmetric matrix θ̂ ∈ so(3)
as well as from a vector ξ ∈ R6 to a 4× 4 twist matrix:

ξ =

[
ρ
θ

]
∈ R6 ξ̂ :=

[
θ̂ ρ
0⊤ 0

]
∈ se(3). (5)

We define an infinitesimal change of pose X ∈ SE(3)
using a right perturbation X exp(ξ̂) ∈ SE(3). The functions
log(.) : SE(3) → se(3) and (.)∨ : se(3) → R6 denote the
inverse mappings associated with exp(.) and (̂.), respectively.
Please refer to [19, Ch.7] for details.



B. One Step Ahead Planning

We first study the case where T = 1, i.e., the robot view
is optimized only one step into the future. The core idea
is to introduce the notion of a viewpoint grid, which is a
discrete set of candidate robot poses. Then, the SMI with
respect to an arbitrary robot pose is approximated as a linear
combination of the SMI with respect to the candidate poses
with a differentiable function with respect to an arbitrary
robot pose.

Definition 1. A viewpoint grid G is a set of robot poses
X ∈ SE(3) with position p ∈ R3 and orientation R ∈ SO(3)
such that (p,R) ∈ P × R, where P is the set of all map
cell centers and R is a finite set of orientations.

We approximate the SMI at pose X as a convex combi-
nation of the SMI computed over all poses in the view grid
G. Namely, I(m; z | X,Ht) ≈ Ĩ(m; z | X,Ht), and

Ĩ(m; z | X,Ht) :=
∑
V∈G

αV(X)I(m; z | V,Ht),

where
∑
V∈G

αV(X) = 1, ∀V ∈ G : 0 ≤ αV(X),
(6)

and αV(X) is a differentiable function with respect to robot
pose X. In practice, evaluating the SMI for all V ∈ G during
each planning phase would be computationally expensive.
Therefore, one needs to design a distance metric for αV(X)
that is only non-zero in close vicinity of the robot pose X.
The idea of pulling the robot pose X out of the SMI function
I(.) using a differentiable weighting function αV(X) makes
it possible to obtain non-zero derivatives for the approximate
SMI function Ĩ(.) with respect to the robot pose. Fig. 2
illustrates the SMI approximated from 3 viewpoints; note
how each viewpoint creates a ‘field’ of information in its
vicinity, while the approximate SMI equals the net influence
of all 3 viewpoints.

The differentiable property of the approximate SMI en-
ables gradient-based optimization of the robot pose in order
to generate maximally informative observations. This is done
via applying a small perturbation ψ ∈ R6 in the robot frame
to the pose X along the direction of the gradient with a step
size of l:

X(k+1) = X(k) exp(lψ̂(k)),

ψ(k) = ∇ψ Ĩ(m; z | X(k) exp(ψ̂),Ht)|ψ=0 (7)

=
∑
V∈G

∇ψαV(X(k) exp(ψ̂))|ψ=0I(m; z | V,Ht).

Note that the gradient is a 6-dimensional vector since the
robot pose in SE(3) has 6 degrees of freedom. In Sec. III-
D, we derive a closed form expression of the gradient for a
particular selection of the weighting function αV(X). The
gradient ascent rule of (7) concludes our method proposition
for finding the (locally) most informative next robot pose
when the planning horizon T is set to 1. In the following,
we discuss the case where we are interested in optimizing a
multi-step sequence of robot poses, given a history of prior
observations Ht.

𝛼V₁(X) I(m; z | V1, Ht)
𝛼V₂(X) I(m; z | V2, Ht) V1

V2

V3
𝛼V₃(X) I(m; z | V3, Ht) Ĩ(m; z | X, Ht)

Fig. 2: The SMI approximation via 3 viewpoints, colored differently
for each Vi, i ∈ {1, 2, 3}. The field of view of each viewpoint
determines their corresponding SMI I(m, z | Vi,Ht), while the
weight αVi(X) dictates the contribution of Vi to the approximated
SMI Ĩ(m, z | X,Ht), colored white.

