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Abstract—Control barrier functions (CBFs) offer a powerful
tool for enforcing safety specifications in control synthesis. This
paper deals with the problem of constructing valid CBFs. Given
a second-order system and any desired safety set with linear
boundaries in the position space, we construct a provably control-
invariant subset of this desired safety set. The constructed subset
does not sacrifice any positions allowed by the desired safety set,
which can be nonconvex. We show how our construction can also
meet safety specification on the velocity. We then demonstrate
that if the system satisfies standard Euler-Lagrange systems
properties then our construction can also handle constraints on
the allowable control inputs. We finally show the efficacy of the
proposed method in a numerical example of keeping a 2D robot
arm safe from collision.

Index Terms—safety critical control, nonsmooth control bar-
rier functions, optimization-based control design.

I. INTRODUCTION

Control barrier functions (CBFs) provide a flexible frame-
work to certify the forward invariance of a desired set with
respect to system trajectories and design feedback controllers
that ensure it. Because of their versatility, CBFs have made
their way into numerous applications in robotics, transporta-
tion, power systems, and beyond. By definition, every bound-
ary point of the CBF’s 0-superlevel set admits a control
value that holds the system’s trajectory from instantaneously
leaving it. This point-wise condition is known as the CBF
condition. Finding CBFs is a challeging task: it amounts to
finding a set whose states can be made safe, i.e., for which
control actions ensuring safety can be identified. This is not
trivial given the complexity of the dynamics and limitations
on the control inputs. After clearing this challenge, one must
still figure out whether a well-behaved control law can be
synthesized out of all the point-wise safe control actions. In
this work, we construct valid CBFs that enforce any positional
safety requirements with linear boundaries for second-order
dynamics and provide an associated continuous safe controller.

Literature review: Whether from Nagumo’s theorem [1] or
from comparison results in the theory of differential equa-
tions [2], the CBF condition was first derived for smooth
functions [3]–[5]. This condition was extended to non-smooth
functions in multiple works, such as [6]–[8]. Many approaches
have been proposed to construct a CBF or verify whether
a given function is a CBF. One approach applies learning
methods to construct CBFs [9]–[12]. Another uses reachability
analysis to construct the maximal invariant set and use it in
safe control design [13]. Another class uses backstepping to
design CBFs for cascaded systems [14]. Still, another group

M. Alyaseen, N. Atanasov, and J. Cortés are
with the Contextual Robotics Institute, UC San Diego,
{malyasee,natanasov,cortes}@ucsd.edu. M. Alyaseen is
also affiliated with Kuwait University as a holder of a scholarship. This work
was supported by AFOSR Award FA9550-23-1-0740.

of works, most closely related to the treatment here, utilizes
properties of specific systems to construct suitable CBFs. For
instance, [15]–[17] constructs CBFs for polynomial systems
using sum-of-square optimization. The work [18] constructs
non-smooth CBFs for fully actuated Euler-Lagrange systems,
with constraints on position, velocity, and inputs given by hy-
percubes. The work [19] proposes a method to construct a safe
subset of a hyper-sphere in the position space, assuming no
input constraints. Both these works consider convex constraint
sets. All these approaches have advantages and disadvantages:
learning methods are general but approximate; reachability
analysis is general and exact but computationally intractable
for high dimensions; backstepping is tractable and exact, but
limited to cascaded systems. Finally, the works that consider
specific classes of systems are exact and tractable, but limited
to those classes and their respective safe set structures. Our
work here contributes to the last line of work by significantly
enlarging the class of sets that can be rendered safe with
second-order systems. We render safe a highly expressive class
of positional (potentially nonconvex) safety constraints defined
by linear boundaries rather than hypercubes and hyperspheres
as in [18], [19]. Once a valid CBF is constructed, safe feedback
controllers are usually synthesized via state-parameterized
optimization programs [4], [20] due to their flexibility, conve-
nience, and computational lightness. This motivated the study
of the regularity properties of such controllers, see e.g. [21]–
[23]. Our recent work [24] synthesizes a provably feasible
optimization-based safe feedback controller for safe sets given
by arbitrarily nested unions and intersections of superlevel sets
of differentiable functions. By constructing a valid safe set, we
show the applicability of the general control techniques in [24]
to the class of systems considered here.

