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Abstract— This paper focuses on planning robot navigation
tasks from natural language specifications. We develop a mod-
ular approach, where a large language model (LLM) translates
the natural language instructions into a linear temporal logic
(LTL) formula with propositions defined by object classes in a
semantic occupancy map. The LTL formula and the semantic
occupancy map are provided to a motion planning algorithm
to generate a collision-free robot path that satisfies the natural
language instructions. Our main contribution is LTLCodeGen,
a method to translate natural language to syntactically correct
LTL using code generation. We demonstrate the complete task
planning method in real-world experiments involving human
speech to provide navigation instructions to a mobile robot.
We also thoroughly evaluate our approach in simulated and
real-world experiments in comparison to end-to-end LLM task
planning and state-of-the-art LLM-to-LTL translation methods.

I. INTRODUCTION

The ability to understand and execute tasks specified in
natural language is an important aspect of enabling au-
tonomous robot assistants in our daily lives. A fundamental
challenge is to translate high-level natural-language task
descriptions into low-level, executable robot actions. Large
Language Models (LLMs), such as GPT-4 [1], LLaMA-2
[2], and DeepSeek-R1 [3], have demonstrated remarkable
natural language proficiency and language-based task rea-
soning [4], [5] and planning capabilities [6]. LLMs play
different roles in the planning of robot task executions for
natural language specifications [4], [5], [7]–[13]. An LLM
can be a context extractor, which connects natural language
concepts to real-world objects and locations, a process known
as symbol grounding [14]. LLMs are also used as translators,
for example, to convert natural language instructions into
linear temporal logic (LTL) formulas [7], signal temporal
logic (STL) [5], [13], planning domain definition language
(PDDL) [13], or executable code [8], [10], [15]. An LLM
can also operate as a task scheduler, which decomposes
the task into sub-tasks, infers the order and the dependen-
cies among the sub-tasks, and distributes them to different
robots [5], [11]. LLMs also may cooperate with other multi-
modality models to better fuse environment feedback into
task planning and execution [9], [12]. However, recent works
[6], [16], [17] have shown that LLMs may not always
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Fig. 1: Our method is able to interpret natural language
instructions for a robot navigation task, translate them into an
LTL formula free of syntax errors, and plan a robot path that
satisfies the instructions. The figure shows an example of a
Jackal robot fetching an umbrella, bringing it to a backpack,
and finally navigating to a microwave oven.

handle the whole process of converting natural language
instructions into executable robot actions robustly without
careful design of different components including symbol
grounding, task decomposition, sub-task arrangement, formal
logic translation, path generation, execution monitoring, and
closed-loop feedback.

Many works have explored an end-to-end task planning
approach where an LLM converts natural language instruc-
tions directly into robot actions [5], [8]–[10], [18], [19]. In
this paper, we consider an alternative modular task planning
approach where an LLM converts natural language instruc-
tions into a task model first and then composes it with a
robot model and uses task and motion planning to generate
robot actions. To ground the concepts in natural language
instructions, our approach relies on a semantic occupancy
map [20] constructed from range observations and semantic
segmentation observations [21]. The map captures the free
and occupied space as well as the categories of objects
around the robot, allowing a connection to the objects that
the natural language instructions may be referring to. We
introduce a novel code generation approach, LTLCodeGen,
to convert the natural language instructions into an LTL
formula. The LTL formula and the semantic occupancy map
are provided to a motion planning algorithm to generate a
collision-free path that satisfies the task requirements. An
example of our task planning approach is shown in Fig. 1.

The contributions of this paper are summarized as follows.
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1) We propose LTLCodeGen, a method to translate natural
language to syntactically correct linear temporal logic
formulas using code generation.

2) We develop a modular task planning approach that con-
verts natural language instructions to LTL over semantic
occupancy map and uses motion planning to generate
robot paths that satisfy the task requirements.

3) We compare LTLCodeGen with NL2LTL [7] and LLMs
fine-tuned for LTL translation [22] on both human-
written and synthetic datasets. We also compare our task
planning approach with end-to-end LLM-based task
planning on the GameTraversalBenchmark (GTB) [6].
Additionally, we conduct real-world robot experiments
with tasks of different difficulty levels, and perform
ablation studies to analyze the importance of different
components in LTLCodeGen.

