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Abstract— Many robot applications call for autonomous ex-
ploration and mapping of unknown and unstructured envi-
ronments. Information-based exploration techniques, such as
Cauchy-Schwarz quadratic mutual information (CSQMI) and
fast Shannon mutual information (FSMI), have successfully
achieved active binary occupancy mapping with range mea-
surements. However, as we envision robots performing complex
tasks specified with semantically meaningful objects, it is neces-
sary to capture semantic categories in the measurements, map
representation, and exploration objective. This work develops
a Bayesian multi-class mapping algorithm utilizing range-
category measurements. We derive a closed-form efficiently
computable lower bound for the Shannon mutual information
between the multi-class map and the measurements. The bound
allows rapid evaluation of many potential robot trajectories for
autonomous exploration and mapping. We compare our method
against frontier-based and FSMI exploration and apply it in a
3-D photo-realistic simulation environment.

I. INTRODUCTION

Real-time understanding, accurate modeling, and efficient
storage of a robot’s environment are key capabilities for
autonomous operation. Occupancy grid mapping [1], [2]
is a simple, yet widely used and effective, technique for
distinguishing between traversable and occupied space sur-
rounding a mobile robot. However, as our vision of dele-
gating increasingly sophisticated tasks to autonomous robots
expands, so should the representation power of online map-
ping algorithms. Augmenting traditional geometric models
with semantic information about the context and object-
level structure of the environment has become a mainstream
problem in robotics [3]–[5]. Robots are also increasingly
expected to operate in unknown environments, with little
to no prior information, in applications such as disaster re-
sponse, environmental monitoring, and reconnaissance. This
calls for algorithms allowing robots to autonomously explore
unknown environments and construct low-uncertainty metric-
semantic maps in real-time, while taking collision and visi-
bility constraints into account.

This paper considers the active metric-semantic mapping
problem, requiring a robot to explore and map an unknown
environment, relying on streaming distance and object cate-
gory observations, e.g., generated by semantic segmentation
over RGBD images [6]. Our approach extends information-
theoretic active mapping techniques [7]–[9] from binary
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Fig. 1: A robot autonomously explores an unknown environment
using an RGBD sensor and a semantic segmentation algorithm.

to multi-class environment representations. We introduce a
Bayesian multi-class mapping procedure which maintains a
probability distribution over semantic categories and updates
it via a probabilistic range-category perception model. Our
main contribution is the derivation of a closed-form ef-
ficiently computable lower bound for the Shannon mutual
information between a multi-class occupancy map and a set
of range-category measurements. This lower bound allows
rapid evaluation of many potential robot trajectories online
to (re-)select one that leads to the best trade-off between
uncertainty reduction and efficient exploration of the metric-
semantic map. Unlike traditional class-agnostic exploration
methods, our model and information measure incorporate
the uncertainty of different semantic classes, leading to
faster and more accurate exploration. The proposed approach
relies on general range and class measurements and general
motion kinematics, making it suitable for either ground or
aerial robots, equipped with either camera or Lidar sensors,
exploring either indoor or outdoor environments.

II. RELATED WORK

Frontier-based exploration [10] is a seminal work that
highlights the utility of autonomous exploration and active
mapping. It inspired methods [11], [12] that rely on geo-
metric features, such as the boundaries between free and
unknown space (frontiers) and the volume that would be
revealed by new sensor observations. Due to their intuitive
formulation and low computational requirements, geometry-
based methods continue to be widely employed in active
perception [13]–[15].

Alternative techniques for active mapping use proba-
bilistic environment models and information-theoretic utility
functions to measure and minimize the model uncertainty.