Statement of Contributions: We consider1 second-order sys-
tem dynamics and positional constraints specified by nested
unions and intersections of half-spaces. We construct a control-
invariant subset of the full state space which contains all
positions allowed by the original positional constraints. We
derive a general condition which, if satisfied, proves that
our constructed set is safe for general, possibly not fully
actuated, second-order systems and provide an associated
QP safeguarding controller. We then show that this safety
condition is always satisfied for fully actuated systems. We
further show that a compact allowable controls set suffices for

1We let 1n×m and 0n×m denote the n×m matrices of ones and zeroes,
resp. Likewise, 1n and 0n denote the n vectors of ones and zeroes, resp. The
boundary, interior, and convex hull of S are ∂S, int(S), and co(S), resp.
The projection of C ⊂ Rn on the first n′ components is denoted Projn′ (C).
The vectors of the standard basis of Rn are denoted {eℓ}nℓ=1. We denote the
2-norm of a vector x by ∥x∥. The norm of a matrix A is the induced 2-norm,
∥A∥ := supx̸=0

∥Ax∥
∥x∥ . We refer to the 0-superlevel set of a function simply

as superlevel set. Table I provides a summary of key notation used throughout
the technical exposition.



safety when the desired safe set is bounded. We show how
our method can be utilized to incorporate velocity and input
constraints when the dynamics satisfy standard Euler-Lagrange
system properties. Finally, we apply our method to design safe
controls for a 2D robotic arm.

C,L, Iℓ Desired safe set and its sets of indices, cf. (3)
Cs, L̄, Īℓ Safe set and its sets of indices, cf. (5)
Iact(x) Active constraints at boundary point x,

cf. Condition 1
ϵ, γ Design parameters for safe set, cf. (6)

TABLE I: Summary of key notation.

II. PROBLEM STATEMENT

Consider the second-order dynamics

ẋ = f(x) +G(x)u (1)

where x = (x1, x2), x1, x2 ∈ Rn, u ∈ Rm, f(x) =
(x2, f2(x)) is the drift, and G(x) = (0n×m, G2(x)) corre-
spond to the input vector fields. Here, f2 : R2n → Rn and
G2 : R2n → Rn×m are Lipschitz functions. Consider also the
half-spaces parameterized by i ∈ I := {1, . . . , r}

Ci := {x ∈ R2n | hi(x) := a⊤i x1 + bi ≥ 0}, (2)

with ∥ai∥ ≠ 0. We require that if i ̸= i′ then the augmented
vectors (ai, bi) and (ai′ , bi′) are linearly independent. The
states x1 and x2 can represent mechanical, electrical or other
quantities: we refer to x1 and x2 as generalized position and
generalized velocity, resp., for convenience. Our goal is to
design a control law for (1) that keeps invariant a desired set
C given as a union of intersections of the half-spaces Ci’s,

C =
⋃
ℓ∈L

⋂
i∈Iℓ

Ci, (3)

where L ⊂ N and the sets Iℓ ⊂ I are sets of indices. This set
corresponds to the superlevel set of the function

h(x) = max
ℓ∈L

min
i∈Iℓ

hi(x). (4)

Note that the safety set C constrains only the states x1 cor-
responding to the generalized position. This setup is common
in many problems, such as collision avoidance [25], where
the main concern is to avoid the physical locations occupied
by obstacles. This form for C is flexible enough to capture
the safety requirement of staying in any set of positions with
linear boundaries while simultaneously avoiding obstacles of
linear boundaries. An example of such a set is shown later
in Figure 1c. In [24, Lemma 4.8], we provide a procedure
of turning any set given by arbitrary nested unions and
intersections of Ci’s into the form (3). This is applicable in
a wide range of situations for autonomous robotic systems
from geofencing to protect a human collaborator to avoiding
collisions in human environments.

We impose the following structural assumptions on the
safety requirement. Let S∩ be the collection of sets of indices
whose corresponding half-spaces intersect in C: that is, if
I ⊆ I is such that (∩i∈ICi) ∩ C ̸= ∅, then I ∈ S∩.