II. RELATED WORK

The components of natural language task planning include
a) translating natural language instructions into a machine-
interpretable format; b) constructing a scene representation
with rich information to support instruction grounding and
task planning; c) planning the task based on the translated
instruction and the scene representation.

A. Natural Language Instruction Translation

Regardless of whether LLMs understand human language,
their ability to transform text input to different text out-
puts based on specific requirements is evident [23]. Since
LLMs are trained on internet-scale text data, the common
knowledge stored in the model is helpful for inferring the
human intent embedded in the natural language instructions.
Converting instructions into machine-interpretable format
involves two challenges. One is to associate concepts, e.g.
objects, in the instructions, to physical locations in space,
which is known as symbol grounding. Whether LLMs solve
symbol grounding well remains unclear [23], [24] due to the
debate on whether LLMs understand human language. The
other challenge is to translate the symbol-grounded instruc-
tion to a machine-interpretable format that must correctly
encode both the task objectives and constraints.

Recent works use different task representation formats,
including LTL [7], [22], STL [25], [26], PDDL [13],
code [8], [10], [11], [15], or others (e.g. waypoints [5],
action scores [4], API calls [12]). Because LLMs are usually
trained with a large corpus of code examples, they excel in
writing high-quality code that calls predefined APIs based on
the instruction, as shown in CaP [8], ProgPrompt [10], and
Demo2Code [15]. However, it is still a challenge to generate
code that provides an optimal and semantically correct plan
for direct task execution. Other works use LTL [7] or STL
[25], whose alignment with the user intent can be examined,
to provide a task constraint for motion planning algorithms
[27]–[29]. However, LLMs are not trained with various
temporal logic examples and, even with carefully designed
examples in the prompt, LLMs still generate syntactically
incorrect LTL formulas occasionally. Some works [22], [26]

propose to fine-tune LLMs for translating temporal logic.
However, it is still difficult to scale up as the LTL formula
becomes more complicated. To obtain both the syntax robust-
ness of code generation and the post-processing convenience
of temporal logic, we develop LTLCodeGen, which uses
LLMs to generate code that outputs LTL formulas. LTL-
CodeGen makes the whole system more robust to handle
more complicated tasks and enables optimal planning for
the instruction [7], [29].

B. Scene Representation
A semantically annotated scene representation is essential

for accurate instruction interpretation. It must support symbol
grounding, collision checking, and task progress feedback
to ensure safe and correct execution. Some works aim to
build such representations, such as a semantic occupancy
octree [20], or a scene graph [30]–[34]. However, LLMs
have a limited context window size, so the scene should be
described to the LLM in a compact way. Existing works
provide descriptions of involved objects only [8], [11], [25]
or compress the scene in a concise format and then rely on
the LLM to extract items related to the instruction [7]. Other
works also consider obtaining scene information in different
modalities [9], [35].

C. Task and Motion Planning
Prior works focus on different aspects of task and motion

planning for natural language instruction. For improved
feasibility, SayCan [4] fuses robot-state-based action affor-
dances into the LLM planning procedure. InnerMonologue
[18] continually injects new sensor observations as feedback
into the LLM planner to correct the execution online.

Some works focus on multi-robot collaboration using a
single LLM to reason about task decomposition and al-
location [11] or a dialogue between multiple LLMs [5].
In contrast, our work focuses on generating an optimal
path satisfying the LTL formula that correctly reflects the
instruction.

III. PROBLEM STATEMENT

Enabling mobile robots to navigate following human
instructions in natural language is essential for effective
human-robot interaction. We consider a mobile robot with
state xt ∈ X ⊆ Rn at time t equipped with an RGBD sensor.
The robot first needs to construct a map of its environment,
which stores information needed to understand the semantics
of a human instruction. To ensure safe navigation, the map
should also capture the presence of obstacles correctly.

Definition 1. A semantic occupancy map is a function
m : X → C, which associates a robot state x ∈ X to a
semantic category m(x) ∈ C present at state x. The set C
is a set of semantic categories, including object classes, a
FREE class that represents unoccupied free space, a NULL
class that represents occupied space with unknown semantic
category, and an UNKNOWN class for unobserved space.