C. Trajectory Optimization for Active Mapping

Here, we present the approximation of the SMI for a
trajectory, rather than a single robot pose. Analogous to
(6), we define the approximated SMI for robot trajectory
Xt+1:t+T as a convex combination over all trajectories in
the set GT . Namely, I(m; zt+1:t+T | Xt+1:t+T ,Ht) ≈
Ĩ(m; zt+1:t+T | Xt+1:t+T ,Ht), and

Ĩ(m; zt+1:t+T | Xt+1:t+T ,Ht) :=∑
V∈GT

AV(Xt+1:t+T )I(m; zt+1:t+T | V,Ht),
(8)

where the weighting function AV(Xt+1:t+T ) for a trajectory
V = Vt+1:t+T is defined as:

AV(Xt+1:t+T ) :=

T∏
τ=1

αVt+τ (Xt+τ ). (9)

The terms αVt+τ (Xt+τ ) follow the same properties as in (6),
making (8) a convex combination of the SMI terms. Com-
puting I(m; zt+1:t+T | V,Ht) requires integration over all
instances of combined observations zt+1:t+T and should be
repeated for all V ∈ GT , which is computationally infeasible
during the planning time. We aim to impose a structure on the
weighting function αVt+τ (Xt+τ ) that allows breaking down
I(m; zt+1:t+T | V,Ht) into independent additive terms. The
following conditions enable such a decomposition:

Condition 1. Given a robot pose X, αV(X) is non-zero
only for a subset Ḡ(X) ⊂ G of viewpoints within a distance
ξmax from X.

Condition 2. Let F ⊂ R3 be the unobstructed field of
view (FOV) of the sensor in robot frame with homogeneous
representation F̄ . Also, let U(X) := ∪V∈Ḡ(X)VF̄ ⊂ R3

be the union of all FOVs belonging to Ḡ(X) in the world
frame. This condition states that, for any pair of robot
poses Xi and Xj (i ̸= j) in trajectory Xt+1:t+T , we have
U(Xi) ∩ U(Xj) = ∅.



The above conditions are sufficient for decomposing the
approximate SMI of trajectory Xt+1:t+T to T independent
additive terms, resulting in a computationally feasible tra-
jectory optimization formula. The main idea comes from
the fact that, given the above conditions, observations zi
and zj (i ̸= j) made from viewpoints inside G(Xi) and
G(Xj), respectively, are independent random variables. In
practice, active sensors such as lasers have bounded FOV
which can meet these conditions. For passive sensors (e.g.
cameras), it is commonplace to limit the effective range since
the estimation accuracy diminishes as we get farther from the
sensor; leading to a limited applicable FOV.

Proposition 1. Under Cond. 1 and 2, the approximated SMI
can be expressed as the sum of individual SMI approxima-
tions for each pose in the trajectory Xt+1:t+T :

Ĩ(m; zt+1:t+T | Xt+1:t+T ,Ht) =
T∑

τ=1

Ĩ(m; zt+τ | Xt+τ ,Ht).
(10)

Proof. See Appendix A.

The result of Prop. 1 enables computationally feasible
trajectory optimization for robot exploration in an unknown
environment. Since each term in (10) is only dependent upon
a single pose in the trajectory, the gradient ascent rule in
(7) can be directly employed to update each robot pose
Xt+τ , τ ∈ {1, . . . , T}. In the following part, we introduce
a practical gradient-based solution to the problem of active
mapping stated in (4).

D. Active Mapping via Gradient Ascent
A key advantage of gradient-based optimization is the

possibility of adding various reward or penalty terms to the
objective function, enabling achievement of a more complex
optimization goal. We begin by defining the collision penalty
term C(Xt+1:t+T ) in the objective function of (4), which is
responsible for driving the optimized robot pose away from
obstacles within the environment. However, since we do not
know the map a priori, we resort to the estimation of the
map to extract the obstacles.