Assumption 1. The set Projn(C) is compact. Furthermore,
for any I ∈ S∩, one point yI ∈ C can be chosen to satisfy
hi(yI) > 0 for all i ∈ I . •

Assumption 1 is reasonable. Assuming the compactness of
Projn(C) is the same as saying that the set of safe positions x1

is compact. A sufficient condition for this is the boundedness
of ∩i∈IℓCi for every ℓ. The last part of the assumption only
requires that any nonempty intersection (∩i∈ICi)∩C has a non-
empty interior. For instance, in our example later in Section V,
the safety constraints x1 ≥ a and x1 ≤ b with some a < b,
satisfy Assumption 1 since the interior of their intersection in
the totality of C is non-empty. We discuss the impact of the
specific choice of points {yI} in Remark III.2.

Since our system (1) is second order, the control is only
available in the order of the generalized acceleration ẋ2. Thus,
C, which only constrains x1, is the superlevel set of a function
that does not satisfy the CBF condition [4]. Therefore, C is
generally not control-invariant due to the lack of constraints
on the velocity: e.g., initial conditions starting exactly at the
boundary of C with a velocity heading outwards are unsafe,
with no possible control value to counter it. Hence, there is a
need to identify a control-invariant set Cs ⊆ C that constrains
the velocity. This construction should contain as much of
Projn(C) as possible.

Problem 1. Given the dynamics (1) and C defined by (3)
satisfying Assumption 1, construct Cs such that:

(i) Cs ⊆ C,
(ii) Projn(Cs) = Projn(C),

(iii) Cs is control-invariant,
and design a continuous controller that renders Cs invariant.

III. CONSTRUCTION OF CONTROL-INVARIANT SET

In this section, we solve Problem 1 by constructing a
function B of the form B(x) = maxℓ∈L̄ mini∈Īℓ Bi(x), and
then proving that its superlevel set

Cs := {x ∈ R2n | B(x) ≥ 0} =
⋃
ℓ∈L̄

⋂
i∈Īℓ

Cs
i , (5)

satisfies the requirements in Problem 1, where Cs
i ’s are the

superlevel sets of Bi’s. Constructing B amounts to defining
the functions Bi and the index sets L̄ and Īℓ.

Definition of functions: For each 1 ≤ i ≤ r, define
Bi(x) = hi(x) and

Bi+r(x) = a⊤i x2 + γ(a⊤i x1 + bi)− ϵ, (6)

where ϵ and γ are two positive design parameters, each with
a special role in customizing the design and proving safety.

Definition of sets: Let L̄ = L and Īℓ = Iℓ ∪ ({r}+ Iℓ).
The choice of B follows this logic: for i ∈ {1, . . . , r}, Ci is

the superlevel set of Bi; the function Bi+r is then chosen such
that its superlevel set contains the points on the boundary of
Ci only if f points towards the interior of the safe set at those
boundary points. Thus, the system is safe without requiring
any inputs at the boundary points defined by Bi = 0 with
i ∈ {1, . . . , r} if these boundary points are in the superlevel
set of Bi+r. This choice of Bi+r is inspired by the concept
of high-order control barrier function [26].



The following result shows that this construction satisfies
requirements (i) and (ii) in Problem 1.

Lemma III.1 (No Positions Lost). Let Cs be the superlevel
set of B. Then Cs ⊂ C. Under Assumption 1, define

δ := min
I∈S∩, i∈I

hi(yI) > 0, (7)

and let γ, ϵ with γδ > ϵ. Then, Projn(Cs) = Projn(C). •

Proof. That Cs is a subset of C follows directly from the defi-
nition of these sets and the fact that Cs

i = Ci for i ∈ {1, . . . , r}.
This also implies that Projn(Cs) ⊂ Projn(C). Note that
Assumption 1 ensures that δ > 0. Since by assumption
γδ > ϵ, there exists 0 < σ < 1 such that γσδ > ϵ. Given
(x1, x2) ∈ C = ∪ℓ∈L ∩i∈Iℓ Ci, there is an ℓ′ ∈ L such that
(x1, x2) ∈ Ci, for all i ∈ Iℓ′ , i.e., hi(x) = Bi(x) ≥ 0, for all
i ∈ Iℓ′ . By Assumption 1, there exists yIℓ′ ∈ C satisfying
hi(yIℓ′ ) > 0 for all i ∈ Iℓ′ . The choice x′ = (x1, x

′
2),

where x′
2 = −γσ(x1 − ynIℓ′ ), where ynIℓ′ denotes the first

n components of yIℓ′ , gives

Bi+r(x
′) = a⊤i x

′
2 + γBi(x)− ϵ

= γ(1− σ)Bi(x) + γσBi(yIℓ′ )− ϵ

≥ γ(1− σ)Bi(x) + γσδ − ϵ

> γ(1− σ)Bi(x) ≥ 0.