Fig. 2 shows an example of a semantic occupancy map.
For example, given a semantic occupancy map of a house, the



robot may be asked to tidy up the dining table and place the
dishes in a dishwasher. Using the map, the robot can connect
the instructions to the physical locations of the table and
dishwasher and plan its motion to navigate to these locations
safely and follow the sequence required by the instructions.

To construct a connection between the natural language
instructions and the semantic occupancy map, we define
boolean propositions that capture the task requirements.

Definition 2. An atomic proposition is a boolean function
pc(x) that evaluates true when the robot state x is sufficiently
close to a class c ∈ C in a semantic occupancy map m:

pc(x) =

{
true, ∃y ∈ X ,m(y) = c, ∥x− y∥ ≤ rc

false, otherwise,
(1)

where rc is a distance threshold associated with class c.
Denote the set of atomic propositions by AP = {pc|c ∈ C}.

To capture which atomic propositions are satisfied at
different robot states, we define a label map.

Definition 3. Given a semantic occupancy map m and
atomic propositions AP , a label map l : X → 2AP as-
sociates a robot state x to the set of atomic propositions that
evaluate true at x, i.e., pc(x) = true for all pc ∈ l(x) ⊆ AP .

The atomic propositions satisfied along a path x1:T :=
x1,x2, . . . ,xT are obtained from the label map as l(x1:T ) :=
l(x1), l(x2), . . . l(xT ). The sequence l(x1:T ) is called a word
and it encodes the task requirements satisfied along the robot
path x1:T . Finally, we use the notation l(x1:T ) |= µ to
indicate that all requirements of a task µ are satisfied by
a word l(x1:T ). We define the motion planning problem
associated with a natural language task µ as follows.

Problem. Given a semantic occupancy map m, a natural
language navigation task µ defined in terms of semantic
classes C, a cost function d : X × X → R>0, and an initial
robot state x1 ∈ X , plan a path x1:T that satisfies µ with
minimum cost:

min
T∈N,x1:T

T−1∑
t=1

d(xt,xt+1)

s.t. l(x1:T ) |= µ; m(xt) = FREE, t = 1, . . . , T.

(2)

A key aspect of solving the problem above is to ground the
task specification µ to states in the map m with associated
semantic classes and atomic propositions and to encode the
dependencies among the atomic propositions according to
µ. In the next section, we propose an LLM code generation
technique to generate LTL from µ using the atomic propo-
sitions defined by the semantic occupancy map m.

IV. ROBOT TASK PLANNING VIA LTLCODEGEN

Our approach to the task planning problem described in
the previous section begins with constructing a semantic
occupancy map, which we discuss in Sec. IV-A. Next, in
Sec. IV-B, we introduce our main contribution, LTLCode-
Gen, a method to translate natural language to syntactically
correct LTL formulas over semantic occupancy map atomic

Fig. 2: Semantic occupancy map of an office environment.
Each voxel encodes both occupancy and semantic classifi-
cation, represented by distinct colors: cyan indicates walls,
orange and blue denote office tables, sky blue represents a
cart, and lime green corresponds to carpeted floors.

propositions using code generation. Finally, in Sec. IV-C,
we present a task planning approach that takes the seman-
tic occupancy map and the LTL formula and generates a
collision-free robot path that satisfies the task requirements.
Fig. 3 shows an overview.

A. Semantic Occupancy Mapping

Before the robot can interpret a desired task, it needs a
representation of the environment that captures occupancy
(for collision avoidance) and semantic classes (for task
grounding). We assume that the robot is able to explore the
environment first (either autonomously or through teleoper-
ation) to construct a semantic occupancy map (Definition 1)
using an RGB and range sensor. Our approach requires three
components: an odometry algorithm (e.g., Direct LiDAR
Odometry (DLO) [36]) that estimates the robot’s pose, a
semantic segmentation algorithm (e.g., YOLO [21]) that as-
signs semantic labels from C to image pixels in real time, and
a semantic occupancy mapping algorithm (e.g., SSMI [20])
to fuse semantically labeled point clouds, constructed from
the segmentation and range measurements, into a semantic
occupancy map. We chose DLO [36] for localization, YOLO
[21] for semantic segmentation, and SSMI [20] for semantic
occupancy mapping due to their efficiency, robustness, and
the availability of open-source code. Other alternatives would
also be compatible with our approach.