The work by Elfes [16] is among the first to propose an
information-based utility function. Unlike geometry-based
approaches, information-theoretic exploration can be directly
formulated for active simultaneous localization and mapping
(SLAM) [17]–[24], aiming to determine a sensing trajectory
that balances robot state uncertainty and visitation of un-
explored map regions. Julian et al. [7] prove that, for range
measurements and known robot position, the Shannon mutual
information is maximized over trajectories that visit unex-
plored areas. However, without imposing further structure
over the perception model, computing the mutual information
requires numerical integration over the potential sensor mea-
surements, limiting the use of information-theoretic explo-
ration in practice. The need for efficient mutual information
computation becomes evident in 3-D environments. Cauchy-
Schwarz quadratic mutual information (CSQMI) [8] and fast
Shannon mutual information (FSMI) [9] offer efficiently
computable closed-form objectives for active occupancy
mapping with range measurements. Henderson et al. [25]
propose an even faster computation based on a recursive
expression for Shannon mutual information in continuous
maps.

This paper is most related to CSQMI [8] and FSMI [9]
in that it develops a closed-form expression for mutual in-
formation. However, instead of a binary map and range-only
measurements, our formulation considers a multi-class map
with Bayesian updates from range-category measurements.
Since transforming a multi-class map to an occupancy map is
a many-to-one relationship, the information associated with
various object classes will fail to be captured if we solely
rely on occupancy information, as the case in CSQMI and
FSMI. Therefore, we expect to perform exploration more
efficiently by utilizing the multi-class perception model,
and consequently, expanding the concept of uncertainty to
multiple classes.

III. PROBLEM STATEMENT

Consider a robot with pose Xt ∈ SE(3) at time t and
deterministic discrete-time kinematics:

Xt :=

[
Rt pt
0> 1

]
, Xt+1 = Xt exp (ût), (1)

where Rt ∈ SO(3) is the robot orientation, pt ∈ R3 is
the robot position, and ut := [v>t ,ω

>
t ]
> ∈ U ⊂ R6 is

the control input, consisting of linear velocity vt ∈ R3 and
angular velocity ωt ∈ R3. The function (̂·) : R6 → se(3)
maps vectors in R6 to the Lie algebra se(3). The robot
is navigating in an environment represented as a collection
of disjoint sets Ek ⊂ R3, each associated with a semantic
category k ∈ K := {0, 1, . . . ,K}. Let E0 denote free space,
while each Ek for k > 0 represents a different category, such
as buildings, animals, terrain (see Fig. 1).

We assume that the robot is equipped with a sensor
that provides the distance to and semantic categories of
surrounding objects along a set of rays F := {ηb}b, where b
is the ray index, ηb ∈ R3 with ‖ηb‖2 = rmax, and rmax > 0
is the maximum sensing range.

Definition 1. A sensor observation at time t from robot
pose Xt is a collection Zt := {zt,b}b of range and category
measurements zt,b := (rt,b, yt,b) ∈ R≥0×K, acquired along
the sensor rays Rtηb with ηb ∈ F at robot position pt.

Such information may be obtained by processing the
observations of an RGBD camera or a Lidar with a semantic
segmentation algorithm [6]. The goal is to construct a multi-
class map m of the environment based on the labeled range
measurements. We model m as a grid of cells mi, i ∈
I := {1, . . . , N}, each labeled with a category mi ∈ K.
In order to model noisy sensor observations, we consider
a probability density function (PDF) p(Zt | m,Xt). This
observation model allows integrating the measurements into
a probabilistic map representation using Bayesian updates.
Let pt(m) := p(m | Z1:t,X1:t) be the PDF of the map m
given the robot trajectory X1:t and observations Z1:t up to
time t. Given a new observation Zt+1 obtained from robot
pose Xt+1, the Bayesian update to the map PDF is:

pt+1(m) ∝ p(Zt+1|m,Xt+1)pt(m). (2)

We assume that the robot pose is known and omit the
dependence of the map distribution and the observation
model on it for brevity. We consider the following problem.