Therefore, Bi(x
′) ≥ 0 for all i ∈ Īℓ′ , implying that x′ ∈

∩i∈Īℓ′Cs
i ⊆ Cs. Therefore, Projn(C) ⊂ Projn(Cs).

Remark III.2 (Maximizing Flexibility of Safe Set Design).
Lemma III.1 requires that the parameters γ and ϵ satisfy γδ >
ϵ. Since δ is dependent on the choice of points {yI}, whose
existence is assumed in Assumption 1, the choice of γ and
ϵ is dependent on {yI}. The greater δ, the more flexibility
for choosing γ and ϵ. Note, however, that the specific choice
of {yI} is not crucial for the results: any choice makes the
condition γδ > ϵ satisfiable. •

To address requirement (iii) in Problem 1, we need to
identify a control action at each state of Cs that makes Cs

forward-invariant. We introduce the following condition.

Condition 1 (General Safety Condition). For each x ∈ ∂Cs,
there exists ux ∈ U such that

Ḃi(x) = ∇Bi(x)
⊤(f(x) +G(x)ux) > 0

for all i ∈ Iact(x) := {i ∈ {1, . . . , 2r} | ∃ℓ ∈ Li : B(x) =
Bℓ(x) = Bi(x)}, with Bℓ(x) = mini∈Īℓ Bi(x) and Li :=
{ℓ ∈ L̄ | i ∈ Īℓ}. •

Condition 1 requires that there exists a control input that
steers the system to the interior of the safe set at all boundary
points where the drift of the system is not guaranteed to do that
on its own. Consider now the feedback controller u∗ defined
by the following quadratic program:

(u∗(x), α∗(x),M∗(x)) :=

argmin
α,M,u∈U

u⊤Q(x)u+ q(x)⊤u+ qαα
2 + qMM2 (8)

s.t. M ≥ cM , α ≥ cα

∇Bi(x)
⊤(f(x) +G(x)u) + αBi(x)

+M
(
B(x)−Bℓ(x)

)
≥ 0, ∀ℓ ∈ L̄, ∀i ∈ Īℓ.

Here, Q : X → Rm×m is a Lipschitz function which takes
values in the set of positive-definite matrices, q : X → Rm is
a Lipschitz function, and qα, qM , cM , cα are positive design
constants. The following result summarizes the properties
of u∗ and, in particular, that it makes Cs control-invariant.
under Condition 1.

Theorem III.3 (Safe Controller [24, Thm. 4.12]). Let Cs be
compact. Under Condition 1, there exists a neighborhood of
Cs where program (8) is feasible and u∗ is single-valued,
continuous, and renders Cs control-invariant (i.e., any solution
of (1) with u = u∗ starting in Cs stays in Cs). •

Our approach to establish (iii) in Problem 1 is then to verify
the hypotheses of Theorem III.3. Keep in mind that the original
set of safety requirements, C, does not satisfy the hypotheses.
This is why the construction of Cs is required so that the
control techniques developed in [24] can be applied. The next
result shows that Cs is compact if Projn(C) is compact, which
is readily ensured by Assumption 1.

Proposition III.4 (Compactness of Safe Set). Under Assump-
tion 1, Cs is compact. •

Proof. We reason by contradiction. Suppose Cs = ∪ℓ∈L̄∩i∈Īℓ

Cs
i is not compact. Then, for some ℓ′ ∈ L, the convex closed

set ∩i∈Īℓ′Cs
i is unbounded and, thus, contains a ray [27, Result

2.5.1]. That is there is a point x0 = (x0,1, x0,2) and a direction
ζ = (ζ1, ζ2) ̸= 0 such that Bi(x0 + tζ) ≥ 0 for all t ≥ 0 and
all i ∈ Īℓ′ . We distinguish two cases: (a) ζ1 ̸= 0 and (b)
ζ1 = 0. In case (a), Bi(x0 + tζ) = hi(x0 + tζ) ≥ 0 for
all i ∈ Iℓ′ , so Projn(C) is not compact, which contradicts
Assumption 1. In case (b), ζ1 = 0 ̸= ζ2. So, Bi+r(x0+ tζ) =
ta⊤i ζ2 + a⊤i x0,2 + γ(a⊤i x0,1 + bi) − ϵ ≥ 0, for all i ∈ Iℓ′