Definition 2. Let Êf (pt(m)) be the maximum-likelihood
estimation of the free space at time t. For a position p ∈ R3,
we define free distance as follows:

d(p, pt(m)) = min
b∈∂Êf (pt(m))

∥p− b∥2. (11)

It is important to consider that large mutual information
occurs near the boundary between the free space and the
unknown parts of the map [18]. Therefore, one should
seek a balance between large clearance from obstacles and
informativeness of observation made from the resulting robot
pose. We define the collision cost C(Xt+1:t+T ) as sum of
the log-values of inverse free distance for each pose Xt+τ

with position pt+τ in the trajectory:

C(Xt+1:t+T ) = −
T∑

τ=1

log (d(pt+τ , pt(m))). (12)

Using a logarithmic scale causes a large penalty for poses
close to obstacles, while it does not discourage approaching
the unknown region from a safe distance due to its sup-
pressed gradient over large inputs.

In addition to the collision cost, we add a penalty term
to the objective function to enforce Cond. (2) during each
planning phase, minimizing the overlap among the sensor
FOVs Xt+τ F̄ in the candidate trajectory. We consider a pair-
wise penalty term for poses within the trajectory as follows:

q(pi,pj) = max {0, 2δq − ∥pi − pj∥2}2

δq = |F|+ ξmax,
(13)

where pi and pj are robot positions for poses Xi and Xj ,
respectively, |F| is the diameter of F , and ξmax denotes
the maximum distance from robot pose X to a viewpoint in
Ḡ(X) (cf. Cond. 1). The penalty term (13) effectively dis-
courages the case where the 2-norm ball B(pi, δq) centered
around pi with radius δq coincides with B(pj , δq). Since
B(pi, δq) contains U(Xi), q(pi,pj) = 0 is sufficient to en-
sure Cond. (2) is not violated for a pair of poses Xi and Xj .
Note that Cond. (1) is an inherent property of the weighting
function αV(X) and can be evaluated offline. Putting all the
components together, the differentiable objective function for
gradient-based active mapping is expressed as follows:

f(Xt+1:t+T ) =
T∑

τ=1

( ∑
V∈Ḡ(Xt+τ )

αV(Xt+τ )[I(m; z | V,Ht)+

γc log(d(v, pt(m)))]− γq
2

T∑
τ ′=1
τ ′ ̸=τ

q(pt+τ ,pt+τ ′)

)
,

(14)

where v, pt+τ , and pt+τ ′ are the corresponding positions
of poses V, Xt+τ , and Xt+τ ′ .

So far we assumed a general definition for the differen-
tiable weighting function αV(X) that satisfies Cond. 1 and
2. We use the following definition for αV(X):

αV(X) =
υ(δ(ξX,V))(1 + cos δ(ξX,V))∑

U∈G υ(δ(ξX,U))(1 + cos δ(ξX,U))
, (15)

where δ(ξX,V) is the distance between poses V,X ∈SE(3):

δ(ξX,V) =
π

ξmax

√
ξ⊤X,VΓξX,V, ξX,V = log(X−1V)∨.

(16)
Here, Γ is a diagonal matrix containing positive coefficients
and ξX,V is the difference of two SE(3) poses in the local
frame of X. The indicator function υ(δ(ξX,V)) in (15)
is equal to one only when 0 ≤ δ(ξX,V) ≤ π and zero
otherwise, which in effect limits the SMI approximation to
the viewpoints within the radius ξmax from X, satisfying
Cond. 1. Note that the discontinuity of υ(δ(ξX,V) occurs at
the same point where 1 + cos δ(ξX,V) = 0; hence αv(X)
is differentiable with respect to all poses X ∈ SE(3). Fig. 3
shows an example of the accurate SMI evaluation at different
robot positions compared to the approximate SMI of (6)
using the weighting function of (15). Note that, while being
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Fig. 3: Example of the SMI approximation using (15). Top: Partially
known environment where black, white, and gray regions depict
occupied, free, and unknown areas. The robot equipped with a 180◦

range sensor moves along a straight line shown as the blue arrowed
segment. Bottom: Exact value of the SMI evaluated at each robot
position alongside approximate SMI values for various radii ξmax.

differentiable, the approximations follow the occlusion-aware
behavior of the exact SMI, i.e. they peak at the positions
where more of the unexplored region is visible. With αv(X)
specified as (15), we can compute a closed-form expression
for the gradient of the approximate SMI as follows.