While SSMI [20] constructs a 3D semantic occupancy
map, in our experiments we consider a ground wheeled robot
navigating on a 2D plane. We project the 3D map m3D onto
this plane and discard voxels outside of a vertical region
of interest Z = {z|zground < z < zceiling}. Specifically,
we obtain a 2D semantic occupancy map m as follows:
1) m(x, y) = UNKNOWN if the entire vertical column
of voxels at (x, y) is unobserved; 2) m(x, y) = FREE if
the vertical column of voxels at (x, y) contains observed
voxels and all of them are free; 3) m(x, y) = NULL if
all the occupied voxels in the column at (x, y) are labeled
with NULL; 4) otherwise, we pick the semantic class from⋃

z∈Z{m3D(x, y, z)} \ {UNKNOWN, FREE, NULL} with the
largest z location. The robot uses m(x) to interpret the



Fig. 3: Overview of robot task planning using LTL code generation. Given a semantic occupancy map (left), we convert
natural language instructions into a syntactically correct LTL formula using an LLM code generation approach (top). A
label map of atomic propositions (bottom, middle), obtained from the map semantic information, and an Büchi automaton
(top, right), obtained from the LTL formula, are used as inputs to a motion planning algorithm to generate a collision-free
semantically valid robot path that executes the task.

TABLE I: Grammar for LTL formulas ϕ and φ.

pc (Atomic Proposition) ϕ ∨ φ (Or) ϕUφ (Until)
¬ϕ (Negation) ϕ ⇒ φ (Imply) Fϕ (Eventually)

ϕ ∧ φ (And) Xϕ (Next) Gϕ (Always)

natural language instructions by identifying regions that
contain categories of interest and to ensure collision-free task
planning and execution.

B. Translating Natural Language to LTL

This section describes our main contribution, an approach
to translate natural language instructions to LTL using code
generation, ensuring syntactic correctness of the resulting
formulas. LTL is a widely used and sufficiently expressive
formalism for expressing a variety of robot tasks [37].

LTL formulas are obtained from a set of atomic propo-
sitions, logic operators (∧,∨,¬), and temporal operators
(U,F,X,G,⇒) with syntax summarized in Table I. We
assume that the task µ can be translated to a syntactically
co-safe (sc) LTL formula [38]. Any word that satisfies an sc-
LTL formula consists of a finite satisfying prefix followed by
any infinite continuation that does not affect the formula’s
truth value. Thus, sc-LTL formulas allow task satisfaction
verification and task planning over finite words.

Although LLMs can translate natural language to LTL
formulas using several examples provided with the prompt,
LTL formulas generated this way are prone to syntax errors,
such as missing parentheses or operands. Our key idea is
to use an LLM to generate (Python) code that describes a
natural language instruction µ using a predefined library of
functions, defining the LTL logic and temporal operators.
The generated code is then executed to output an LTL for-

mula ϕµ. Our LTLCodeGen approach inherits the robustness
and expressiveness capabilities of LLM code generation and
the convenience to verify the LTL syntax as a consequence
of the code syntax correctness.

IV.1: Object Identification

Your task is to convert the object names to their unique
id based on given object id correspondences. Use the
object IDs provided in the object ID correspondences for
conversion. The conversion should take the context of
each sentence into account, so that objects can be
correctly correlated to the text.
Here are a few examples:
Object ID correspondence:

'object_28' : 'refrigerator'
'object_31' : 'bottle'
...

Input text: Take the teddy bear, then pick the bottle.
Always avoid the refrigerator.
Output text: Take object_36, then pick object_31. Always
avoid the object_28.
...
Using the provided examples, convert the objects in the
following text into their unique IDs.
Object ID correspondence: {object ids}
Input text: {natural language instruction}
Output text:

Object Category Identification: To ground the semantics
of the natural language instruction µ with respect to the cate-
gories in the semantic occupancy map m(x), LTLCodeGen
first rephrases the instruction µ with unique IDs of semantic
classes in C. As shown in Code IV.1, we first describe the
task of replacing the objects in the instruction with unique
IDs. Then, we provide examples of inputs and corresponding
expected outputs to the LLM. Finally, we provide the unique
IDs of semantic classes in C, then ask for the instruction µC
rephrased with IDs, from which we identify categories Cµ



present in both the map and the instruction.