and all t ≥ 0. Since all terms in the inequality are constants
except for the first one, we deduce that ta⊤i ζ2 ≥ 0 for t large
enough, which implies a⊤i ζ2 ≥ 0, for all i ∈ Iℓ′ . Therefore,
hi(x0+t(ζ2,0)) = ta⊤i ζ2+a⊤i x0,1+bi = ta⊤i ζ2+hi(x0) ≥ 0
for all t ≥ 0 and all i ∈ Iℓ′ , which implies that Projn(C) is
unbounded, again contradicting Assumption 1.

Next, we focus on the satisfaction of Condition 1. The
following result particularizes this condition to our context.

Lemma III.5 (General Invariance Condition). Condition 1 is
satisfied if, for all x ∈ ∂Cs and i′ + r ∈ Iact(x) for which
Bi′+r(x) = 0, there exists ux ∈ U such that

a⊤i′ (γx2 + f2(x) +G2(x)ux) > 0. (9)

Proof. If x ∈ ∂Cs, then B(x) = 0 and thus Bi(x) = 0 for i ∈
Iact(x). For any such i ∈ Iact(x), it follows that Bi′(x) ≥ 0
for any ℓ ∈ Li and i′ ∈ Īℓ. Let us now verify the inequality
of Condition 1 for i ∈ Iact(x). We distinguish two cases: (a)
i ≤ r or (b) i > r. In case (a), Bi(x) = a⊤i x1 + bi = 0 and
i′ = i+ r ∈ Īℓ. Thus,

0 ≤ Bi′(x) = a⊤i x2 + γBi(x)− ϵ = a⊤i x2 − ϵ. (10)

So Ḃi(x) = a⊤i x2 ≥ ϵ > 0 by (10). In case (b), for i′ = i− r,
Ḃi(x) = Ḃi′+r(x) equals the left-hand side of (9), which
verifies Condition 1 by assumption.



The safety condition, inequality (9), can fail to hold in two
ways. The first is when there is no ux ∈ Rm that satisfies it.
The second is when such a ux ∈ Rm exists, but it does not
belong to the allowable input set U . The distinction between
the two possibilities is useful since they can be overcome by
different tools. A practical solution to the second failure type
might be to expand U (e.g., by employing a more powerful
actuator). In the first failure type, however, the set Cs cannot
be made safe given the dynamics, and a better design must be
sought. We exploit this distinction in what follows.

The inequality (9) is sufficient to establish invariance of
general second-order systems. It is however difficult to verify
for under-actuated systems. Instead, fully actuated systems are
relatively easier to deal with, as shown next.

Proposition III.6 (Control-Invariance with Full Actuation).
Assume that, for all x ∈ ∂Cs, G2(x) is right invertible and
U = Rm. Then, under Assumption 1, choosing γ and ϵ such
that γδ > ϵ ensures that Condition 1 is satisfied. •

Proof. Given x = (x1, x2) ∈ ∂Cs, B(x) = 0. Define Ix :=
{i ∈ {1, . . . , r} | i + r ∈ Iact(x), Bi+r(x) = 0}. If Ix is
empty then the premise of Lemma III.5 is satisfied by default.
Otherwise, by the definitions of Iact(x) and Īℓ’s, Bi(x) ≥ 0
for all i ∈ Ix. Therefore, by Assumption 1, there exists yIx ∈ C
satisfying hi(yIx) > 0 for all i ∈ Ix. Then, for all i ∈ Ix,
Bi+r(x) = a⊤i x2 + γ(a⊤i x1 + bi) − ϵ = 0, which implies
a⊤i (−x2 − γx1 + γynIx) = γ(a⊤i y

n
Ix

+ bi) − ϵ ≥ γδ − ϵ > 0,
where ynIx denotes the first n components of yIx . Because of
this inequality, one can choose ux = ρG†

2(x)yx, where G†
2

denotes the right inverse of G2 and yx = −x2 − γx1 + γynIx ,
with ρ large enough, so that the inequality (9) is satisfied. The
result then follows from Lemma III.5.