Proposition 2. Using the weighting function of (15), the
gradient of the approximate SMI with respect to the robot
pose can be obtained as follows:

∇ψ Ĩ(m; z | X exp (ψ̂),Ht)|ψ=0 =

(
π

ξmaxη(X)

)2

× J⊤
R (ξX)

∑
V∈Ḡ(X)

ΛV(X)ξX,V,

ΛV(X) = [η(X)I(m; z | V,Ht)− β(X)]

× sin δ(ξX,V)

δ(ξX,V)
J⊤
R (−ξX,V)Γ,

η(X) = |Ḡ(X)|+
∑

U∈Ḡ(X)

cos δ(ξX,U),

β(X) =
∑

U∈Ḡ(X)

I(m; z | U,Ht)(1 + cos δ(ξX,U)),

ξX = log(X)∨,

(17)

where Ḡ(X) is the subset of viewpoints V ∈ G that
υ(δ(ξX,V)) = 1, and JR(.) is the right Jacobian of SE(3).

Proof. See Appendix B.

The objective function (14) can used with any Bayesian
sensing model (2). In the context of occupancy grid mapping
via a range sensor, the log-odds technique using a narrow
beam [1, Ch. 9] is a natural choice for the sensing model

which provides a computationally simple yet accurate repre-
sentation of the environment. Using such a model, the SMI
between the grid map and a beam z can be written as a
weighted sum of occlusion probabilities [14], [15], [18]:

I(m; z | X,Ht) =

NX∑
i=1

wi(Ht)p(i | Ht) (18)

where NX is the maximum number of map cells that can be
visited by a sensor beam emitted from pose X and p(i|Ht) is
the probability that the beam is occluded at i-th cell along its
path. Hence, the corresponding SMI expression is occlusion-
aware, namely the value of the mutual information is directly
controlled by whether or not the observations are occluded.

The benefit of using the occlusion-aware SMI formulation
of (18) comes with the computational burden of ray-tracing
during each evaluation of the SMI, since (18) requires
identifying the map cells along the observation beam. Going
back to the objective function (14), it is required to perform
B
∑T

τ=1 |Ĝ(Xt+τ )| ray-tracings for a range sensor with B
beams during every evaluation of f(Xt+1:t+T ). Since all
viewpoints in G are located at map cell centers, the ray-
tracing for a viewpoint V with position v and orientation R
can be obtained from a ray-tracing from the map origin with
the same orientation and simply translated by v. Considering
that all viewpoints in G have a fixed set of orientations R,
we skip online ray-tracing by computing |R| ray-tracings
from the origin only once and query ray-tracings by applying
translation v for each viewpoint V. To further accelerate
the optimization, we avoid repeated evaluations of I(m; z |
V,Ht) by storing the values for each viewpoint V until the
map is updated. For computing the free distance d(v, pt(m)),
we once again use the fact that all viewpoints are located at
map cell centers; therefore we can obtain d(v, pt(m)) from
the distance transform of Êf (pt(m)) in Def. 2 scaled by
the map resolution. This needs to be computed only once
for each planning step, since the distance transform provides
values of d(v, pt(m)) for all cell centers v.

Gradient-based optimization of the objective function (14)
allows local maximization of trajectory informativeness as
well as the distance from obstacles. Given an initial trajectory
which can be provided by frontier-based exploration [13],
we perform gradient ascent for nmax steps or until the
improvement in f(Xt+1:t+T ) is less than 0.1%. The out-
put of this optimization will be a kinematically feasible
trajectory X∗

t+1:t+T ∈ SE(3)T which can be tracked by a
low-level controller specified by the robot dynamics. Alg. 1
summarizes our procedure for occlusion and collision-aware
active mapping. We evaluate the performance of the proposed
method in the next section.