Code Generation: We first briefly describe the code
writing task in comments. Then, to make sure that the LLM
generates code without undefined variables or functions, we
show the available variables and library functions via import
statements. As shown in Code IV.2, we first import the
function ap(obj) for creating atomic propositions, and
then the predefined LTL operators, such as ltl and(a,
b). Code IV.3 shows the implementation of ltl and(a,
b). Other LTL operator functions are defined similarly. The
global variable prefix is used to control the LTL format. It
is not necessary to provide the implementations of the library
functions to the LLM, which wastes the limited number of
input tokens. We hide the implementation details of these
LTL operator functions and, instead, show examples of how
to use them as in Code IV.4.

IV.2: Actions and Predefined Functions

# Please help write code to translate the instruction
into an LTL formula.
# Necessary functions and variables are imported.
from ltl_operators import ap # ap(obj)
from ltl_operators import ltl_and, ltl_or, ltl_not,
ltl_until, ltl_eventually, ltl_always, ltl_imply

IV.3: Implementation of ltl and

prefix = True # The generated LTL is in prefix format
def ltl_and(a: str, b: str):

if prefix:
return f"& {a} {b}"

return f"({a}) & ({b})"

IV.4: Code Example

def example_1():
"""
Reach object_2 and object_1
"""
# explanation of the instruction:
# object_1 and object_2 are both reached at some
point in the future, but no specific order is
mentioned explicitly or implicitly.
# create atomic propositions for objects
reach_obj_2 = ap("object_2") # reach(object_2)
reach_obj_1 = ap("object_1") # reach(object_1)
# describe the constraints in the instruction
c1 = ltl_eventually(reach_obj_2) # Reach object_2...
c2 = ltl_eventually(reach_obj_1) # Reach object_1...
c3 = ltl_and(c1, c2) # Reach object_2 and object_1
return c3

The code examples not only show the basic usage of
the predefined functions but also demonstrate how to write
the code based on the rephrased instruction µC . The LLM
should first explain the instruction in comments, then create
atomic propositions for objects involved in the instruction,
next describe the instruction with the LTL operator functions,
and finally return the LTL formula.

As shown in Code IV.5, we describe the code writing task
again with the requirements for the output format, i.e., the
LLM output should only contain the complete implementa-
tion of the question function for the instruction µC .

IV.5: Provide the Instruction to Translate

# Now, please finish the following Python code for
translating the instruction to LTL formula.
# The returned output should only contain the code that
starts with `def` and ends with `return` statement.
def question():

"""
{instruction}{previous_answer}{failure_reason}
"""

Code Syntax Checks: The LLM may generate code that
contains syntax errors, such as undefined functions, too
many arguments for a function call, etc. To ensure that the
generated code is syntactically correct, we execute it and
provide the error message from any syntax errors back to the
LLM. If an error is detected, we fill the previous answer
and failure reason fields in Code IV.5 with the latest
generated code and a short description of the error, respec-
tively. In our practice, GPT-4o [1] rarely generates Python
code with syntax errors, which are easy to fix in a second
query to the LLM. When the code is free of syntax errors,
it produces an LTL formula ϕµ free of LTL syntax errors.

C. Planning

Given the atomic propositions APµ related to the in-
struction µ and the LTL formula ϕµ, synthesized by LTL-
CodeGen, we can convert ϕµ into a Büchi automaton via a
translation tool, such as Spot [39]. Büchi automata are more
expressive than LTL formulas, and a Büchi automaton that
recognizes the same language as an LTL formula can always
be constructed [40].

Definition 4. A deterministic Büchi automaton is a tuple
B = (Q,Σ, T,F , q1), where Q is a finite set of states, Σ is
a finite set of inputs, T : Q×Σ → Q is a transition function
that specifies the next state T (q, σ) from state q ∈ Q and
input σ ∈ Σ, F ⊆ Q is a set of final (accepting) states, and
q1 ∈ Q is an initial state.