The combination of Propositions III.4 and III.6 allows
us to invoke Theorem III.3 to establish that u∗, as defined
in (8), renders Cs ⊆ C forward-invariant. This, together with
Lemma III.1, means that Cs solves Problem 1 for the case
of full actuation. The assumption of full actuation is not
uncommon in the control of second-order systems, whether
when studying safety [18], [19] or stability [28]. The following
result shows that the result of Proposition III.6 still holds for
sufficiently large compact input sets U .

Corollary III.7 (Compact Input Set Suffices for Control-In-
variance). Assume that, for all x ∈ ∂Cs, G2(x) is right
invertible. Then, under Assumption 1, choosing γ and ϵ such
that γδ > ϵ ensures that Condition 1 is satisfied for some
compact input set U ⊊ Rm. •

Proof. Since, by Proposition III.4, ∂Cs is compact and the
left-hand side of (9) is continuous in x, a⊤i (γx2 + f2(x)) is
bounded in ∂Cs. But a⊤i G2(x)G2(x)

†yx = a⊤i yx ≥ γδ −
ϵ > 0. So there is a finite ρ that validates (9) for all x with
ux = ρG2(x)

†yx. Noting the boundedness of yx and G2(x)
†

in ∂Cs completes the proof.

IV. DETERMINING INPUT MAGNITUDE FOR CONTROL
INVARIANCE OF EULER-LAGRANGE SYSTEMS

In this section we consider the class of Euler-Lagrange
systems [28] and study how large the input set should be to

render Cs control-invariant.

Assumption 2 (Input Set Structure and Euler-Lagrange Sys-
tems Properties). Let U⊇{u ∈ Rm | ∥u∥ ≤ d} for some
d > 0. Further, assume the dynamics (1) is such that:
(a) the matrix function G2(x) is only dependent on x1 and

has right inverse G†
2(x1) defined for all x ∈ C; and

(b) f2(x) = f1
2 (x1) + f2

2 (x), with ∥f2
2 (x)∥ ≤ k2∥x2∥. •

Assumption 2(a) can be interpreted as having the inertia
matrix G†

2(x) independent of the system’s velocity. Assump-
tion 2(b) splits the forcing on the system into potential forces,
such as gravity, f1

2 (x1), and other forces, such as damping,
f2
2 (x). It also asks that the magnitude of the latter be at most

proportional to the system’s velocity ∥x2∥. Define

k1 := max
x∈C

∥f1
2 (x1)∥ and kG := max

x∈C
∥G†

2(x1)∥. (11)

The existence of these constants is ensured by the continuity
of f2 and G†

2 and the compactness of Projn(C). Our approach
to establishing control-invariance under Assumption 2 has two
steps. First, we show that the velocity magnitude ∥x2∥ in the
safe set Cs can be arbitrarily bounded by the design parameter
γ, cf. Lemma IV.1. Second, we show that U in Assumption 2
is sufficient for control-invariance when ∥x2∥ is forced to be
small enough through suitable design of γ, cf. Theorem IV.2.

Lemma IV.1 (Bound on Velocity Magnitude in Safe Set).
Under Assumption 1, there exists a constant c that depends
only on {ai, bi}i∈I defining {hi}i∈I such that, for all γ and
ϵ satisfying γδ > ϵ, ∥x2∥ ≤ γc for all x = (x1, x2) ∈ Cs. •

Proof. By Proposition III.4, Cs is bounded. Therefore, each of
its (finitely many) components ∩i∈ĪℓCs

i is bounded too. Since
each Cs

i is a half-space, ∩i∈ĪℓCs
i is a bounded polytope. Given

ℓ ∈ L̄, consider the n programs

x∗
j = argmax |e⊤j x2|

s.t. x ∈ ∩i∈ĪℓCs
i ,

where j ∈ {1, . . . , n}. Let j∗ℓ := argmax1≤j≤n{|e⊤j x∗
j,2|},

where x∗
j,2 denotes the last n components of x∗

j , and x∗,ℓ :=
x∗
j∗ℓ

. Since x∗,ℓ ∈ R2n is a solution to a linear program over a
polytope, it is a vertex of the polytope [29, Thm. 2.4]. By [30,
Thm. 10.4], there are 2n indices Iv ⊆ Īℓ such that Bi(x

∗,ℓ) =
0, for all i ∈ Iv . Direct evaluation yields

a⊤i
[
I 000n×n

]
x∗,ℓ = −bi, if i ∈ Iv ∩ I,

a⊤i
[
γI I

]
x∗,ℓ = −γbi + ϵ, if i+ r ∈ Iv.