IV. EXPERIMENTS

In this section we evaluate the performance of our pro-
posed active mapping method in several simulated and
real-world experiments in comparison to baseline explo-
ration strategies: frontier-based exploration (Frontier) [13],
FSMI [14], SSMI [15], and optimized next best view using



Algorithm 1 Active Mapping via Gradient Ascent

Input: Xt, pt(m), T , nmax, pcrt
1: if pcrt is None then
2: pcrt = PRECOMPUTERAYTRACING()

3: d = DISTANCETRANSFORM(pt(m))
4: k ← 0
5: X

(k)
t+1:t+T = INITPATH(Xt, pt(m), T )

6: while not TERMINATE(f(X
(k)
t+1:t+T ), nmax) do

7: X
(k+1)
t+1:t+T = GRADASCENT(f(X

(k)
t+1:t+T ), pcrt,d)

8: k ← k + 1

9: return X
(k)
t+1:t+T

RRT (O-NBV-RRT) [10]. In Sec. IV-A, we perform 2-D
active mapping using the proposed method alongside the
baselines in a set of 10 randomly generated 2-D envi-
ronments. Sec. IV-B contains large-scale active mapping
using OctoMap representation [20] in a simulated 3-D Unity
environment. Lastly, in Sec. IV-C we demonstrate the per-
formance of our method in a real-world environment using
a wheeled ground robot.

Across all experiments, each method uses the log-odds
mapping from range measurements [1, Ch. 9] but selects
robot trajectories based on their own criteria. Moreover,
during each planning step for 2-D exploration, we identify
the frontiers using edge detection over the most likely map at
time t, i.e. the mode of pt(m). Then, we cluster the frontier
map cells by detecting the connected components. We plan
a path from robot pose Xt to the center of each frontier
using A∗ graph search to produce candidate paths for FSMI
and SSMI. For Frontier, we pick the path that maximizes the
ratio between the frontier size and path length. For O-NBV-
RRT, we pick the goal of the same path used by Frontier, but
instead plan an RRT path towards the goal. Our method also
uses the same path used by Frontier as the initial trajectory.
For exploration in 3-D environments, we first project the
most likely OctoMap at time t onto the ground level in
order to derive a 2-D occupancy map and proceed with
similar steps as in 2-D exploration. We selected maximum
size of neighboring viewpoints ξmax = 2, maximum number
of gradient ascent iterations nmax = 50, step size l = 10,
collision penalty weight of γc = 5× 10−4, and γq = 1. For
Γ in (16), we use a diagonal matrix with [1, 1, 0.1] as the
elements on the diagonal.

A. 2-D Active Mapping in Simulation

Here we compare our proposed method to Frontier, FSMI,
SSMI, and O-NBV-RRT. The experiments are performed in
10 randomly generated 2-D environments with dimensions
60m×60m and 3 random starting positions for each instance.
We consider a robot equipped with a LiDAR sensor of range
10m and 90◦ field of view where each measurement beam
is added with Gaussian noise of N (0, 0.1). Fig. 4 shows
the 2-D simulation results among all methods. We witness
superior exploration performance of our proposed method,
which can be attributed to the fact that our method applies
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Fig. 4: 2-D simulated active mapping performance compared among
various methods. The results are averaged over 10 randomly gen-
erated environments with 3 random starting positions. The dashed
lines represent ±0.25σ deviation from the mean.

occlusion-aware optimization for each pose in a candidate
trajectory; resulting in high utilization of information gath-
ering opportunities. The subpar performance of O-NBV-RRT
can be caused by the fact that O-NBV-RRT does not account
for sensor noise during pose optimization. Robot trajectories
obtained by Frontier, FSMI, and SSMI are computed using
A∗ search, and no further optimization is performed over
single robot poses along the trajectory; resulting in a very
restricted set of candidate solutions.