Then, to plan a collision-free robot path that satisfies
the LTL formula ϕµ obtained from LTLCodeGen, we first
construct a product planning graph G based on the (semantic)
occupancy map m(x), the label map l(x), and the automaton
Bϕµ . With eight-direction movements (cardinal and diagonal)
in the (semantic) occupancy map m(x), we construct the
graph as G = (V, E), where V = X × Q is the set of
nodes, E is the set of transitions from vi= (xi, qi) to vj=
(xj , qj) with a cost d(xi,xj). Such a transition exists when
1) xj can be reached from xi by a single-step movement
in the map m(x); 2) both xi and xj are collision-free:
m(λxi+(1−λ)xj) = FREE, ∀λ ∈ [−ro/α, 1+ro/α], where
α = ∥xi − xj∥2, and ro is a safe margin; 3) the automaton
transitions are respected: qj = T (qi, l(xi)).

Finally, we apply the A* algorithm [41] to search the graph
G with a consistent LTL heuristic [7], defined as:

h(x, q) = min
y∈X

[d(x,y) + g(l(y), T (q, l(y)))] ,

h(x, q) = 0, ∀q ∈ F ,
(3)



TABLE II: LTL translation accuracy (%). Results from the BART
baselines are from the original paper [22]. BART-FT-RAW-human is
shown as BART-human in the table, and BART-FT-RAW-synthetic
is shown as BART-syn.

Drone Cleanup Pick
human syn. human syn. human syn.

LTLCodeGen 99.87 99.94 99.05 98.99 99.19 98.92
NL2LTL [7] 98.66 98.30 95.36 95.21 97.31 97.18
BART-human 90.78 N/A 97.84 N/A 95.97 N/A
BART-syn. [22] 69.39 N/A 78.00 N/A 81.45 N/A

where the function g : 2AP ×Q 7→ R≥0 is defined as:

cl(l1, l2) = min
x1,x2:l(x1)=l1,l(x2)=l2

c(x1,x2), (4)

g(l, q) = min
l′∈2AP

cl(l, l
′) + g(l′, T (q, l′)), (5)

which can be pre-computed via dynamic programming on
Bϕµ

. The search terminates when the accepting state in F
is reached, meaning the path satisfies the LTL formula ϕµ

and, thus, the corresponding natural language instruction µ.
If an accepting path x1:T is found, a tracking controller is
then used to drive the robot along the path.

V. EXPERIMENTS

We conduct a series of comprehensive experiments to
evaluate LTLCodeGen and our complete task planning
method and compare the performance against multiple base-
lines. First, we compare LTLCodeGen to the LLM-based
NL2LTL [7] and two fine-tuned LLM models [22] on three
datasets (Drone, Cleanup, and Pick) to gauge translation ac-
curacy from natural language to LTL. Next, we demonstrate
our task planning approach in both simulation and real-world
environments, where tasks of varying complexity are tested.
We also compare our method to an end-to-end LLM-based
task planner on the GameTraversalBenchmark (GTB) [6].
Finally, we conduct an ablation study to investigate how
different LLMs, as well as the inclusion of explanations and
comments, affect the performance of LTLCodeGen.

A. Evaluation of LTLCodeGen

Using GPT-4o [1], we evaluate our LTLCodeGen and
three baselines, NL2LTL [7], BART-FT-RAW-human and
BART-FT-RAW-synthetic [22] on three datasets (Drone,
Cleanup, and Pick) from the fine-tuned LLM [22] paper.
The three datasets provide both human-written and LLM-
augmented synthesized natural language instructions. For
each dataset, we adjust the prompt for LTLCodeGen and
NL2LTL based on a few examples randomly drawn from
the datasets. The prompt for each dataset is given only 20
(Drone), 12 (Cleanup) and 5 (Pick) examples. Our method
and NL2LTL are both tested with all human-written and
synthetic instructions. In contrast, BART-FT-RAW-human is
evaluated by 5-split cross-validation on human-written data,
and BART-FT-RAW-synthetic is trained with synthetic data
and tested with human-written data. As shown in Table II,
LTLCodeGen outperforms the baselines significantly on both
human-written and synthesized instructions, which indicates
that LTLCodeGen generalizes well and generates the correct
LTL formulas robustly. NL2LTL also performs better than

Fig. 4: Example path generated by our method for a GTB
map. The robot is asked to obtain the heartstone, rally the
creatures of Verdanthorn, then defeat Drakon’s Lieutenants,
and finally defeat Drakon and restore peace to Verdanthorn.
Note that bush tiles are considered walkable in this map.