Stacking the above equations into one matrix equation gives[
A1 000
γA2 A2

]
x∗,ℓ =

[
b1

γb2 + ϵ1n

]
, (12)

with appropriate matrices A1, A2, b1 and b2. Since x∗,ℓ is a
unique solution as it is a vertex, the coefficient matrix in (12)
is invertible, and thus is of rank 2n. The matrices A1 and
A2 have n columns, so their ranks are at most n. Since
the rank of the block

[
γA2 A2

]
is equal to the rank of

A2, then it must be that rank(A1) = rank(A2) = n, and
hence A1 and A2 are invertible. Solving for x∗,ℓ

2 , which is
the vector comprising the last n components of x∗,ℓ, gives



x∗,ℓ
2 = γ(A−1

2 b2 − A−1
1 b1) + ϵA−1

2 1n. By definition of x∗,ℓ

and j∗ℓ and the triangle inequality, for all j ∈ {1, . . . , n} and
all x = (x1, x2) ∈ ∩i∈ĪℓCs

i ,

|e⊤j x2| ≤ |e⊤j∗ℓ x
∗,ℓ
2 | ≤ γc′1 + ϵc′2 ≤ γ(c′1 + δc′2),

where c′1 = |e⊤j∗ℓ (A
−1
1 b1 − A−1

2 b2)| and c′2 = ∥A−1
2 1n∥. This

holds for each ℓ ∈ L̄ with the appropriate A1, A2, b1 and b2, so
every component of x2 ∈ Cs = ∪j∈L̄ ∩i∈Īℓ Cs

i is bounded by
γc′∗, where c′∗ is the greatest of the finite constants c′1 + δc′2
for the different ℓ’s. Hence, ∥x2∥ ≤ γ

√
nc′∗.

Interestingly, Lemma IV.1 can be leveraged to meet any
safety specification on the magnitude of x2 by taking a
sufficiently small γ. The smaller γ is, the slower the sys-
tem will move, possibly hindering other control objectives.
Lemma III.1, however, ensures that no positions are lost no
matter how small γ is chosen to be. We are now ready to
show that Assumption 2 is enough to establish the existence
of a design parameter γ that makes Cs control-invariant with
bounded input set U ⊇ {u ∈ Rm | ∥u∥ ≤ d}.

Theorem IV.2 (Control-Invariance with Input Constraints).
Under Assumptions 1 and 2, if d− kGk1 > 0, cf. (11), then γ
and ϵ can be chosen to ensure Condition 1 is satisfied. •

Proof. Let γ be such that γ(k2+γ)kGc <
1
2 (d−k1kG), where

c is given in Lemma IV.1. Select ϵ to satisfy γδ > ϵ. For all
x ∈ ∂Cs and i ∈ Iact(x) with i > r, recall from the proof
of Proposition III.6 that a⊤i yx > 0, where yx is as defined
there. Let βx > 0 satisfy βx∥yx∥ ≤ 1

2 (d− k1kG) and choose
ux = −G†

2(x)(f2(x)+γx2)+βxyx. By the triangle inequality
and the definition of the matrix induced 2-norm,

∥ux∥ ≤ ∥G†
2(x)∥(∥f1

2 (x1)∥+ ∥f2
2 (x)∥+ γ∥x2∥) + βx∥yx∥.

By Assumption 2, Lemma IV.1, and (11), ∥ux∥ ≤ kGk1 +
γ(k2 + γ)kGc+ βx∥yx∥. By our choice of γ and βx, ∥ux∥ ≤
kGk1 +

1
2 (d − kGk1) +

1
2 (d − kGk1) = d, and thus ux ∈ U .

Noting that ux ∈ U validates (9) for all i ∈ Iact(x) with i > r
completes the proof.

The condition d − kGk1 > 0 in Theorem IV.2 amounts
to having enough control authority to counter the potential
force. In the absence of such a force (i.e., when k1 = 0, cf.
Section V), this condition is valid by default allowing Cs to
be made safe for any bounded U . If, however, no such control
is available, the system might be inherently unsafe.