Problem. Given a prior map PDF pt(m) and a finite
planning horizon T , find a control sequence ut:t+T−1 for
the model in (1) that maximizes the ratio of mutual in-
formation I (m;Zt+1:t+T | Z1:t) between the map m and
future sensor observations Zt+1:t+T and the motion cost
J(Xt:t+T−1,ut:t+T−1) > 0 of the planned robot trajectory:

max
ut:t+T−1

I (m;Zt+1:t+T | Z1:t)

J(Xt:t+T−1,ut:t+T−1)
subject to (1), (2). (3)

The precise definitions of the mutual information and
motion cost terms above are:

I (m;Zt+1:t+T |Z1:t) :=
∑

m∈KN

∫
· · ·
∫
p(m,Zt+1:t+T |Z1:t)

× log
p(m,Zt+1:t+T | Z1:t)

p(m|Z1:t)p(Zt+1:t+T |Z1:t)

T∏
τ=1

∏
b

dzt+τ,b (4)

J(Xt:t+T−1,ut:t+T−1) := q(Xt+T ) +

T−1∑
τ=0

c(Xt+τ ,ut+τ ),

where q(X), c(X,u) > 0 model terminal and stage motion
costs (e.g., distance traveled, elapsed time), respectively.

We develop a multi-class extension to the log-odds occu-
pancy mapping algorithm [26, Ch. 9] in Sec. IV and derive
an efficient approximation to the mutual information term in
Sec. V. This allows us to evaluate potential robot trajectories
online and (re-)select the one that maximizes the objective
in (3), leading to efficient active multi-class mapping.

IV. BAYESIAN MULTI-CLASS MAPPING

This section derives the Bayesian update in (2), using a
multinomial logit model to represent pt(m). To ensure that



the number of parameters in the model scales linearly with
the map size N , we maintain a factorized PDF over the cells:

pt(m) =

N∏
i=1

pt(mi). (5)

We represent the individual cell PDFs pt(mi) over K using
a vector of log odds:

ht,i :=
[
log pt(mi=0)

pt(mi=0) · · · log pt(mi=K)
pt(mi=0)

]>
∈ RK+1, (6)

where the free-class likelihood pt(mi = 0) is used as a pivot.
Given the log-odds vector ht,i, the PDF of cell mi may be
recovered using the softmax function σ : RK+1 7→ RK+1:

pt(mi = k) = σk+1(ht,i) :=
e>k+1 exp(ht,i)

1> exp(ht,i)
, (7)

where ek is the standard basis vector with k-th element equal
to 1 and 0 elsewhere, and 1 is the vector with all elements
equal to 1. To derive Bayes rule for the log-odds ht,i, we
need to specify an observation model for the measurements.

Definition 2. The inverse observation model of a range-
category measurement z obtained from robot pose X along
sensor ray η ∈ F with respect to map cell mi is a probability
density function p(mi|z;X,η).

The Bayesian update in (2) for ht,i can be obtained
in terms of the range-category inverse observation model,
evaluated at the new measurement set Zt+1.

Proposition 1. Let ht,i be the log odds of cell mi at time t.
Given sensor observation Zt+1, the posterior log-odds are:

ht+1,i = ht,i +
∑

z∈Zt+1

(li(z)− h0,i) (8)

where li(z) is the inverse observation model log odds:

li(z) :=
[
log p(mi=0|z)

p(mi=0|z) · · · log p(mi=K|z)
p(mi=0|z)

]>
. (9)

Proof. See Appendix A.

To complete the Bayesian multi-class mapping algorithm
suggested by (8) we need a particular inverse observation
model. When a sensor measurement is generated, the sensor
ray continues to travel until it hits an obstacle of category
K \ {0} or reaches the maximum sensing range rmax. The
resulting labeled range measurement z = (r, y) indicates that
map cell mi is occupied if the measurement end point p+
r

rmax
Rη lies in the cell. If mi lies along the sensor ray but

does not contain the end point, it is observed as free. Finally,
if mi is not intersected by the sensor ray, no information
is provided about its occupancy. The map cells along the
sensor ray can be determined by a rasterization algorithm,
such as Bresenham’s line algorithm [27]. We parameterize
the inverse observation model log-odds vector as:

li((r, y)) :=


φ+ +Ey+1ψ

+, r indicates mi is occupied,
φ−, r indicates mi is free,
h0,i, otherwise, (10)

where Ek := eke
>
k and ψ+,φ−,φ+ ∈ RK+1 are parameter

vectors, whose first element is 0 to ensure that li(z) is a
valid log-odds vector. This parameterization leads to inverse
observation model p(mi = k|z) = σk+1(li(z)), which is
piece-wise constant along the sensor ray.