TABLE III: Evaluation of our task planning method on the
GameTraversalBenchmark (GTB) [6]. Higher Accuracy and lower
MPL indicate better performance. Both methods are evaluated using
GPT-4o [1]. Results for GTB [6] are gathered by using GPT-4o to
plan the path directly via prompting as described in their work.

Method Accuracy (%) ↑ MPL ↓
GTB [6] 7.84 85.42
Ours 78.91 82.49

the fine-tuned LLMs but worse than LTLCodeGen because
LLMs are not as good at writing LTL formulas. In our
experiments, NL2LTL fails mostly due to the LTL syntax
errors that LLMs cannot fix within three retries or due to
being semantically mismatched with the instructions.

B. Evaluation on GameTraversalBenchmark (GTB)

We evaluate our complete task planning approach on
the GameTraversalBenchmark (GTB) [6]. GTB is an LLM-
generated dataset that provides 150 different 2D maps with
various objects, game stories, and task objectives. For each
experiment, we convert the map into the 2D semantic occu-
pancy map format and generate an instruction that combines
all the task objectives. For example, if the objectives are
objective1, objective2, and objective3 the instruction provided
to the LLM would be: Complete objective1, then complete
objective2, and then objective3. Our system consumes the
map and the instruction to generate a path that satisfies all
the task objectives. We report two metrics in Table III:

• Accuracy (↑): the percentage of tests where the agent
successfully reaches the exact objective coordinates;

• Mean Path Length (MPL) (↓): the average length of
paths taken by the agent to complete each task.

The results in Fig. 4 and Table III show that our sys-
tem outperforms the end-to-end GPT-4o-based planner from
GTB [6]. However, there are cases where our planner is
unable to generate a path due to the absence of a valid path
satisfying the LTL in the environment. For example, achiev-
ing objective1 may require passing through a later objective,



TABLE IV: LTL generation comparison: LTLCodeGen vs NL2LTL [7]. Two LLMs, GPT-4o and GPT-4o-mini, are tested.

Method Success (%)↑ Semantic Failure (%)↓ Syntactic Failure (%)↓ Runtime (s)↑
Tier 1 2 3 4 1 2 3 4 1 2 3 4 Total
LTLCodeGen-4o 100 100 100 70.0 0 0 0 30.0 0 0 0 0 7.07± 4.31
NL2LTL-4o [7] 100 90.0 46.7 60.0 0 10.0 40.0 40.0 0 0 13.3 0 2.01± 1.12
LTLCodeGen-4o-NoExplanation 100 100 60.0 50.0 0 0 40.0 50.0 0 0 0 0 5.55± 3.20
LTLCodeGen-4o-NoComment 100 100 93.3 70 0 0 6.7 30.0 0 0 0 0 6.06± 3.06
LTLCodeGen-4o-mini 90.0 70.0 26.7 0 10.0 30.0 73.3 100 0 0 0 0 4.90± 3.40
NL2LTL-4o-mini 80.0 70.0 13.3 0 20.0 10.0 26.7 80.0 0 20.0 60.0 20.0 2.15± 0.93
LTLCodeGen-4o-mini-NoExplanation 100 80.0 20.0 0 0 20.0 80.0 100.0 0 0 0 0 4.49± 2.22
LTLCodeGen-4o-mini-NoComment 90.0 80.0 40.0 0 10.0 20.0 60.0 100.0 0 0 0 0 3.77± 1.25

such as objective3, which conflicts with the generated LTL.

C. Real-World Experiments

We evaluate our system in a mock indoor environment
containing eight categories: personal items (backpack, lap-
top, umbrella), common household objects (TV, potted plant,
microwave, chairs), and a person for a realistic setting.

The task design includes four tiers of natural language
tasks progressively increasing in difficulty:

• Tier 1: Single-object tasks. Straightforward instructions
referencing one object (e.g., “Visit the chair”).