B. Exploration in 3-D Unity Simulation

In this part, we test our proposed method in a photo-
realistic 3-D Unity simulated environment, shown in Fig. 5e.
We use a Husky robot equipped with a depth camera that
provides a 3-D point cloud used for building an OctoMap.
OctoMap [20] is occupancy grid mapping method based
on OcTree data structure and the log-odds technique that
provides a scalable way to store the 3-D map for large
environments through compressing the map cells with similar
occupancy probability. For experiments in 3-D environments,
we operate our proposed method in two different modes. In
the first mode (Exp-2D), we project both the OctoMap and 3-
D point clouds onto the z = 0 surface, obtaining a 2-D repre-
sentation of the map and the observations. Then we compute
informative trajectories similar to the 2-D active mapping in
Sec. IV-A. By executing the optimal trajectory, we receive
new 3-D point cloud observations that incrementally update
the OctoMap. The first mode of active mapping only requires
ray-tracing in a 2-D grid map, saving computation time while
trading for accuracy in evaluating mutual information. In the
second mode (Exp-3D), we directly use the 3-D sensor model
for ray-tracing within the OctoMap. This mode of operation
is expected to evaluate mutual information more accurately
since the exact sensor model and 3-D occlusion have been
taken into account. Fig. 5 shows several exploration iterations
of active mapping process using Exp-3D. Furthermore, we
compare our method with FSMI, where run length encoding
is utilized for accelerated evaluation of the SMI over an
OcTree. Fig. 6. (top) shows simulation results for exper-
iments in the 3-D Unity environment for 20 exploration
iterations. We observe Exp-2 finds a good balance between
exploration efficiency and computation time; while Exp-3D



(a) The robot begins exploration. (b) During the first 3 iterations, the robot tries
to build the map of its immediate vicinity.

(c) The robot explores the boundaries of the
known region at iteration 10.

(d) OctoMap after 20 exploration iterations (e) Photo-realistic Unity simulation environment

Fig. 5: Time lapse of 3-D active mapping using the proposed method in simulated Unity environment. The robot receives depth
measurements using an RGBD camera, and incrementally builds an OctoMap as it explores the unknown environment.

TABLE I: Clearance from obstacles compared between Frontier and
our proposed method averaged over 20 exploration iterations.

Algorithm 3-D Unity Simulation Real World
Frontier 1.2 m 0.48 m
Exp-2D 3.9 m 1.7 m
Exp-3D 3.4 m 1.84 m

is slightly more efficient in terms of distance traveled, it takes
longer computation time to perform exploration compared
to Exp-2D. This comes from the fact that the objects in the
simulation have a uniform profile in the z direction, hence the
information in the 2-D and 3-D maps are almost the same.
TABLE. I (middle column) compares the average clearance
from the obstacles among different methods. Compared
to Frontier, it is clear that the proposed method chooses
informative trajectories that avoid approaching obstacles.

C. Real-world Experiments

We deployed Exp-2D and Exp-3D on a ground wheeled
robot to autonomously explore an indoor environment. The
robot was equipped with an NVIDIA Xavier NX GPU, a
Hokuyo UST-10LX LiDAR, and an Intel RealSense D435i
RGBD camera. We implemented our software stack using
Robot Operating System (ROS) [21]. Robot localization was
carried out using ICP scan matching of LiDAR measure-
ments [22]. 3-D point clouds from the depth images were
used to build an OctoMap. The complete implementation
was able to update the OctoMap every 0.11s on average.
Fig. 6. (bottom) and TABLE. I (right column) show the per-
formance of active mapping for 20 exploration iterations and
the average clearance from obstacles, respectively. The real-
world experiments confirm the findings in the simulations in
terms of the efficiency of the proposed method.

V. CONCLUSION

This paper developed a differentiable approximation of the
Shannon mutual information between a probabilistic occu-
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Fig. 6: 3-D active mapping performance compared between Fron-
tier, FSMI, and our method for 20 exploration iterations. Exp-2D
uses a projected 2-D perception model for planning, while Exp-
3D performs ray-tracing directly on the OctoMap. Top row: Unity
simulation environment. Bottom row: Real-world experiments.

pancy grid map and range sensor measurements. Our for-
mulation enables gradient-based optimization of informative
occlusion-aware sensing trajectories in 3-D and allows the
inclusion of additional differentiable penalty terms, such as
collision cost. We demonstrated in simulated and real-world
experiments that our method outperforms the state-of-the-art
techniques due to its ability to optimize the sensing views
in continuous space. In a future work, we will investigate



extending the proposed method to multiple agents, where we
expect gradient-based optimization to also be significantly
more efficient than discrete space search.