Prop. 1 provides a probabilistic basis to expand the occu-
pancy grid representation to a multi-class description of the
environment, where the Shannon entropy H[mi | Z1:t] of a
map cell depends on the probability of each class pt(mi =
k), instead of only the occupancy probability 1−pt(mi = 0).
Moreover, the inverse observation model of (10) can contain
a different probability of detection for each class which can
be used to prioritize exploration among different classes.
To compute the mutual information between an observation
sequence Zt+1:t+T and the map m in the next section, we
will also need the PDF of a range-category measurement
zτ,b ∈ Zt+1:t+T conditioned on Z1:t. Let Rτ,b(r) ⊂ I
denote the set of map cell indices along the ray Rτηb
from the robot position pτ with length r. Let γτ,b(i) denote
the distance traveled by the ray Rτηb within cell mi and
i∗τ,b ∈ Rτ,b(r) denote the index of the cell hit by zτ,b. We
define the PDF of zτ,b = (r, y) conditioned on Z1:t as:

p(zτ,b|Z1:t) =
pt(mi∗τ,b

= y)

γτ,b(i∗τ,b)

∏
i∈Rτ,b(r)\{i∗τ,b}

pt(mi = 0). (11)

This definition states that the likelihood of zτ,b = (r, y) at
time t depends on the likelihood that the cells mi along
the ray Rτηb of length r are empty and the likelihood that
the hit cell mi∗τ,b

has class y. A similar model for binary
observations has been used in [7]–[9]. Knowing how an
observation affects the map PDF pt(m), we now switch
our focus to computing of the mutual information between
a sequence of observations Zt+1:t+T and the multi-class
occupancy map m.

V. INFORMATIVE PLANNING

Computing the mutual information term in (4) is challeng-
ing because it involves integration over all possible values
of the observation sequence Zt+1:t+T . Our main result is an
efficiently computable lower bound on I (m;Zt+1:t+T |Z1:t)
for range-category observations Zt+1:t+T and a multi-class
occupancy map m. The result is obtained by selecting a
subset Zt+1:t+T = {zτ,b}t+T,Bτ=t+1,b=1 of the observations
Zt+1:t+T in which the sensor rays are non-overlapping.
Precisely, any pair of measurements zτ,b, zτ ′,b′ ∈ Zt+1:t+T

satisfies:
Rτ,b(rmax) ∩Rτ ′,b′(rmax) = ∅. (12)

In practice, constructing Zt+1:t+T requires removing inter-
secting rays from Zt+1:t+T to ensure that the remaining
observations are mutually independent. Consequently, the
mutual information between m and Zt+1:t+T can be ob-
tained as a sum of mutual information terms between single
rays zτ,b ∈ Zt+1:t+T and map cells mi observed by zτ,b.
This idea is inspired by CSQMI [8] but we generalize their
results to multi-class observations and map.



Algorithm 1 Information-theoretic Path Planning

Input: Xt, pt(m)
1: F = FINDFRONTIERS(pt(m))
2: for f ∈ F do
3: Xt+1:t+T ,ut:t+T−1 = PLANPATH(Xt, pt(m), f)
4: Compute (3) over Xt:t+T ,ut:t+T−1 via Prop. (2)
5: return X∗t:t+T , u∗t:t+T−1 with highest value

Proposition 2. Given a sequence of labeled range observa-
tions Zt+1:t+T , let Zt+1:t+T = {zτ,b}t+T,Bτ=t+1,b=1 be a subset
of non-overlapping measurements that satisfy (12). Then, the
Shannon mutual information between Zt+1:t+T and a multi-
class occupancy map m can be lower bounded as:

I(m;Zt+1:t+T |Z1:t) ≥ I
(
m;Zt+1:t+T |Z1:t

)
=

t+T∑
τ=t+1

B∑
b=1

K∑
k=1

Nτ,b∑
n=1

pτ,b(n, k)Cτ,b(n, k),
(13)

where Nτ,b := |Rτ,b(rmax)|,

pτ,b(n, k) := pt(mi∗τ,b
= k)

∏
i∈R̃τ,b(n)\{i∗τ,b}

pt(mi = 0),

Cτ,b(n, k) := f(φ+ +Ek+1ψ
+ − h0,i∗τ,b

,ht,i∗τ,b)

+
∑

i∈R̃τ,b(n)\{i∗τ,b}

f(φ− − h0,i,ht,i),

f(φ,h) := log

(
1> exp(h)

1> exp(φ+ h)

)
+ φ>σ(φ+ h),

and R̃τ,b(n) ⊆ Rτ,b(rmax) is the set of the first n map
cell indices along the ray Rτηb, i.e., R̃τ,b(n) := {i | i ∈
Rτ,b(r), |Rτ,b(r)| = n, r ≤ rmax}.
Proof. See Appendix B.

Prop. 2 allows evaluating the informativeness according to
(3) of any potential robot trajectory Xt:t+T , ut:t+T−1. We
use a motion planning algorithm to obtain a set of trajectories
to the map frontiers, determined from the current map PDF
pt(m). Alg. 1 summarizes the procedure for determining
a state-control trajectory X∗t:t+T , u∗t:t+T−1 that maximizes
the objective in (3), where J(Xt:t+T−1,ut:t+T−1) is the
length of the corresponding path. This kinematically feasible
trajectory can be tracked by a low-level controller that takes
the robot dynamics into account. We evaluate the proposed
active multi-class mapping algorithm next.

VI. EXPERIMENTS

We compare our active multi-class mapping algorithm
against two baseline exploration strategies: frontier-based
exploration (Frontier) [10] and FSMI [9]. We compare the
methods in an active binary mapping scenario in Sec. VI-
A and active multi-class mapping scenario in Sec. VI-B.
All three methods use our range-category sensor model in
(10) and our Bayesian multi-class mapping in (8) but select
informative robot trajectories Xt:t+T , ut:t+T−1 based on
their own criteria. Finally, in Sec. VI-C, we apply our method
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Fig. 2: Synthetic environments used for comparisons among
frontier-based exploration [10], FSMI [9], and our approach. Dif-
ferent semantic categories are represented by distinct colors.
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Fig. 3: Simulation results for active binary occupancy mapping
(top) and active multi-class occupancy mapping (bottom) on the
environments in Fig. 2. In both cases, the results are averaged over
5 random experiments with random initial robot pose.

in a 3-D simulated Unity environment to demonstrate large-
scale realistic active multi-class mapping.

To identify frontiers we apply edge detection on the most
likely map at time t (the mode of pt(m)). Then, we cluster
the edge cells by detecting the connected components of the
boundaries between explore and unexplored space. We plan
a path from the robot pose Xt to the center of each frontier
using A∗ graph search. To ensure feasibility of the planned
paths, we fit a piece-wise polynomial trajectory to each path
and provide it to a low-level controller to generate ut:t+T−1.

A. 2-D Binary Exploration

We consider active binary occupancy mapping first. We
compare our method against Frontier and FSMI in synthetic
2-D environments (Fig. 2). A 2-D LiDAR sensor is simu-
lated with additive Gaussian noise N (0, 0.03). Fig. 3 (top)
compares the map entropy reduction per distance traveled
among the three methods. Our method performs similarly to
FSMI in that both achieve low map entropy by traversing
significantly less distance compared to Frontier.

B. 2-D Multi-class Exploration

Next, we use the same 2-D environments in Fig. 2 but in-
troduce range-category measurements. Range measurements
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Fig. 4: (top): Entropy versus time for 3-D simulations. The flat
line segments represent the planning phase. (bottom): Precision for
observed semantic classes.

are subject to additive Gaussian noiseN (0, 0.03), while cate-
gory measurement have a uniform misclassification probabil-
ity of 0.2. Fig. 3 (bottom) compares the multi-class entropy
reduction per distance travelled for all three strategies. Our
method reaches the same level of map entropy as FSMI and
Frontier but traverses a noticeable shorter distance. This can
be attributed to the fact that only our method distinguishes
map cells whose occupancy probabilities are the same but
their per-class probabilities differ from each other.