V. SAFE CONTROL OF ROBOTIC MANIPULATOR

In this section, similar to [18], we illustrate our results
on a 2-degree-of-freedom planar elbow manipulator [31] but
with linear nonconvex constraints instead of the hypercubic
constraints in [18]. The system consists of two horizontally
oriented links (no gravity) hinged to each other, with the
first link hinged to a fixed frame. Torque manipulation is
available at each joint. The system model is M

[
θ̈1 θ̈2

]⊤
=

C
[
θ̇1 θ̇2

]⊤
+
[
u1 c25 cos(θ1 + θ2) + u2

]⊤
where

M =

[
c11 + c12 cos(θ2) c13 + c14 cos(θ2)
c22 + c23 cos(θ2) c21

]
, (13)

C =

[
c15 sin(θ2)θ̇2 c16 sin(θ2)θ̇2
c24 sin(θ2)θ̇1 0

]
with constant coefficients cij dependent on the links’ lengths
and masses, cf. [31]. We require the arm to avoid collision
with two walls, as shown in Figure 1a.

In the space of angles, the positional safety constraints due
to the first wall correspond to the interior of the dotted hexagon
in Figure 1c. The safety constraints of the parallel wall are
not linear in the space of angles. So we overapproximate
them by the exterior of the square at the center in Figure 1c.
This makes the safety requirement set, C, the intersection of
the interior of the hexagon and the exterior of the square,
which is nonconvex. For brevity, we omit the details of the
specific halfspaces and the formulation of the set in the form
of (3). We construct the control-invariant set Cs as described
in Section III, with γ = 4 and ϵ = 0.5. It is not difficult, albeit
a bit lengthy, to show that the points yI can be chosen such
that our choice of γ and ϵ satisfy γδ > ϵ for δ defined as
in (7). The controller u∗ is computed according to (8), with
the objective function ∥u− unom(t)∥2 +M2 +α2. Here, unom
is a nominal controller that tracks r = (π sin(t), π

2 sin(4t)),
cf. [32], unom(t) = M(r̈ − ė − e) + C[θ̇1 θ̇2]

⊤ where
e = (θ1, θ2)− r and M and C are as defined in (13).

Figure 1b shows the time evolution of the joint angles
under the nominal controller and under the safety-filtered
controller u∗, along with the hexagon constraints evolution
as viewed from the position of the safe trajectory. Figure 1c
shows a phase portrait of the evolution of the angles under
the nominal and the safe controllers, showing an average of 50
trajectories with different initial velocity. Those trajectories are
all contained in the blue area. The safe controller renders the
nonconvex C invariant, per Corollary III.7, while the nominal
controller does not.

Note that our example’s model satisfies As-
sumption 2 with f1

2 (x) = M−1C
[
θ̇1 θ̇2

]⊤
,

f1
2 (x) = M−1

[
0 c25 cos(θ1 + θ2)

]⊤
and G2(x1) = M−1.

Thus, by Theorem IV.2, any U = {u ∈ R2 | ∥u∥ ≤ d} such
that d > kGk1 suffices for invariance, with a sufficiently small
γ and a suitably chosen ϵ. This is reflected in Figure 1d, which
shows the effect of the design parameter γ in constraining
the control and velocity magnitudes. As shown there, lower
values of γ allow for safety with lower control magnitudes, at
the expense of reducing the velocity of the execution. Finally,
we note that extending this example to higher degrees of
freedom adds complexity to the polytopic representation of
the constraints but, once available, the computation of the
control design remains the same.

VI. CONCLUSIONS

Given a second-order system and positional safety specifica-
tions described by linear boundaries, we have identified condi-
tions that allow the explicit construction of a verifiably safe set
in the full state space. We have also designed an associated QP
controller that ensures this set is safe. The identified conditions
are always satisfied by fully actuated systems and, in the case
of Euler-Lagrange systems, the controller design can incorpo-
rate velocity and input constraints. Future work will explore



(a) A schematic of the
2-degrees-of-freedom
robot arm. The gray
space is the wall that
should be avoided
during manipulation.

(b) Time evolution of the link angles. The
dotted lines are the safety constraints as
seen from the safe trajectory.

(c) Trajectories on the position plane,
showing the invariance enforced by the
controller u∗ instead of unom.

(d) Time evolution of the average velocity
and average control effort on both links for
different values of γ.

Fig. 1: Simulation results for safe control of a 2-link robot arm.

second-order systems with other forms of underactuation,
incorporate time-varying safety considerations, robustify the
approach to handle system uncertainties, and apply a similar
safe-set construction to non-linear specifications.
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