APPENDIX A PROOF OF PROP. 1

Cond. (1) and (2) effectively state that for any pair of
viewpoints V ∈ Ĝ(Xi) and U ∈ Ĝ(Xj), the two sets of map
cells inside the FOVs of V and U do not intersect. This is
true since the spaces inside VF̄ and UF̄ are always subsets
of U(Xi) and U(Xj), respectively, while Cond. (2) states
that U(Xi) ∩ U(Xj) = ∅. Consequently, the observations
made from V and U are independent random variables,
resulting in the following decomposition of the SMI:

I(m; zv, zu | V,U,Ht) =

I(m; zv | V,Ht) + I(m; zu | U,Ht).

Following Cond. (2), the above decomposition can be applied
for any set of viewpoints V := Vt+1:t+T where Vt+τ ∈
Ĝ(Xt+τ ), τ ∈ {1, . . . , T}. Hence we have:

T∑
τ=1

∑
V∈GT

AV(Xt+1:t+T )I(m; zt+τ | Vt+τ ,Ht) =

T∑
τ=1

Ĩ(m; zt+τ | Xt+τ ,Ht)
∑

V−Vt+τ∈GT−1

AV(Xt+1:t+T )

αVt+τ
(Xt+τ )

.

Based on the definition of AV(Xt+1:t+T ), the inner sum is
equal to 1, which yields the expression in (8).

APPENDIX B PROOF OF PROP. 2

Since the approximate SMI in (6) is linear with respect
to αV(X) terms, the overall gradient computation can be
reduced to a weighted sum of individual gradients of αV(X)
with respect to robot pose X. Also, it is only needed to
compute gradients for viewpoints where υ(δ(ξX,V)) = 1
since the rest of the viewpoints do not affect the derivations:

[∇ψαV(X exp (ψ̂))]|⊤ψ=0 =
∂ cos δ(ξX exp (ψ̂),V)

∂ψ η(X)− (1 + cos δ(ξX,V))∂η(X exp (ψ̂))
∂ψ

η2(X)
,

where η(X) is defined in (17). Both partial derivations in the
numerator require computing

∂ cos δ(ξX exp (ψ̂),V)

∂ψ . Applying
the chain rule, we have:

∂ cos δ(ξX exp (ψ̂),V)

∂ψ
=

∂ cos δ

∂δ

∣∣∣∣
δ=δ(ξX,V)

× ∂δ(ξ)

∂ξ

∣∣∣∣
ξ=ξX,V

∂ log(exp(−ψ̂)X−1V)∨

∂ψ

∣∣∣∣
ψ=0

.

The first two partial derivatives can be obtained via differen-
tiation in R and R6, respectively. The last partial derivative
can be obtained via applying small perturbation ψ in the
robot frame:

∂ log(exp(−ψ̂)X−1V)∨

∂ψ

∣∣∣∣
ψ=0

= JR(−ξX,V)JR(ξX).

Summing over all V ∈ Ĝ leads to the expression in (17).

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press
Cambridge, 2005.

[2] B. J. Julian, “Mutual information-based gradient-ascent control for
distributed robotics,” Ph.D. dissertation, Massachusetts Institute of
Technology, 2013.

[3] J. Maver and R. Bajcsy, “Occlusions as a guide for planning the next
view,” IEEE transactions on pattern analysis and machine intelligence,
vol. 15, no. 5, pp. 417–433, 1993.

[4] N. Atanasov, B. Sankaran, J. Le Ny, G. J. Pappas, and K. Daniilidis,
“Non-myopic view planning for active object classification and pose
estimation,” IEEE Transactions on Robotics, vol. 30, no. 5, pp. 1078–
1090, 2014.