C. 3-D Multi-class Exploration

Finally, we evaluate our active multi-class mapping algo-
rithm in a photo-realistic 3-D Unity simulation, shown in
Fig. 5 (f). We use a Husky robot equipped with an RGBD
camera and run a semantic segmentation algorithm over the
RGB images. The range measurements have an additive
Gaussian noise of N (0, 0.1). The semantic segmentation
algorithm detects the true class with a probability of 0.95.
We implemented an extension of the OctoMap algorithm
[28], formulating our multi-class mapping and information
computation approach over an octree data structure, to scale
our method to large 3-D environments. The octree map is
compressed by merging cells whose multi-class probabil-
ities reach the same max or min threshold. This allows
compressing the majority of the free cells into few large
cells. The details of the octree implementation of the active
multi-class mapping algorithm will be presented in a follow-
up paper. Fig. 5 (a)-(e) shows several iterations of the
exploration process. Fig. 4 shows the change in map entropy
versus elapsed time and the classification precision for every
observed semantic class.

VII. CONCLUSION

This paper developed techniques for active multi-class
mapping using range and semantic segmentation observa-
tions. Our results enable efficient mutual information compu-
tation over multi-class maps and make it possible to optimize
for per-class uncertainty. Our experiments show that the pro-
posed method performs on par with the state of the art FSMI

method in binary active mapping scenarios. However, when
semantic information is considered our method outperforms
existing algorithms and leads to efficient exploration and
accurate multi-class mapping. Our future work will develop
an octree extension of the probabilistic multi-class grid map
and closed-form mutual information computation, allowing
our methods to scale to very large environments.

APPENDIX A PROOF OF PROP. 1

Applying Bayes rule in (2) and the factorization in (5) to
pt(m) for some z ∈ Zt+1 leads to:

N∏
i=1

p(mi|Z1:t, z) =
p(z)

p(z|Z1:t)

N∏
i=1

p(mi|z)
p(mi)

p(mi|Z1:t). (14)

The term p(z)
p(z|Z1:t)

may be eliminated by considering the odds
ratio of the cell probabilities:
N∏
i=1

p(mi = ki|Z1:t, z)

p(mi = 0|Z1:t, z)

=

N∏
i=1

p(mi = ki|z)
p(mi = 0|z)

p(mi = 0)

p(mi = ki)

p(mi = ki|Z1:t)

p(mi = 0|Z1:t)
.

(15)

Since each term in both the left- and right-hand side products
only depends on one map cell mi, the expression holds for
each individual cell. Re-writing the expression for cell mi in
vector form, with elements corresponding to each possible
value of ki ∈ K, and taking an element-wise log leads to:[

log p(mi=0|Z1:t,z)
p(mi=0|Z1:t,z)

· · · log p(mi=K|Z1:t,z)
p(mi=0|Z1:t,z)

]>
= (li(z)− h0,i) + ht,i

(16)

Applying (16) recursively for each element z ∈ Zt+1 leads
to the desired result in (8).

APPENDIX B PROOF OF PROP. 2

LetRt+1:t+T (rmax) := ∪τ,bRτ,b(rmax) be the set of map
indices which can potentially be observed by Zt+1:t+T . Us-
ing the factorization in (5) and the fact that Shannon entropy
is additive for mutually independent random variables, the
mutual information only depends on the cells whose index
belongs to Rt+1:t+T (rmax), i.e.:

I(m;Zt+1:t+T | Z1:t)

=

t+T∑
τ=t+1

B∑
b=1

∑
i∈Rτ,b(rmax)

I(mi; zτ,b | Z1:t). (17)

This is true because the measurements zτ,b ∈ Zt+1:t+T are
independent by construction and the terms I(mi;Zt+1:t+T |
Z1:t) can be decomposed into sums of mutual information
terms between single-beam measurements zτ,b and the re-
spective observed map cells mi. The mutual information
between a single map cell mi and a sensor ray z is equal to:

I(mi; z | Z1:t) = (18)∫
p(z | Z1:t)

K∑
k=0

p(mi = k | z,Z1:t) log
p(mi = k | z,Z1:t)

pt(mi = k)
dz.