• Tier 2: Multi-object tasks with avoidance. Missions
involving one or more objects while avoiding others
(e.g., “Go to the table and avoid chairs”) or applying a
condition (e.g., “Go to the backpack if you are near a
laptop”).

• Tier 3: Multi-object tasks with temporal constraints.
Complex missions requiring multiple visits or precise
ordering (e.g., “Visit the desk, then the couch, and do
not go by the chair”).

• Tier 4: Ambiguous, context-based tasks. Instructions
relying on inference and context rather than explicit
object naming (e.g., “It’s valentine’s day and I have no
date. Let’s watch a romcom.”).

The evaluation includes 10 scenarios for Tier 1, 10 for Tier
2, 15 for Tier 3, and 10 for Tier 4, totaling 45 scenarios.
Our planner runs using LTL specifications generated by LTL-
CodeGen or NL2LTL [7], both with GPT-4o and GPT-4o-
mini [1]. The robot’s trajectory undergoes visual inspection
to determine task success and the following metrics:

• Success Rate: Fraction of tasks the robot completes.
• Semantic Error Rate: Fraction of tasks where the plan

does not match user intent.
• Syntactic Error Rate: Fraction of tasks where the LLM

generates invalid LTL after three retries.
• LLM Runtime: Time required to produce LTL formula.
Table IV shows that LTLCodeGen consistently outper-

forms NL2LTL. Notably, LTLCodeGen incurs no syntactic
errors, thanks to its predefined LTL operator functions. Since
LLMs are better at writing code than LTL-specific syntax,
this approach delivers stronger correctness guarantees. More-
over, LTLCodeGen excels in sequential and revisiting tasks,
where strict ordering challenges the baseline. Expressing
constraints in code appears more manageable for LLMs.

However, LTLCodeGen requires longer inference times
since it generates complete executable code, including com-

ments and explanations, while NL2LTL produces only a
single-line LTL formula. Our ablation study (Section V-D)
confirms that removing explanations or comments reduces
generation length and accelerates inference.

D. Ablation Study

We examine three variations of our method on the same
45 real-world tasks: (1) the full version, (2) a version without
task explanations, and (3) a version without line comments
in the code. Each variant uses both GPT-4o and GPT-4o-mini
[1] to evaluate the impact of model size.

1) No Explanation: As shown in Table IV, removing
task explanations significantly reduces Tier 3 performance
and noticeably harms Tier 4. While Tiers 1 and 2 remain
relatively straightforward, the revisiting and sequencing in
Tier 3 become error-prone without explanations, and Tier 4’s
contextual ambiguity exacerbates this issue. These findings
demonstrate that providing explanations yields a clear net
benefit across both GPT-4o and GPT-4o-mini.

2) No Comment: Eliminating line comments has mini-
mal impact on overall performance, likely because LLMs
rely more on task explanations than on code annotations.
However, GPT-4o shows a slight performance drop in Tier
3, suggesting that comments can clarify complex temporal
logic. In contrast, GPT-4o-mini sometimes improves when
comments are removed, indicating that extraneous text may
add noise for smaller models.

3) Model Size and Performance: Switching from GPT-4o
to GPT-4o-mini results in a performance decline, especially
for Tier 4 tasks, reinforcing that smaller models struggle
more with ambiguity. Tier 3 performance also declines
for all variations, reflecting the complexity of sequencing
constraints. However, Tiers 1 and 2 experience only modest
drops, suggesting that larger models are generally more
robust across all difficulty levels.

VI. CONCLUSION

We introduced a modular, LLM-based planning framework
that translates natural language instructions into syntactically
correct LTL specifications, leveraging a semantic occupancy
map and a motion planning algorithm to generate optimal
collision-free paths satisfying the instruction. Central to
this approach is LTLCodeGen, which fully exploits large
language models’ proficiency in code generation to reliably
produce the correct LTL. Our thorough evaluation shows
that with the same LLM, LTLCodeGen outperforms the



baselines in generating syntactically correct LTL formulas
for varying instruction complexity. Simulation and real-world
experiments suggest that LTLCodeGen plays a key role in
supporting our system to robustly plan the task. These results
indicate that an LLM-based framework should take what
LLMs are good at into account instead of simply using
prompts.
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