[5] H. Ma, W. Zou, S. Sun, Z. Zhu, and Z. Kang, “FOV constraint region
analysis and path planning for mobile robot with observability to
multiple feature points,” International Journal of Control, Automation
and Systems, vol. 19, no. 11, pp. 3785–3800, 2021.

[6] S. Koga, A. Asgharivaskasi, and N. Atanasov, “Active Exploration and
Mapping via Iterative Covariance Regulation over Continuous SE(3)
Trajectories,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2021, pp. 2735–2741.

[7] R. Rocha, J. Dias, and A. Carvalho, “Cooperative multi-robot systems:
A study of vision-based 3-d mapping using information theory,”
Robotics and Autonomous Systems, vol. 53, no. 3-4, pp. 282–311,
2005.

[8] B. Charrow, G. Kahn, S. Patil, S. Liu, K. Goldberg, P. Abbeel,
N. Michael, and V. Kumar, “Information-theoretic planning with
trajectory optimization for dense 3d mapping.” in Robotics: Science
and Systems, vol. 11, 2015, pp. 3–12.

[9] B. Charrow, S. Liu, V. Kumar, and N. Michael, “Information-theoretic
mapping using Cauchy-Schwarz quadratic mutual information,” in
IEEE Int. Conf. on Robotics and Automation (ICRA), 2015.

[10] D. Deng, R. Duan, J. Liu, K. Sheng, and K. Shimada, “Robotic explo-
ration of unknown 2d environment using a frontier-based automatic-
differentiable information gain measure,” in IEEE/ASME International
Conference on Advanced Intelligent Mechatronics (AIM), 2020, pp.
1497–1503.

[11] D. Deng, Z. Xu, W. Zhao, and K. Shimada, “Frontier-based automatic-
differentiable information gain measure for robotic exploration of
unknown 3d environments,” arXiv preprint arXiv:2011.05288, 2020.

[12] S. Shen, N. Michael, and V. Kumar, “Stochastic differential equation-
based exploration algorithm for autonomous indoor 3d exploration
with a micro-aerial vehicle,” The International Journal of Robotics
Research (IJRR), vol. 31, no. 12, pp. 1431–1444, 2012.

[13] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in IEEE International Symposium on Computational Intelligence in
Robotics and Automation, 1997, pp. 146–151.

[14] Z. Zhang, T. Henderson, V. Sze, and S. Karaman, “Fsmi: Fast
computation of Shannon mutual information for information-theoretic
mapping,” in IEEE Int. Conf. on Robotics and Automation (ICRA),
2019, pp. 6912–6918.

[15] A. Asgharivaskasi and N. Atanasov, “Active Bayesian Multi-class
Mapping from Range and Semantic Segmentation Observations,” in
IEEE Int. Conf. on Robotics and Automation (ICRA), 2021.

[16] J. Knuth and P. Barooah, “Collaborative 3d localization of robots from
relative pose measurements using gradient descent on manifolds,” in
IEEE Int. Conf. on Robotics and Automation (ICRA), 2012.

[17] N. Mizuno, K. Ohno, R. Hamada, H. Kojima, J. Fujita, H. Amano,
T. Westfechtel, T. Suzuki, and S. Tadokoro, “Enhanced path smoothing
based on conjugate gradient descent for firefighting robots in petro-
chemical complexes,” Advanced Robotics, vol. 33, no. 14, pp. 687–
698, 2019.

[18] B. J. Julian, S. Karaman, and D. Rus, “On mutual information-based
control of range sensing robots for mapping applications,” in IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2013.

[19] T. D. Barfoot, State Estimation for Robotics. Cambridge University
Press, 2017.

[20] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, 2013, software available at
https://octomap.github.io.

[21] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng, et al., “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open-source Software, 2009.

[22] A. Censi, “An ICP variant using a point-to-line metric,” in IEEE Int.
Conf. on Robotics and Automation (ICRA), 2008, pp. 19–25.