(a) The robot begins exploration. (b) After 2 iterations, the robot moves
north to explore a larger unknown
area.

(c) At iteration 8, the robot contin-
ues exploration by visiting unknown
sections in the north, east, and west.

(d) The robot begins to visit previ-
ously explored areas to fill partially
observed objects at iteration 19.

(e) Multi-class occupancy map after 20 exploration iterations (f) Photo-realistic Unity simulation environment

Fig. 5: Time lapse of autonomous exploration and multi-class mapping in a simulated Unity environment. The robot is equipped with an
RGBD sensor and runs semantic segmentation. Different colors represent different semantic categories (grass, dirt road, building, etc.).

Using the inverse observation model in (10) and the Bayesian
multi-class update in (8), we have:

K∑
k=0

p(mi = k | z,Z1:t) log
p(mi = k | z,Z1:t)

pt(mi = k)

= (li(z)− h0,i)
>σ(li(z)− h0,i + ht,i) + log

p(mi = 0 | z,Z1:t)

pt(mi = 0)

= f(li(z)− h0,i,ht,i), (19)

where (10) and (8) were applied a second time to the log
term above. Plugging (19) back into the mutual information
expression in (18) and returning to (17), we have:

I(m;Zt+1:t+T | Z1:t) (20)

=

t+T∑
τ=t+1

B∑
b=1

K∑
y=1

∫ rmax

0

(
p(zτ,b = (r, y) | Z1:t)

∑
i∈Rτ,b(rmax)

f(li((r, y))− h0,i,ht,i)

)
dr.

For zτ,b = (r, y), the second term inside the integral above
can be simplified to:

C̃τ,b(r, y) :=
∑

i∈Rτ,b(rmax)

f(li((r, y))− h0,i,ht,i)

= f(φ+ +Ey+1ψ
+ − h0,i∗τ,b

,ht,i∗τ,b)

+
∑

i∈Rτ,b(r)\{i∗τ,b}

f(φ− − h0,i,ht,i)

(21)

because for map indices i ∈ Rτ,b(rmax) \ Rτ,b(r) that are
not observed by zτ,b, we have li((r, y)) = h0,i according to
(10) and f(h0,i − h0,i,ht,i) = 0.

Next, we apply the approximation of (11) for the first
term in the integral in (20), which leads to integration over
p̃τ,b(r, y)C̃τ,b(r, y) in (20). Note that p̃τ,b(r, y) and C̃τ,b(r, y)
are piece-wise constant functions since Rτ,b(r) is constant
with respect to r as long as the beam z lands in cell mi∗ .
Hence, we can partition the integration domain over r into a
union of intervals where the beam z hits the same cell, i.e.
Rτ,b(r) remains constant:∫ rmax

0

p̃τ,b(r, y)C̃τ,b(r, y) dr =

Nτ,b∑
n=1

∫ rn

rn−1

p̃τ,b(r, y)C̃τ,b(r, y) dr,

where Nτ,b = |Rτ,b(rmax)|, r0 = 0, and rN = rmax. From
the piece-wise constant property of p̃τ,b(r, y) and C̃τ,b(r, y)
over the interval (rn−1, rn], one can easily obtain:∫ rn

rn−1

p̃τ,b(r, y)C̃τ,b(r, y) dr

= p̃τ,b(rn, y)C̃τ,b(rn, y)γ(n) = pτ,b(n, y)Cτ,b(n, y),

(22)

where pτ,b(n, y) and Cτ,b(n, y) are defined in the statement
of Prop. 2. Therefore, substituting y with k and plugging
the integration result into (20) yields the lower bound for
the mutual information between map m and observations
Zt+1:t+T as in (13).
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